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Abstract

The spatially flat cosmological models are investigated within the
framework of f(R)-gravity. An equivalent representation in the form
of a scalar-tensor theory is discussed. For the general case of the f(R)
function, the corresponding cosmological equations are presented in
the form of a third order autonomous dynamical system. The quali-
tative analysis of the latter is given in the absence of nongravitational
matter. Various special cases of the function F(R) are considered and
the corresponding phase portraits are depicted. The possibility for the
realization of a phase with accelerated expansion of the Universe is
discussed.
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1. Introduction

It is known that suitable modifications of General Relativity can result
in an accelerating expansion of the Universe at present epoch. These modi-
fications fall into two general groups. The first one consists of scalar-tensor
theories that are most widely considered extensions of General Relativity
(Will 2018). In addition to the metric tensor, these theories contain scalar
fields in their gravitational sector and typically arise in the context of mod-
els with extra dimensions (Kaluza-Klein-type models, braneworld scenario)
and within the framework of the low-energy string effective gravity. In the
second group of models, the Ricci scalar R in the Einstein-Hilbert action is
replaced by a general function f(R) (for recent reviews see Nojiri & Odintso
(2007) and Clifton et al. (2012). One of the first models for inflation with
quadratic in the Ricci scalar Lagrangian, proposed by Starobinsky (1980),
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falls into this class of theories. An additional motivation for the f(R) theo-
ries comes from quantum field theory in classical curved backgrounds (Birrell
& Davies (1982), Buchbinder et al. (1992) and from string theories. The
recent investigations of cosmological models in the f(R) theories of gravity
have shown a possibility for a unified description of the inflation and the
late-time acceleration.

f(R)-gravities can be recast as scalar tensor theories of a special type
with a potential determined by the form of the function f(R). Various
special forms of this function have been discussed in the literature. In par-
ticular, the functions were considered that realize the cosmological dynamics
with radiation dominated, matter dominated and accelerated epoch. Uni-
fied models of inflation and dark energy have been studied as well (Nojiri &
Odintsov 2011). In the present paper we consider the qualitative evolution
of the cosmological model for a general f(R) function. The general analysis
is specified for various examples, including the original Starobinsky model.

2. f(R)-gravity as a scalar-tensor theory

The action in (D + 1)-dimensional f(R) theory of gravity has the form

S =

∫
dD+1x

√
|g| [f(R) + Lm (gik, ψ)] , (1)

where Lm (gik, ψ) is the Lagrangian density for non-gravitational matter
collectively denoted by ψ. It is well known (see Nojiri & Odintsov (2011)
and Clifton et al. (2012)) that (1) can be presented in the form of the action
for scalar-tensor gravity. In order to show that we consider the action

S =

∫
dD+1x

√
|g|
[
f ′(η)(R− η) + f(η) + Lm (gik, ψ)

]
, (2)

with a scalar field η. The equation for the latter is reduced to f ′′(η)(R−η) =
0. Assuming that f ′′(η) 6= 0, from the field equation we get η = R. With
this solution, the action (2) is reduced to the original action (1).

Introducing a new scalar field ϕ = −f ′(η), the action (2) is written in
the form

S =

∫
dD+1x

√
|g| [−ϕR− V (ϕ) + Lm (gik, ψ)] , (3)

with the scalar potential

V (ϕ) = −f(η(ϕ))− ϕη(ϕ). (4)

Here, we have assumed that the function ϕ(η) is invertible. The action (3)
describes a scalar-tensor theory. In the representation (3) the Lagrangian
density of the non-gravitational matter does not depend on the scalar field
ϕ. Hence, the representation corresponds to the Jordan frame.
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By the conformal transformation

gik = Ω2(ϕ)g(E)ik, Ω(ϕ) = mPϕ
1/(1−D), (5)

where mP = 1/(16πGD+1)
1/(D−1) is the Planck mass in (D+ 1)-dimensions

and GD+1 is the corresponding gravitational constant, the action is pre-
sented as

S =

∫
dDx

√∣∣g(E)

