
Communications of BAO, Vol. 67, Issue 2, 2020, pp. 193-197

Uncertainties of the solar wind in-situ velocity

measurements

Gogoberidze G.∗and Gorgaslidze E.†

Ilia State University, 3/5 Cholokashvili ave., 0162 Tbilisi, Georgia

Abstract

We study spectral features of Alfvénic turbulence in fast solar wind. We propose a general,
instrument independent method to estimate the uncertainty in velocity fluctuations obtained by
in-situ satellite observations in the solar wind. We show that when the measurement uncertainties of
the velocity fluctuations are taken into account the less energetic Elsasser spectrum obeys a unique
power law scaling throughout the inertial range as prevailing theories of magnetohydrodynamic
turbulence predict.
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1. Introduction

In-situ satellite observations of the solar wind magnetic field and bulk flow span several decades in
temporal scales and offer a ’natural laboratory’ for the study of MHD turbulence (Bruno & Carbone,
2013). They have been extensively used to test theoretical predictions of MHD turbulence. The
Elsasser fields, Z± = v ±B/

√
4πρ, where v and B are the velocity and magnetic fields, respectively,

and ρ is the average density, represent eigen-functions of counter propagating (with respect to the
mean magnetic field) Alfvén waves and therefore they are primary fields for the study of incompressible
magnetohydrodynamic (MHD) turbulence. Fluctuations in the fast solar wind are strongly imbalanced
- there is more power in Alfvén waves propagating outward from the sun than toward it so that the
power in Z+ typically dominates over that in Z−.

Using high cadence WIND observations Wicks et al. (2010) studied spectral features of the Elsasser
variables in the high frequency part of the inertial interval for the first time. They showed that at 1
AU (in accordance with earlier studies) in the low frequency part of the inertial interval (10−3Hz <
f < 10−2Hz) Z− nearly follows Kolmogorov scaling which at higher frequencies (f > 10−2Hz) is more
shallow with γ− ≈ −1.3. The absence of single scaling of the subdominant Elsasser field in the entire
inertial interval contradicts all recently developed models of strong, anisotropic imbalanced MHD
turbulence which predict a single scaling for sub-dominant Z− spectrum. They also are inconsistent
with the results of recent high resolution direct numerical simulations of imbalanced MHD turbulence
which showed single scaling of the subdominant Elsasser field in the inertial interval (Turner et al.,
2012).

Control of observational uncertainty in the in-situ observations is non-trivial, although these errors
often have known bounds. There are different challenges for magnetic field and velocity measurements;
solar wind velocity observations are intrinsically more uncertain compared to the magnetic field data
(Gogoberidze et al., 2012a,b, 2013, 2018, Hnat et al., 2011, Turner et al., 2012). Here we propose
an instrument independent method to estimate the uncertainty on velocity field fluctuations directly
from the data. We obtain the systematic shift that this uncertainty introduces into observed spectral
exponents. We will see that the shallower Z− spectrum at high frequencies can be entirely accounted
for by this uncertainty in the velocity data and the observations of the Z± spectra may in fact within

∗grigol gogoberidze@iliauni.edu.ge, Corresponding author
†egorgaslidze@gmail.com

Gogoberidze G. and Gorgaslidze E. 193
DOI: 10.52526/25792776-2020.67.2-193



ComBAO Author Template

achievable accuracy of the observations, be in agreement with the predictions of theory and numerical
simulations.

2. Data analysis

We use data obtained by the WIND spacecraft at 3 second resolution. Magnetic field data is
provided by the MFI instrument and density and velocity data by the 3DP instrument. We use
observations made during a quiet fast stream. The start time of the interval is 06:00 April 06, 2008
and stop time is 12:00 of April 08, 2008 (Gogoberidze et al., 2012b). During this interval the solar wind
speed remained above 550 km/s. The energy of compressive fluctuations was an order of magnitude
lower than that of incompressible fluctuations and, consequently, magnetic and velocity fluctuations,
being mainly Alfvénic, were dominated by the components perpendicular to the local mean field. The
mean field, B̄(t, τ), at some time t and on scale τ is defined as the magnetic field averaged over the
interval [t − τ, t + 2τ ]. The fluctuations of the velocity and magnetic field are defined by standard
expressions δv(t, τ) = v(t+ τ)− v(t) and δB(t, τ) = B(t+ τ)−B(t), respectively.

