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Abstract

We investigate the cosmological constant induced by quantum fluc-
tuations of a bulk charged scalar field on a brane in background of
locally anti-de Sitter spacetime with toroidally compact spatial dimen-
sions. Along compact dimension quasiperiodicity conditions are im-
posed with general phases and, in addition, the presence of a constant
gauge field is assumed. The latter gives rise to Aharonov-Bohm type
effect on the characteristics of the scalar vacuum. The renormalization
of the vacuum energy density on the brane is done by making use of
the generalized zeta function technique. The behavior of the cosmo-
logical constant is studied as a function of the location of the brane,
of the length of the compact dimensions and of the magnetic flux en-
closed by the compact dimension. In particular, it is shown that the
cosmological constant is a periodic function of the magnetic flux with
the period equal to the flux quantum.

Keywords: cosmological constant - braneworld scenario - anti de Sitter
spacetime - Casimir effect.

1. Introduction

The braneworld models (for reviews see Brax 2003) and Maarten (2010)
provide an interesting alternative to the standard Kaluza-Klein compact-
ification of the extra dimensions. In the corresponding constructions the
standard model fields are localized on a hypersurface (brane) in a higher-
dimensional spacetime. As a consequence of that, the observational restric-
tions on the size of extra dimensions are much weaker. The introduction
of large extra spatial dimensions may provide a solution to the hierarchy
problem between the gravitational and electroweak mass scales. The main
idea to resolve the large hierarchy is that the small coupling of four di-
mensional gravity is generated by the large physical volume of extra dimen-
sions. Braneworlds naturally appear in string/M-theory context and provide
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a novel setting for discussing phenomenological and cosmological issues re-
lated to extra dimensions. The problem of the cosmological constant has
been considered as the most serious mass hierarchy problem in modern par-
ticle physics (see, for instance, Martin (2012) and many attempts addressing
this fine tuning issue can be found in the literature. The braneworld theories
may give some alternative discussion of the cosmological constant.

The investigations of quantum effects in braneworlds are of consider-
able interest in particle physics and cosmology. An inherent feature is the
presence of boundaries and the fields that propagate in the bulk will give
Casimir-type contributions to the vacuum expectation values (VEVs) of
physical observables (for reviews of the Casimir effect see Milton (2002),
Bordag et al. (2009), and Casimir Physic (2011)). In particular, vacuum
forces arise acting on the branes which can either stabilize or destabilize
the braneworld. The Casimir energy gives a contribution to both the brane
and bulk cosmological constants and, hence, has to be taken into account
in the self-consistent formulation of the corresponding models. Motivated
by these issues, the quantum vacuum effects induced by branes in AdS bulk
have received a great deal of attention (see references cited in Bezerra de
Mello et al, (2015)). The VEV of the energy-momentum tensor has been
investigated in Knapman & Toms (2004).

In manifolds with boundaries the energy-momentum tensor in addition
to the bulk part contains a contribution located on the boundary (see Sa-
harian (2004) for a real scalar field). In Saharian (2004, 2006) and Saharian
et al. (2018)the VEV of the surface energy-momentum tensor is evaluated
for a massive scalar field subject to Robin boundary conditions on branes
in AdS bulk. It has been shown that in the Randall-Sundrum models the
cosmological constant induced on the visible brane by the hidden brane can
serve as a model for dark energy. In the present paper we investigate the
VEV of the surface energy-momentum tensor for a charged scalar field in
locally AdS background spacetime with a codimension-one brane parallel to
the AdS boundary and with an extra compactified dimension (generalized
1-brane Randall-Sundrum model). In addition, the presence of a constant
gauge field is assumed. It is shown that the vacuum expectation value of
the surface energy-momentum tensor on a brane gives rise to a cosmological
constant type contribution from the point of view of an observer living on
the brane.