∣∣[−mD−1
P R(E) +

1

2
gik(E)∂iφ∂kφ

−VE(φ) + LEm
(
φ, g(E)ik, ψ

)
]. (6)

Here we have introduced a scalar field

φ = φ0 ln
(
ϕ/mD−1

P

)
, φ0 = m

(D−1)/2
P

√
2D/(D − 1), (7)

with a canonical kinetic term and with the potential

VE(φ) = − exp

(
−D + 1

D − 1

φ

φ0

)
[f(η(ϕ)) + ϕη(ϕ)] , ϕ = mD−1

P eφ/φ0 . (8)

The non-gravitational Lagrangian density is expressed as

LEm
(
φ, g(E)ik, ψ

)
= ΩD+1Lm

(
Ω2g(E)ik, ψ

)
, Ω = exp

[
− φ

(D − 1)φ0

]
. (9)

In the new conformal frame, referred as the Einstein frame, the gravitational
part of the action takes the form of that for (D + 1)-dimensional General
Relativity. In this frame there is a direct interaction between the non-
gravitational matter and the scalar field. Several examples of the function
f(R) with the corresponding potentials will be discussed below.

3. Cosmological model and the dynamycal system

Consider a homogeneous and isotropic cosmological model described by
the Einstein frame action (6). The corresponding line element has the form

ds2E = dt2 − a2(t)dl2 (10)

where dl is the line element of a D - dimensional space of constant curvature,
a(t) is the scale factor. From the homogeneity of the model it follows that
the scalar field should also depend on time only, φ = φ(t). The energy-
momentum tensor corresponding to the metric (10) is diagonal and can be
presented in the perfect fluid form T ki = diag(ε, ...,−p, ...), where ε is the
energy density and p is the effective pressure.

Introducing dimensionless quantities x = φ/φ0, τ = t/t0, with t0 being
a positive constant with the dimension of time, for expanding models with
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a flat space the set of cosmological equations is written in terms of the third
order autonomous dynamical system

dx

dτ
= y,

dy

dτ
= −by[2ε+ y2 + 2V (x)]1/2 + φ0αε− V ′(x),

dε

dτ
= −{b(1 + w)[2ε+ y2 + 2V (x)]1/2 + φ0αy}ε, (11)

where w = p/ε, ε = (t0/φ0)
2ε, b = D/(D − 1), and

V (x) = (t0/φ0)
2 VE(φ0x), α =

1

ε
√
|g(E)|

δLEm

√
|g(E)|

δφ
. (12)

The Einstein frame Hubble function H = a−1da/dt is expressed in terms of
the variables of the dynamical system (11) as

H2 =
2ε+ y2 + 2V (x)

(D − 1)2t20
. (13)

The set of equations (11) describes the cosmological dynamics in the
Einstein frame (for qualitative analysis of cosmological models of string
effective gravity in the Einstein frame see Saharian (1999, 2000a). The
corresponding dynamics in the Jordan frame is obtained by using the con-
formal transformation (5). For the line element in the Jordan frame one
has ds2J = dt2J − a2J(tJ)dl2, where the comoving time coordinate and the
scale factor are related to the corresponding Einstein frame quantities by
dtJ = mPϕ

1/(1−D)dt and aJ(tJ) = mPϕ
1/(1−D)a(t). For the Hubble func-

tion in the Jordan frame we get

HJ =
eφ/(φ0(D−1))

(D − 1)φ0

[
±
√

2ε+ (dφ/dt)2 + 2VE (φ)− dφ

dt

]
, (14)

where the upper/lower sign corresponds to expanding/contracting models
in the Einstein frame. From the relation (14) it follows that for VE (φ) +
ε > 0 the expansion/contraction in the Einstein frame corresponds to the
expansion/contraction in the Jordan frame (H and HJ have the same sign).

