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Abstract 

The roots of the Legendre polynomials and corresponding weights necessary for Gaussian 

quadrature of integrals are calculated numerically. A package of program created for high 

accuracy calculations is used for the machine computing. The numerical procedure used for 

determination of the Legendre polynomials’ roots and corresponding weights is described. 

We also bring here some results of numerical calculations as an illustration.   
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1. Introduction 

Machine computing is always approximate, and the accuracy of calculations 

decreases with the number of mathematical acts conducted during numerical 

procedures. There are two main sources of inaccuracy affecting the results. One is 

coming from the mathematical algorithms transforming the analytical formulae into 

constructed artificially discrete schemes of step-by-step approaching. The next one 

results from the machine representation of numbers with limited quantity of 

significant digits. Researchers apply a variety of methods to diminish the calculation 

errors of both types. 

 Errors of the second type are most often encountered in theoretical 

calculations, when dealing with numerical values that differ by many orders of 

magnitude. If one is sure that neglecting the smallest terms in such expressions does 

not affect the result, no problem arises. However, it often happens that the numerical 

result is in order comparable to the smallest members of the expression. Then such 

neglect is unacceptable, and one needs to represent the main members of the 

expression with a larger number of significant figures. 

 A few decades ago, one of the authors (H.A.H) has developed a package of 

program, which allows one computing with arbitrary long (with many significant 

digits) numbers. Thanks to the mentioned package, some machine computation 
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algorithms are realized, which would be impossible with ordinary or double 

precession regimes of modern computers. Particularly, zeros of Hermite polynomials 

with the corresponding weights are calculated for up to 120th order (see Poghosyan 

2017; Harutyunian, Poghosyan 2018). 

 Here we present the results of calculations of zeros and weights of Legendre 

polynomials. Both the zeros of Hermite polynomials and the zeros of Legendre 

polynomials are calculated for usage in the computational procedures of numerical 

integration when solving the Ambartsumian’s functional equations. The zeros of 

Hermite polynomials and linked weights are used for the case of frequency 

redistribution, while second set is used for discretization of angular integrals. 

 For the purpose mentioned above, we use the package of long number 

computational mathematics giving opportunity for calculations with many (in the 

given version – up to 200) significant digits.  

2. Legendre polynomials  

Legendre polynomials representing the polynomial solution of Legendre equation 

allow the following presentation by Rodrigues formula(see, for example, Abramowitz, 

Stegun 1964)  : 
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It is well known that the Legendre polynomials constitute a complete and orthogonal 

system. Their orthogonality can be expressed as follows: 
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where mn   is the Kronecker symbolequal to 1 if m n and to 0 otherwise. 

One can immediately check that the Legendre polynomials obey the following 

recurrence relation: 

1 1( 1) ( ) (2 1) ( ) ( )n n nn P x n xP x P x     , (3) 

which is easily applicable to numerical calculations if the expressions for the first 

polynomials 

0( ) 1P x  , (4) 

1( )P x x (5) 

are used for the beginning steps. 

The roots of a Legendre polynomial can be calculated using the Newton 

universal iterative method 
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where the indices i  and ( )k  show the root number and the number of the next 

iteration. The derivative ( )nP x  is determined from relation 
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To implement the numerical procedure according to (6) - (7), as a zero iteration, the 

numerical value of the following expression is usually calculated: 
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However, one can use another procedure for computing the roots of 

polynomials. That is the direct method, which we applied for finding the roots of 

Hermie polynomials. For all polynomials, we used the same procedure, starting 

calculation of the given polynomial for the argument 0x  . In the next step, we 

increment the argument by some small value x and again determine the value of 

the polynomial. The increment x  must be small enough not to jump over the two 

consecutive roots of a polynomial at once. Then, if the sign of the calculated value is 

the same with the previous one, the next step is identical. If sign changes, we put 

2

x
x


  and continue procedure in the same way. The iteration process considered 

complete if the increment becomes smaller than the required accuracy for the roots.  

This mathematical algorithm gives rather good results. However, one needs to 

compare the speeds of convergence for two methods to choose the best one. 

Actually, we did not put such a purpose. Our purpose was calculation anyhow of the 

zeros and corresponding weights using the “long numbers” mathematics. 

 

 

2. Numerical results 

All calculations have been carried out using the package HAHMATH (see Poghosyan 

2017, Harutyunian, Poghosyan 2018) with long numbers given by at least 116 

significant digits. We followed the iterative method described in the previous section. 

An iterative process is considered complete if, in the next iteration step, the 

increment of the argument in order of magnitude is equal to or less than the 

required accuracy. 