There are several sources of uncertainty in the solar wind velocity measurements (Gogoberidze
et al., 2013, Podesta et al., 2002, Turner et al., 2012). The first source is the uncertainty in assessment
of the proton distribution function. In addition, in common with all velocity in situ observations, the
3 s velocity observations on WIND are quantized before ground transmission and this quantization
results in high frequency noise or quantization noise. These contributions to observational uncertainty
decorrelate the velocity and magnetic field fluctuations at high frequencies. White, delta correlated
noise provides a reasonable, instrument independent model for the uncertainty (Podesta et al., 2002).
Any measurement of a velocity component fluctuation δvo can then be represented as a sum of the
’real’ turbulent signal δvs and a noise δvn which has zero mean and standard deviation ε, so δvo =
δvs+ δvn. Note that the r.m.s. value of a single velocity measuremant vn used to characterise velocity
uncertainties in other studies (Podesta et al., 2002, Wicks et al., 2010) is, in our notations, ε/

√
2. In

what follows we will neglect the uncertainties in the magnetic field measurements since generally these
are small relative to those of the velocity measurements.

We will first quantify the velocity uncertainty from the data. We will exploit the fact that both
the turbulent signal and the noise are random variables with distinct characteristic autocorrelation
time scales. We make a key assumption- that the autocorrelation timescale of the underlying turbu-
lent signal is that observed in the magnetic field component fluctuations δBo (they have negligible
noise) and that this is also the autocorrelation timescale of the ’true’ turbulent velocity component
fluctuations δvs. Any difference in the autocorrelation functions of the observed δvo and δBo are thus
attributable to the (delta correlated) noise δvn on the velocity. The autocorrelation coefficient (AC) of
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Figure 1. Autocorrelation functions RδBy(τ,∆) (black dashed line) of the GSE y component of the
magnetic field fluctuation and Rδvy(τ,∆) (red solid line) with the time lag ∆ = 3 s.
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a component δv on time lag ∆ is Rδv(τ,∆) ≡ 〈δv(t+∆, τ)δv(t, τ)〉/〈δv(t, τ)2〉, where angular brackets
denote time averages with respect to entire studied interval (i.e., with respect to all possible values of
t). The autocorrelation coefficients RδBo(τ,∆) and Rδvo(τ,∆) for GSE y components of the magnetic
field and velocity fluctuations are plotted in Figure 1 for lag ∆ = 3s as a function of scale τ with
black solid and red dashed lines respectively. We see that the AC grows with scale τ for both signals
and that the velocity AC is systematically lower that that of the magnetic field, consistent with the
assumption of uncorrelated noise that principally affects the velocity signal. Given these assump-
tions one can construct a modelled noisy signal by adding uncorrelated noise to the magnetic field
observations. The modelled noisy fluctuations δBo+n = δBo + δBn, where δBn are delta correlated
Gaussian distributed random numbers with zero mean and standard deviation εB. The magnitude
of the modelled noise εB can then be systematically varied. We first verify that this simple noise
model is sufficient to reproduce the AC as a function of τ for the velocity fluctuations. The AC of
the modelled δBo+n is shown by the black crosses in Fig. 1 and this can be seen to closely coincide
with the observed AC of velocity fluctuations δvo. Assuming Alfvénic fluctuations the magnitude of
εB used to generate this curve corresponds to an uncertainty in the velocity fluctuations of

εv ≡ εB

√
〈δv2o〉
〈δB2

o+n〉
= 4 km/s. (1)

Hereafter in this paper ε denotes r.m.s. value of observed velocity fluctuation δv, whereas εv denotes
its estimate, derived using different methods described in the paper. Thus, ε ∼ 4 km/s (which
corresponds to the uncertainty of a single velocity component of ε/

√
2 ∼ 2.83 km/s) is a reasonable

estimate of the amplitude of the noise on the turbulent velocity signal. We will develop this idea to
obtain a general method to estimate the uncertainty direct from the data. In the next section we
will compare our assessment of the velocity measurement uncertainties with the estimate derived in
other studies. First, we will see how these uncertainties can affect measurements of scaling exponents
and the conclusions that can be drawn from them. In Figure 2 we plot the observed second order
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Figure 2. The normalized second order structure functions: of the GSE z component of the sub-
dominant Elsasser variable Z−

z (red dashed line), of the dominant Elsasser variable Z+
z (black solid

line) and S−
2 (circles, see text for details). In the insert: the second order structure functions of the

sub-dominant Elsasser variable for different values of added Gaussian noise. Raw observations are
denoted by the solid line, and added noise is equivalent to εv = 2 km/s (dashed line), εv = 4 km/s
(dash-dotted line) and εv = 5 km/s (dotted line).