4. Qualitative analysis of gravi-scalar models

The dynamical system (11) has an invariant phase plane ε = 0 which
corresponds to the pure gravi-scalar models. For those models, the system
(11) is reduced to the second order dynamical system

dx

dτ
= y,

dy

dτ
= −by[y2 + 2V (x)]1/2 − V ′(x). (15)
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For Einstein frame expanding models, the Hubble function is expressed in
terms of the solution of (15) by (13) with ε = 0. The critical points for
(15) are the points of the phase plane (x, y) with the coordinates (xc, 0)
where V ′(xc) = 0, V (xc) > 0. For the corresponding solution the Hubble
function is a constant, H = Hc, with H2

c = VE(φc)/[D(D − 1)mD−1
P ]. This

solution describes the Minkowski spacetime for VE(φc) = 0 and the de Sitter
spacetime for VE(φc) > 0. In the latter case for the cosmological constant
one has Λ = VE(φc)/(2m

D−1
P ).

The character of the critical points is determined by the eigenvalues

λ1,2 = −b
√
Vc/2±

√
b2Vc/2− V ′′c , (16)

where Vc = V (xc), V
′′
c = V ′′(xc). For V ′′c < 0 (xc is a maximum of the po-

tential V (x)) the critical point is a saddle. The directions of the correspond-

ing separatrices are determined by the unit vectors n(i) = (1, λi)/
√

1 + λ2i ,

i = 1, 2. For V ′′c > 0 (xc is a minimum of the potential V (x)) two cases
should be considered separately. When 0 < V ′′c < b2Vc/2, the critical point
is a stable node. For 0 < b2Vc/2 < V ′′c the critical point is a stable sink. In

the case Vc > 0, V
(i)
c ≡ (diV/dxi)x=xc = 0 for i = 1, . . . , n−1, and V

(n)
c 6= 0,

the critical point is (i) a saddle for even n and V
(n)
c < 0, (ii) a stable node

for even n and V
(n)
c > 0, (iii) a degenerate critical point with one stable

node sector and with two saddle sectors for odd n. Another degenerate case
corresponds to Vc = 0 and V ′′c > 0. In this case the critical point is a stable
sink.

If the value of the potential at the minimum is negative, then there
is a classically forbidden region in the phase plane (x, y). This region is
determined by the inequality y2 + 2V (x) < 0. At the boundary of the
forbidden region, given by y2 + 2V (x) = 0, one has H = 0 and dH/dt =
m1−D
P VE(φ)/(D − 1) < 0. Hence, at the boundary the expansion stops

at a finite value of the cosmological time t and then the model enters the
stage of the contraction (H < 0). The corresponding dynamics is described
by the dynamical system (15) with the opposite sign of the first term in
the right-hand side of the second equation. For nonnegative potentials the
expansion-contraction transition in models with flat space is not classically
allowed.

We should also consider the behavior of the phase trajectories at the
infinity of the phase plane. With this aim, it is convenient to introduce polar
coordinates (ρ, θ) defined as x = ρ cos θ/(1−ρ) and y = ρ sin θ/(1−ρ), with
0 6 ρ 6 1, 0 6 θ 6 2π. Now the phase space is mapped onto a unite circle.
The points at infinity correspond to ρ = 1. For the potentials having the
asymptotic behavior V (x) ∼ B|x|m, m < 4, in the limit x→∞ one has the
following critical points on the circle ρ = 1. The points θ = 0 and θ = π
are stable nodes for m < 0 and saddles with two sectors for m > 0. In the
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latter case the sectors are separated by a special solution described by the
trajectory

y(x) ≈ − V ′(x)

b
√

2V (x)
∼ m

b

√
B/2|x|m/2−1, (17)

for |x| → ∞. In the vicinity of the points θ = π/2 and θ = 3π/2 the
potential terms can be neglected and these points are unstable degener-
ate nodes. For m = 4 the nature of the critical points at θ = π/2 and
θ = 3π/2 remains the same. In this case the other critical points correspond
to θ = − arctan(