2. Problem setup

In Poincaré coordinates, the metric tensor for a (D+1)-dimensional AdS
spacetime is given by the line element

ds2 = gikdx
idxk = e−2y/aηµνdx

µdxν − dy2, (1)
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where ηµν = diag(1,−1, . . . ,−1) is the D-dimensional Minkowski metric,
µ, ν = 0, 1, . . . , D− 1, and the indices i, k run over 0 to D. In what follows,
we use lowercase Latin letters to denote indices running from 0 to D, and
lowercase Greek letters to denote indices running from 0 to D−1. In addition
to the coordinate y, −∞ < y < +∞, we introduce the coordinate z, defined
as z = aey/a, 0 < z <∞. In terms of the latter the line element is written
in a manifestly conformally flat form ds2 = (a/z)2

(
ηµνdx

µdxν − dz2
)
. In

terms of the coordinate z, the hypersurfaces z = 0 and z = ∞ correspond
to the AdS boundary and horizon respectively. The Ricci scalar R and the
cosmological constant Λ are related to the AdS radius a as R = D(D+1)a−2

and Λ = −D(D − 1)a−2/2.
The local geometry we are going to consider here is that of AdS, given

by (1), however the global properties differ. It will be assumed that the
coordinate xD−1 is compactified on a circle S1 with the length L, 0 ≤ xD−1 ≤
L. For the remaining coordinates, as usual, we take −∞ < xi < +∞,
i = 1, . . . , D − 2. Note that the proper length of the compact dimension
measured by an observer with fixed y is given by L(p) = aL/z = e−y/aL.
The latter is decreasing with increasing y.

We are interested in quantum effects on the vacuum state for a complex
scalar field ϕ(x) induced by compactification of the dimension xD−1. Assum-
ing the presence of an external gauge field Ai, the corresponding equation
of motion reads (

gikDiDk +m2 + ξR
)
ϕ(x) = 0, (2)

with Dk = ∇k + ieAk being the gauge extended covariant derivative op-
erator. We assume that along the compact dimension the field obeys the
quasiperiodicity condition

ϕ(t, x1, . . . , xD−1 + L, y) = e2πiαϕ(t, x1, . . . , xD−1, y), (3)

with a constant phase α. Here we consider a gauge field configuration with
constant Ai. In this case the corresponding field strengths are zero. However
due to the nontrivial spatial topology the field Ai leads to physical effects.
In the geometry under consideration, in the presence of constant external
gauge field the VEVs of the current densities along the compact dimensions
are investigated in Bezerra de Mell et al. (2015), where it is shown that
Aharonov-Bohm like effects arise due to the non-trivial topology. In the
same geometry with the presence of branes the VEV of the current density
is investigated in Bellucci et al. (2015, 2016).

With constant Ai, by the gauge transformation ϕ(x) = e−ieχ(x)ϕ′(x),
Ai = A′i + ∂iχ(x), with χ(x) = Aix

i, one passes to a new gauge, where
A′i = 0. However, the vector potential does not completely disappear from
the problem: it enters into the quasiperiodicity condition for the new field

ϕ′(t, x1, . . . , xD−1 + L, y) = e2πiα̃ϕ′(t, x1, . . . , xD−1, y), (4)
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where α̃ = α + eAD−1L/(2π). In what follows we will work in the gauge
(ϕ′(x), A′i) with A′i = 0, omitting the primes for the sake of simplicity.
In this gauge, the field equation takes the form (2) with Ai = 0. Note
that the shift in the phase induced by the gauge field can be written as
eAD−1L/(2π) = −Φ/Φ0, where Φ is the gauge field flux enclosed by compact
dimension and Φ0 = 2π/e is the flux quantum. In addition, we assume the
presence of a brane located at y = y0. On the brane the field obeys the
Robin boundary condition

(1 + β(j)ni(j)∇i)ϕ(x) = 0, (5)

where β(j) is a constant and ni(j) is the normal to the brane. In general, the
coefficients in the boundary condition can be different for the left and right
surfaces of the brane. The superscript (j) differentiates between the right
surface, y = y0 + 0 (j = 1), and the left surface, y = y0 − 0 (j = 2), of the
brane.