structure functions S2 of a component of the fluctuations in the Elsasser variables, where the Elsasser
components are given by δZ±

i (τ) = δvi(t, τ) ± δBi(t, τ)/
√

4πρ̄ and ρ̄(τ) is the local mean value of
the density averaged over the time scale of the fluctuations τ , i.e., over the interval [t, t + τ ], and
S±
2 = 〈δZ±

i (τ)2〉. The solid lines are the structure functions of GSE z components of the dominant
δZ+

z (black solid line) and subdominant δZ−
z (red dashed line) fields. They are normalized to have the
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same values at τ = 10 min scale on this plot; the power in δZ+
z is 20 times that in δZ−

z at τ = 10 min
scale. For the ideal statistical scaling of fully developed MHD turbulence we anticipate the scaling
S2 ∼ τ ζ±(2) and turbulence theories predict constant values of ζ±(2) over the entire inertial interval
(they are directly related to the power spectral exponents γ± via γ± = −ζ±(2)− 1). We can see that,
consistent with earlier studies (e.g., Wicks et al. (2010)), the subdominant Elsasser variable does not
follow a single power law in the inertial interval. A linear mean least square fit on log-log plot over
scales 30 s < τ < 10 min gives γ+ = −1.54 ± 0.02 and γ− = −1.40 ± 0.02, consistent with previous
observations (Bruno & Carbone, 2013, Wicks et al., 2010).

A quantitative demonstration of the effect of noise is provided by calculating S−
2 (δBo+n, δvo) ≡

〈
[
δvi,o − (δBi,o + δBi,n)/

√
4πρ̄

]2〉 which for uncorrelated noise is equivalent to S−
2 (δBo, δvo)+ε2v. Here

a different ’Alfvénic’ relation, εv = εB/
√

4πρ̄, is used to relate the velocity and magnetic field uncer-
tainties. This is shown in the inset of Figure 2 for a range of amplitudes of δBn, which are equivalent
to velocity noise uncertainties of εv = 2, 4 and 5km/s. We can see that addition of ’white’ (delta
correlated) noise always systematically ’flattens’ these curves, that is, it decreases the value of the
scaling exponent; for εv = 4 km/s pseudo noise strongly affects S−

2 at all scales in the inertial interval.
The ’flattening’ of the pseudo-noisy S−

2 (δBo+n, δvo) curve, that is, the change in the mean exponent
over timescales 30 s < τ < 10 min is ∆γ− ≈ 0.13, is close to the observed difference between exponents
of the dominant and subdominant fields (γ− − γ+ = 0.14) hence this difference could be just due to
noise in the velocity data.

We now obtain an estimate of the structure function in the absence of the noise in the velocity,
S−
2 (δBo, δvs) ≡ 〈(δZ−

s )2〉, where δZ−
s = δvs − δBo/

√
4πρ̄. We have that the observed structure

function S−
2 (δBo, δvo) = 〈(δZ−

s + δvn)2〉 = S−
2 (δBo, δvs) + 2〈δZ−

s δvn〉 + ε2. Assuming as before that
the turbulent signal and the velocity error are uncorrelated (〈δZ−

s δvn〉 = 0) we obtain S−
2 (δBo, δvs) =

S−
2 (δBo, δvo) − ε2. The plot of our estimated S−

2 (δBo, δvs) is given by black circles in Figure 2
for ε = 4 km/s. This error compensated subdominant S−

2 (δBo, δvs) curve now has a single scaling
throughout the inertial range, consistent with current theories and numerical predictions (Podesta
et al., 2002). We can also see that the slope of S−

2 (δBo, δvs) coincides quite closely with the observed
slope of the dominant Elsasser variable S+

2 . The uncertainty in the velocity that we have estimated
from the data is thus sufficient to account for the departure in scaling between the δZ− and δZ+

Elsasser variables and these observations may in fact within the achievable accuracy be in agreement
with theories (Podesta et al., 2002) that predict a single scaling for δZ− and δZ+.

3. Conclusions

In summary, we have presented a general, instrument independent method to determine uncertainty
in the velocity fluctuations in single point measurements. We have shown that this uncertainty is
sufficient to account for both the absence of single scaling of the subdominant Elsasser field and for
the difference of Z± slopes in the inertial interval. Thus, our findings are able to report for the first
time that the observations are, within the achievable accuracy, in agreement with the predictions of
theory and numerical simulations.
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