√
8B/b) and θ = π − arctan(

√
8B/b). The phase portrait

near these points have two saddle sectors which are separated by the tra-
jectory corresponding to the special solution (17). For m > 4 there are two
critical points on the circle ρ = 1 corresponding to θ = π/2 and θ = 3π/2.
These points are degenerate and have an unstable node sector and a saddle
sector separated by the special solution (17). Similar behavior of the phase
trajectories at the infinity takes place for the potentials with the asymptotic
behavior V (x) ∼ Beσ|x|, σ > 0, for x → ∞ and for the values of the pa-
rameter 0 < σ < 2b. The separatrix between the saddle and node sectors
is described by the special solution y ≈ −sgn(x)σ

√
2Beσ|x|/2/

√
4b2 − σ2 for

x→∞. The general solution behaves as y ≈ −sgn(x)Ceb|x|, with a positive
constant C. This behavior coincides with that in the absence of the poten-
tial. For σ > 2b the dynamical system (15) has no critical points at infinity
(on the circle ρ = 1).

5. Special cases

A number of specific choices for the function f(R) have been discussed
in the literature. In the models with quantum corrections to the Einstein-
Hilbert Lagrangian the function f(R) is of the polynomial form. A similar
structure is obtained in the string-inspired models with the effective action
expanded in powers of the string tension. However, it should be noted
that in both these types of models coming from high-energy physics, the
Lagrangian density in addition to the scalar curvature contains other scalars
constructed from the Riemann tensor. In this context, the f(R) theories can
be considered as models simple enough to be easy to handle from which we
gain some insight in modifications of gravity. In some models proposed for
dark energy the function f(R) contains terms with the inverse power of the
Ricci scalar. For one of the first models of this type f(R) = mD−1

P (−R +
γ/Rm) with γ and m > 0 being constants (Capozziell 2002). However,
there is a matter instability problem in these models. The model with an
additional term βR2 in the brackets has been discussed in Brookfield et
al. (2006). Models containing in f(R) exponential functions of the form
eγR and providing the accelerating cosmological solutions without a future
singularity are considered in Cognola et al. (2008). Examples of the f(R)
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functions, containing combinations of the powers and exponentials of R, that
allow to construct models with a late-time accelerated expansion consistent
with local gravity constraints, are studied in references Hu & Sawicki (2007)
(see also Nojiri & Odintsov (2011) and Clifton et al. (2012)). For example,
in the Tsujikawa model f(R) = mD−1

P [−R+ γ tanh(R/R0)], whereas in the
Hu % Sawicki model f(R) = mD−1

P [−R+ γ(1 + (R/R0)
−m)] with constants

γ and R0.
As an application of general analysis given above, first let us consider a

(D+ 1)-dimensional generalization of the Starobinsky model (see [?] for the
discussion of inflation in this type of models). The corresponding lagrangian
density is taken as

f(R) = mD−1
P

(
−R+ βR2

)
, (18)

where β is a constant. The potential in terms of the canonical scalar field
is written in the form

V (x) = V0 exp

(
D − 3

D − 1
x

)(
1− e−x

)2
, (19)

where V0 = (t0/φ0)
2mD−1

P /(4β). For β > 0 and x 6= 0 the potential (19)
is positive. It has a minimum at x = 0 with V (0) = 0. In figure 1 we
have plotted the potential (19) as a function of φ/φ0 for D = 3, 4, 5 (num-
bers near the curves). As is seen from the graphs, in the case D = 3 an
inflationary plateau appears for large values of φ/φ0 which corresponds to
the Starobinsky inflation. Hence, from the point of view of the Starobinsky
inflation, the spatial dimension D = 3 is special.

In the limit x→ −∞ the potential behaves as exp[−(D + 1)x/(D − 1)].
From here it follows that the point ρ = 1, θ = π/2 is degenerate having an
unstable node sector and a saddle sector (see figure 2). In the limit x→ +∞
one has V (x) ∝ exp[(D − 3)x/(D − 1)] and for D > 3 the behavior of the
phase trajectories near the point ρ = 1, θ = 3π/2 is similar to that for the
point ρ = 1, θ = π/2. In the special case D = 3 the dynamical system
has a critical point at ρ = 1, θ = 0. This point is a node (see the left
panel in figure 2) and the corresponding unstable separatarix describes an
inflationary expansion. This special solution is an attractor for the general
solution. For D = 3 the point ρ = 1, θ = 3π/2 at the infinity of the phase
plane is an unstable node. The only critical point in the finite region of the
phase plane, (x, y) = (0, 0), corresponds to the minimum of the potential.
This point is a stable sink and the corresponding geometry is the Minkowski
spacetime. The phase portrait, mapped on the unit circle, is presented in
the left panel of figure 2 for D = 3 and in the right panel for D > 3.