We are interested in the VEV of the surface energy-momentum tensor

T
(s)
ik for the complex scalar field ϕ(x), localized on the brane. The expression

for the latter can be found in a way similar to that used in Saharian (2004)
for a real scalar field. On the background of a (D+1)-dimensional spacetime
region M with timelike boundary ∂Ms the surface energy-momentum tensor
has the form

T
(s)
ik = δ(x; ∂Ms)

[
ξϕϕ†Kik − (ξ − 1/4)hikn

l∇l(ϕϕ†)
]
, (6)

where hik = gik + nink is the induced metric, ni is the inward pointing unit
vector field normal to ∂Ms, δ(x; ∂Ms) is the one-sided delta function, and
Kik = hlih

m
k ∇lnm is the extrinsic curvature tensor of the boundary.

Let us denote by {ϕ(+)
σ (x), ϕ

(−)
σ (x)} a complete set of positive and nega-

tive energy solutions of the field equation obeying the periodicity condition
(4) and the boundary condition (5). The collective index σ specifies the set
of quantum numbers specifying the solutions. For the background geometry
under consideration the mode functions can be taken as

ϕ(±)
σ (x) = zD/2 [C1Jν(λz) + C2Yν(λz)] exp[i

D−1∑
l=1

klx
l ∓ iωt], (7)

where Jν(λz) and Yν(λz) are the Bessel and Neumann functions, ω2 =
λ2 +

∑D−1
l=1 k2l , and

ν =
√
D2/4−D(D + 1)ξ +m2a2. (8)

If the order ν of the cylinder functions is imaginary the corresponding vac-
uum state is unstable [?]. For this reason we will consider only the values
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for the parameters in the problem for which ν ≥ 0. For the components of
the momentum one has −∞ < kl < +∞, for l = 1, . . . , D − 2, and

kD−1 = k(n) = 2π
n+ α̃

L
, n = 0,±1,±2, . . . (9)

The complete set of quantum numbers σ consists of the components of mo-
mentum kr, r = 1, 2, . . . , D − 1, and the ”radial” quantum number λ.

The nonzero components of the induced metric on the brane y = y0 and
the corresponding extrinsic curvature tensor are given by hµν = gµν and
Kµν = −n(j)gµν/a, where n(1) = 1 and n(2) = −1. For Dirichlet boundary
conditions, β(j) = 0, the surface energy-momentum tensor vanishes and in
the following discussion we will assume that β(j) 6= 0. By using the boundary
condition (5), for the VEV of the surface energy-momentum tensor (6) one

obtains 〈0|T (s)ν
µ |0〉 = δ(x; ∂Ms)〈τ (j)νµ 〉, where

〈τ (j)νµ 〉 = −δνµ
n(j)

a

(
ξ − 2ξ − 1/2

n(j)β(j)
a

)
〈ϕϕ†〉j . (10)

Hence, the problem is reduced to the evaluation of the VEV of the field
squared on the brane 〈ϕϕ†〉y=y0 . The VEV (10) is diagonal and all the
non-zero components are equal. For the observer living on the brane the
corresponding energy density εj (the energy per unit physical volume on

the brane) and the stresses pj are given by εj = 〈τ (j)00 〉 and pj = −εj . These
quantities do not depend on the coordinates on the brane and correspond
to a source of the cosmological constant type for the observer on the brane.

3. Regularized VEV of the field squared

The main problem in (10) is that the expression in the right-hand side di-
verges and some regularization procedure is required with subsequent renor-
malization. Here we follow the zeta function regularization technique. The
consideration in the regions y ≥ y0 (R-region) and y ≤ y0 (L-region) will be
presented separately.