  We present here only positive roots of polynomials, since  

 ( ) ( 1) ( )n

n nP x P x   . (9) 
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polynomials Legendre order 50 and 49 the of weights and Zeros 1. Table 

0.                                             3.17316407023952988591267339397648174-2 

6.34206849826867860288348208784849731-2      6.33355092964917485908369274000905201-2 

1.26585997269672051067985288575536190-1      6.29527074651956994743995557828910063-2 

1.89241592461813586485310173859986511-1      6.23164173200572674010768252159497042-2 

2.51135178612577273507155942824611274-1      6.14292009791929362968266461403010749-2 

3.12017532119748762207860676506416265-1      6.02946309531520173031061168755415904-2 

3.71643501262284888863734540946960527-1      5.89172757600272660245276507424925162-2 

4.29772993341576524658584141807423033-1      5.73026815301874754851645923508165363-2 

4.86171941452492042176976096058575062-1      5.54573496748035886904315814826980672-2 

5.40613246991726066558225467229435916-1      5.33887107082589685279429337301762061-2 

5.92877694108900712455864336792628534-1      5.11050943301445906746228060493185613-2 

6.42754832419237664056856948583900109-1      4.86156958878282402776511972878685308-2 

6.90043824425132113504751807274941927-1      4.59305393555958535424996199721276710-2 

7.34554254237402696213674212858524884-1      4.30604369812595979883454840010384958-2 

7.76106894345446635018142812248456071-1      4.00169457663730213686050367431033214-2 

8.14534427359855431539500787764777044-1      3.68123209630006898194672366988822950-2 

8.49682119844165701034881872242979333-1      3.34594667916221743424871508916892018-2 

8.81408445573008910037031535817004926-1      2.99718846205838253506905580741472100-2 

9.09585655828073285213019640355800071-1      2.63636189270660169609457452397420476-2 

9.34100294755810149058982460636544902-1      2.26492015874466764987709642160428873-2 

9.54853658674137233555243679668184419-1      1.88435958530894584444506533911073492-2 

9.71762200901555380139972421504774133-1      1.49621449356246510295843191202015040-2 

9.84757895914213004359298995368574710-1      1.10205510315935804975082881668333327-2 

9.93788661944167790760113859257953618-1      7.03509959008645147345067831134841086-3 

9.98820150606635379361831272704110655-1      3.02727898892290507748069817582714097-3 

3.10983383271888761123289896659491942-2      6.21766166553472623210331073606134308-2 

9.31747015600861408544503776396003478-2      6.19360674206832433840875097808306885-2 

1.54890589998145902071628620941109501-1      6.14558995903166637564067860839153750-2 

2.16007236876041756847284532617101333-1     6.07379708417702160317500153848110016-2 

2.76288193779531990327645278521130185-1      5.97850587042654575095764053125852307-2 

3.35500245419437356836988257291071697-1      5.86008498132224458351224366308484662-2 

3.93414311897565127394229253823817270-1      5.71899256477283837230293150659931630-2 

4.49806334974038789147131467778375817-1      5.55577448062125176235674256122694975-2 

5.04458144907464201651459131849141192-1      5.37106218889962465234587972556645527-2 

5.57158304514650054315522909625801607-1      5.16557030695811384899052958400952796-2 

6.07702927184950239180381796391832893-1      4.94009384494663149212435807514327286-2 

6.55896465685439360781624864003679819-1      4.69550513039484329656330136349876825-2 

7.01552468706822251089546257883655728-1      4.43275043388032754920222868303941974-2 

7.44494302226068538260536252682194242-1      4.15284630901476974224119789640670178-2 

7.84555832900399263905305196340991200-1      3.85687566125876752447701502363859348-2 

8.21582070859335948356254110873939537-1      3.54598356151461541607346110009757970-2 

8.55429769429946084611362643934757467-1      3.22137282235780166481658273230039534-2 

8.85967979523613048637540982466753634-1      2.88429935805351980299063731132324325-2 

9.13078556655791893089735642771657094-1      2.53606735700123904401948783854427234-2 

9.36656618944877933780874947272496602-1      2.17802431701247929815920690626903412-2 

9.56610955242807942997745644156622094-1      1.81155607134893903512599434223546198-2 

9.72864385106692073713344104606252053-1      1.43808227614855744193789089273243499-2 

9.85354084048005882309009625632489404-1      1.05905483836509692635696814992410223-2 

9.94031969432090712585108200420694728-1      6.75979919574540150277887817798503180 

39.98866404420071050185459444974218505-1    2.90862255315514095840072434285548080 



                                         Numerical calculation of zeros and weights                                                  31 

 

 

 

One can check the accuracy of numerical results using, for example, relations 
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One needs to replace integrals (11)-(12) by their Gaussian quadrature, and then carry 

out the following required computations: 
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where n  is the number of nodes kx , and the quantities kw  are the corresponding 

weights. 

It is worth noting on the base of our numerical computations that the 

accuracy of (12) is much lower comparing with one found for (13). Havingnodes of 

polynomials and the corresponding weights determined using numbers with eighty 

significant digits and accurate to the thirtieth digit, the quadrature (12) provides 

accuracy up to 10-3only and almost does not depend on n  in the range10 25n 

.Equally does not depend on n also the accuracy of (13). However, in the last case the 

accuracy reaches to 10-30. 

 

 

3. Conclusion 

The program package HAHMATH created for calculations with long numbers is a 

rather useful tool for numerical computations when a large number of significant 

digits are required for providing the needed accuracy of results. We used it for 

calculating the nodes of the Legendre polynomials and corresponding weights. 

Having these quantities one can examine numerically the accuracy of Gaussian 

quadrature for various dependences of integrands on the argument. 

 The iterative method used here for numerical procedures gives acceptable 

results. Nonetheless, one needs to compare it with the Newton iterative method for 

choosing the most effective one. Authors intend to make such a comparison in one 

of forthcoming papers. 
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