For the model
f(R) = mD−1

P (−R+ βnR
n) , (20)

with even n and βn > 0, the potential is nonnegative and is given by the
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Figure 1: The left panel presents the Einstein frame potentials in the
Starobinsky model for different values of the spatial dimension (numbers
near the curves). On the right panel the potentials corresponding to the
f(R) functions (20) (for n = 4, curve (a)), (22) (curve (b)) and (25) (curve
(c)) are plotted.

Figure 2: Phase portraits of the dynamical system for a (D+1)-dimensional
generalization of the Starobinsky model in the cases D = 3 (left panel) and
D > 3 (right panel).
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expression:

V (φ) = V0 exp

(
−D + 1

D − 1
x

)
[(1− ex)n]1/(n−1), (21)

where V0 = (n− 1) (t0/φ0)
2 nn/(1−n)β

1/(1−n)
n mD−1

P . For n = 2 the potential
is reduced to the one for the Starobinsky model. In the limit x � 1 one
has V (x) → +∞ for n < (D + 1)/2 and V (x) → 0 for n > (D + 1)/2. For
n = (D + 1)/2, in the limit x → +∞ the potential has a nonzero plateau:
V (φ)→ V0. The potential (21) for n = 4 and D = 3 is depicted in the right
panel of figure 1 (graph (a)). For n > (D + 1)/2 (see graph (a) in the right
panel of figure 1) we have two critical points in the finite region of the phase
plane. The first one, (x, y) = (0, 0), corresponds to the minimum of the
potential and is a stable sink. The second one, (x, y) = (xc, 0), corresponds
to the maximum of the potential and is a saddle. The phase portrait is
depicted in the left panel of figure 3. At infinity of the phase plane, the
nature of the point ρ = 1, θ = π/2 remains the same as in the previous
example, whereas the point ρ = 1, θ = 3π/2 becomes an unstable node. In
the region x� 1 and for n > (D + 1)/2 the special solution is an attractor
for a general solution in the limit t→ +∞.

For the next example we take the function

f(R) = f0e
γR. (22)

The corresponding potential takes the form

V (x) = V0 exp

(
− 2

D − 1
x

)[
x+ ln(−MD−1

D+1 /γf0)− 1
]
, (23)

with V0 = − (t0/φ0)
2mD−1

P /γ. For |γR| � 1 one has f(R) = f0 + f0γR.
Taking f0γ = −mD−1

P , the linear in R term coincides with the Hilbert-
Einstein lagrangian density. With this choice the potential simplifies to

V (x) = V0 exp

(
− 2x

D − 1

)
(x− 1) . (24)

The graph of this potential for γ > 0 is plotted in the right panel of figure
1 (curve (b)). The value of the potential at the minimum is negative. Note
that in this case for |γR| � 1 the model reduces to General Relativity with
a negative cosmological constant.

In the case of the function

f(R) = f0
(
eγR − 1

)
, (25)

with f0γ = −mD−1
P and for small curvatures, corresponding to |γR| � 1,

the model is reduced to General Relativity with zero cosmological constant.
The corresponding potential is given by the expression

V (x) = V0 exp

(
−D + 1

D − 1
x

)
[1 + ex (x− 1)] , (26)
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with the same notation V0 as in (24). This potential for γ < 0 (V0 > 0) is
plotted in figure 1 (curve (c)).