3.1. R-region

We start with the R-region. From the boundary condition (5) for the
mode functions (7) for the coefficient C2 one gets

C2 = −C1J̄
(1)
ν (λz0)/Ȳ

(1)
ν (λz0), z0 = aey0/a. (11)

Here, for a given function F (x) we defined the notation

F̄ (j)(x) = AjF (x) +BjxF
′(x), Aj = 1 +

D

2
n(j)

β(j)

a
, Bj = n(j)

β(j)

a
. (12)
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The coefficient C1 is determined from the normalization condition in a way
similar to that given in Bellucci et al. (2015).

As a result, the VEV of the field squared on the right surface of the brane,
after integrating over the angular part of K = (k1, . . . , kD−2), is presented
as

〈ϕϕ†〉1 =
24−DB2

1z
D
0 a

1−D

πD/2+1Γ (D/2− 1)L

+∞∑
n=−∞

∫ ∞
0

dKKD−3

×
∫ ∞
0

dλλ
[J̄

(1)2
ν (λz0) + Ȳ

(1)2
ν (λz0)]

−1√
λ2 +K2 + k2(n)

. (13)

In this and the following sections we will omit the y = y0 subscript to the
VEV. The expression in the right-hand side of (13) is divergent and requires
the regularization with the further renormalization.

For the regularization we define the function

Φ1(s) =
24−Da1−DzD0 B

2
1

πD/2+1Γ (D/2− 1)µs+1L

+∞∑
n=−∞

∫ ∞
0

λdλ

J̄
(1)2
ν (λz0) + Ȳ

(1)2
ν (λz0)

×
∫ ∞
0

KD−3dK

[λ2 +K2 + k2(n)]−s/2
, (14)

where µ is an arbitrary mass scale introduced to keep the dimensionality of
the expression. The computation of the VEV of the field squared requires
the analytic continuation of the function Φ(s) to the value s = −1: 〈ϕϕ†〉1 =
Φ1(s)|s=−1. Evaluating the integral over K we obtain

Φ1(s) =
B1a

1−DzD0

(4π)
D−2
2 L

+∞∑
n=−∞

ζ(1)n(s), (15)

where the generalized partial zeta function is defined as

ζ(1)n(s) =
2B1Γ(−αs)

π2Γ(−s/2)µs+1

∫ ∞
0

λ[λ2 + k2(n)]αsdλ

J̄
(1)2
ν (λz0) + Ȳ

(1)2
ν (λz0)

, (16)

where αs = (D + s)/2− 1. Presenting the integrand in terms of the Hankel
functions and rotating the integration contour in the complex plane λ, the
following integral representation of the zeta function is obtained

ζ(1)n(s) = − µ−s−1

Γ(−s/2)Γ(αs + 1)

∫ ∞
k(n)

dλλ[λ2 − k2(n)]αs
Kν(λz0)

K̄
(1)
ν (λz0)

, (17)

valid in the slice −D < Res < 1−D of complex plane s.
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3.2. L-region

In the L-region, from the regularity condition on the AdS boundary z = 0
one gets C2 = 0 and the coefficient C1 is determined from the normaliza-
tion condition. From the boundary condition at y = y0 it follows that the

eigenvalues of λ are the roots of the equation J̄
(2)
ν (λz0) = 0. We will denote

these roots by λ = λl, l = 1, 2, . . .. For the corresponding regularized VEV
one finds

Φ2(s) =
B2a

1−DzD0

(4π)
D−2
2 L

+∞∑
n=−∞

ζ(2)n(s), (18)

where the generalized partial zeta function is defined as

ζ(2)n(s) = − Γ(−αs)
Γ(−s/2)µs+1

∞∑
l=1

λl
[λ2l + k2(n)]αsJν(λlz0)

[∂λJ̄
(2)
ν (λz0)]λ=λl

. (19)

Taking into account the fact that x = λlz0 is a simple zero of J̄
(2)
ν (x) and

using the residue theorem we get the representation

ζ(2)n(s) = − Γ(−αs)
2πiΓ(−s/2)µs+1

∫
C

duu[u2 + k2(n)]αs
Jν(uz0)