In the case of the function (22) with f0γ = −mD−1
P and γ > 0 a char-

acteristic feature of the potential is the presence of the region in the field
space where it is negative. For this type of potentials there is a classically
forbidden region determined by y2+2V (x) < 0. As it has been noted above,
at the boundary of this region the expansion stops at a finite value of the
cosmological time t and then the model enters the stage of the contraction.
For the potential (24), the only critical points of the dynamical system (15)
are at the infinity of the phase plane. The corresponding phase portrait
is depicted in the right panel of figure 3. The classically forbidden region
of the phase space is shaded. The full/dashed trajectories correspond to
the expansion/contraction phases. As it follows from (15), the trajectories
for the contraction stage are obtained from those describing an expansion
by the transformation τ → −τ , y → −y. For expanding models, near the
point ρ = 1, θ = π/2 the phase portrait has two sectors: an unstable node
sector and a saddle sector. The point ρ = 1, θ = 3π/2 is an unstable node.
Depending on the initial conditions, the expanding models start their evo-
lution at finite cosmic time t = ti from the point ρ = 1, θ = π/2 or from
the point ρ = 1, θ = 3π/2. During a finite time interval the trajectories
reach the boundary of the forbidden region at t = tc > ti. At this moment
the expansion stops (H(tc) = 0) and the model enters the contraction stage
(dashed trajectories on the phase portrait). The corresponding trajectories
enter the critical points ρ = 1, θ = 3π/2 and ρ = 1, θ = π/2 at finite time
tf > tc. Hence, all the models have a finite lifetime tf − ti.

For the function (25) with f0γ = −mD−1
P the potential is given by the

expression (26). In the case γ < 0 the qualitative behavior of this potential
is similar to that for the function (20) with n > (D + 1)/2 and the cor-
responding phase portrait is qualitatively equivalent to the one presented
in the left panel of figure 3. However, note that the asymptotic behavior
of the potential in the limit φ → +∞ is not purely exponential. For the
corresponding potential in (15) from (26) one has V (x) ≈ V2xe

−2x/(D−1)

in the limit x � 1. Here, V2 is expressed in terms of the coefficient V0
in (26). It can be seen that the dynamical system has a special solution
with the asymptotic behavior y2 ≈ 2V (x)/(D2 − 1) in the region x � 1.
This special solution is an attractor for the general solution near the criti-
cal point (ρ, θ) = (1, 0). The corresponding time dependence of the scalar
field is determined from the relation 2V (x) ≈ (D − 1)2 (D2 − 1)/τ2, which
is obtained by the integration of the first equation in (15). With the help
of this relation, the asymptotic behavior of the Einstein frame scale factor
is found: a(t) ≈ a0(t/t0)

D, t → +∞. The asymptotic behavior of x near
the critical point (ρ, θ) = (1, 0), as a function of the time coordinate is sim-
pler in the Jordan frame. By using the expression for the function y(x)
and the relation dtJ = e−x/(D−1)dt, in the region x � 1 we can see that
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x ≈ V2τ2J/[2
(
D2 − 1

)
], where τJ = tJ/t0. For the scale factor in the Jordan

frame one gets aJ(tJ) ≈ const ex.

Figure 3: Phase portraits of the dynamical system for the potential (21),
with n = 4, and for the potential (24).

6. Conclusion

We have considered the qualitative evolution of cosmological models in
(D + 1)-dimensional f(R) gravity. In order to do that the model is trans-
formed to an equivalent model described by a scalar-tensor theory. From
the point of view of the description of the cosmological dynamics, the most
convenient representation corresponds to the Einstein frame, in which the
gravitational part of the action coincides with that for General Relativity.
In this frame there is a direct interaction of the scalar field with a non-
gravitational matter.

For homogeneous and isotropic cosmological models with flat space the
equations can be presented in the form of a third order autonomous dynam-
ical system (11). The corresponding phase space has an invariant subspace
describing the gravi-scalar models in the absence of a non-gravitational mat-
ter. For a general case of the function f(R), we have found the critical points
of the system and their nature, including the points at the infinity of the
phase plane. As applications of general analysis, various special cases of the
function f(R) are considered.
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