J̄
(2)
ν (uz0)

, (20)

where C is a closed counterclockwise contour in the complex plane u, en-
closing all the zeros λl. Deforming the contour C, the following integral
representation

ζ(2)n(s) =
µ−s−1

Γ(αs + 1)Γ(−s/2)

∫ ∞
k(n)

dλλ[λ2 − k2(n)]αs
Iν(λz0)

Ī
(2)
ν (λz0)

, (21)

is obtained in the −D < Res < 1−D slice of complex plane s.
We combine the expressions (17) and (21) into a single expression

ζ(j)n(s) =
−n(j)µ−s−1

Γ(αs + 1)Γ(−s/2)

∫ ∞
k(n)

dλλ[λ2 − k2(n)]αs
Fν(λz0)

F̄
(j)
ν (λz0)

. (22)

In this expression F = K when j = 1 and F = I when j = 2. Thus, for the
functions Φ(s) we have

Φj(s) =
Bja

1−DzD0
(4π)D/2−1L

+∞∑
n=−∞

ζ(j)n(s). (23)

This expression is valid in the slice −D < Res < 1 − D and with the

condition that F̄
(j)
ν (u) does not have real zeros. To obtain the value at the

physical point s = −1, an analytic continuation is needed.
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4. Renormalization and the energy density

For non-zero Bj and for large values of u, the ratio in the integrand has
the following asymptotic expansion

Fν(u)

F̄
(j)
ν (u)

∼ 1

Bj

∞∑
l=1

v
(F,j)
l

ul
. (24)

The coefficients for Iν(u) and Kν(u) are related as v
(K,j)
l = (−1)lv

(I,j)
l . The

first four coefficients in the series (24) are

v
(I,j)
1 = 1, v

(I,j)
2 =

1

2
− Aj
Bj
, v

(I,j)
3 =

3

8
− Aj
Bj

+
A2
j

B2
j

− ν2

2
,

v
(I,j)
4 =

3

8
+
Aj
Bj

(
ν2 − 1

)
+

3

2

A2
j

B2
j

−
A3
j

B3
j

− ν2. (25)

For non-zero Kaluza-Klein modes k(n) we subtract and add to the frac-
tion under integral in Eq. (22) the N leading terms of (24) and integrate
the added part explicitly

ζ(j)n(s) = − n(j)z−2αs−2
0

Γ(−s/2)µs+1

{∫ ∞
k(n)z0

du [u2 − k2(n)z20 ]αs
uGj(u)

Γ(αs + 1)

+
1

2Bj

N∑
l=1

v
(F,j)
l Γ(l/2− αs − 1)

Γ(l/2)(k2(n)z0)l−2αs−2

}
, (26)

with the notation

Gj(u) =
Fν(u)

F̄
(j)
ν (u)

− 1

Bj

N∑
l=1

v
(F,j)
l

ul
. (27)

If a zero mode k(n) = 0 exists, then we separate it from the sum in Eq. (23)
and divide the corresponding integral into parts over the regions (0, 1) and
(1,∞) and apply the same procedure for the integral over the latter interval.
As a result the following expression is obtained

Φj(s) = − n(j)a1−DBjµ
−s−1zD−2−2αs

0

(4π)D/2−1Γ(−s/2)Γ(αs + 1)L

×

[
G

(s)
j +

+∞∑
n=−∞

∫ ∞
un

duu[u2 − k2(n)z20 ]αsGj(u)

+
Γ(αs + 1)

2Bj

N∑
l=1

v
(F,j)
l Γ (l/2− αs − 1) ζ0 (l/2− αs − 1)

zl−2αs−2
0 Γ (l/2)

]
,(28)
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where un = k(n)z0 + δ0k(n) and the part with

G
(s)
j =

∫ 1

0
duu2αs+1 Fν(u)

F̄
(j)
ν (u)

− 1

Bj

N∑
l=1

v
(F,j)
l

2αs + 2− l
, (29)

comes from the zero mode and should be omitted if the problem at hand
does not have a zero mode. The local zeta function ζ0(x) in (28) is defined as

ζ0(x) =
∑′+∞

n=−∞
1/k2x(n), where the prime on the summation sign means

that the zero mode k(n) = 0 is excluded from the sum.
The integral under the second sum on the right of (28) is convergent if

N > D+ Res− 1, and the sum over k(n) is convergent when N > D+ Res.
Thus, if N ≥ D the divergencies in (28) at the point s = −1 come from the
first term in the square brackets (a simple pole contained in the summand
l = D − 1) and from the term with the local zeta function. In what follows
we will restrict ourselves to discussing the case α̃ 6= 0. So for the phase
α̃ we assume the range 0 < α̃ < 1. For the local zeta function one has
ζ0(x) = (L/2π)2x

∑+∞
n=−∞ (n+ α̃)−2x, and consequently

ζ0(x) = (L/2π)2x [ζH(2x, 1− α̃) + ζH(2x, α̃)] , (30)

where ζH(x; p) is the Hurwitz zeta function. The local zeta function enters
into the expression (28) for the VEV in the form

P (x, p) = Γ(x) [ζH(2x, p) + ζH(2x, 1− p)] , 0 < p < 1. (31)

It can be seen that the function P (x, p) has a single simple pole located at
x = 1/2.

For general N , we have the following expansion around the point s = −1:

Φj(s) =
n(j)(2a)1−Dv

(F,j)
D

Γ(D/2)(s+ 1)
+ 〈ϕϕ†〉f + · · · , (32)

where the dots stand for the terms vanishing for s = −1 and for the finite
part one has

〈ϕϕ†〉j,f = −2(4π)
1−D
2 n(j)Bjz0

Γ
(
D−1
2

)
aD−1L

∞∑
n=−∞

∫ ∞
k(n)z0

duu[u2 − z20k2(n)]
D−3
2

×Gj(u)− n(j)a1−D

2D
√
π

 (2π)D

(L/z0)D

N∑′

l=1

v
(F,j)
l (L/z0)

l

(2π)lΓ(l/2)
P

(
l −D + 1

2
, α̃

)

−
√
πv

(F,j)
D

Γ(D/2)

(
ψ(α̃) + ψ(1− α̃) + 2 ln

(
2π

Lµ

))]
. (33)

The prime on the summation sign over l means that the summand corre-
sponding to l = D for which the argument of the Hurwitz zeta functions
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becomes 1 is omitted. The structure of the pole term in (33) allows us to
absorb them into the corresponding counterterms. For the finite part of the
surface energy density one gets

εj,f = −n
(j)

a

(
ξ − 2ξ − 1/2

n(j)β(j)
a

)
〈ϕϕ†〉j,f . (34)

To obtain the total energy density on the brane the contributions coming
from the two sides of the brane should be summed. One can see, that for
odd D and boundary conditions with n(1)β(1) = n(2)β(2) = β the pole parts
in the expression of energy density coming from the two sides of the brane
cancel each other and finite expression remains

ε = − 1

aD

(
ξ − 2ξ − 1/2

β
a

){
2(4π)(1−D)/2z0β

Γ ((D − 1)/2)La

∞∑
n=−∞

∫ ∞
k(n)z0

duu

×[u2 − z20k2(n)]
D−3
2

 Kν(u)

K̄
(1)
ν (u)

+
Iν(u)

Ī
(2)
ν (u)

− a

β

[N/2]∑
l=1

2v
(I,2)
2l

u2l


+

2πD−1/2

(L/z0)D

[N/2]∑′

l=1

v
(I,2)
2l (L/z0)

2l

Γ(l)(2π)2l
P

(
2l −D + 1

2
, α̃

) . (35)

Here [N/2] means the integer part of N/2. Note that the expression (35)
does not depend on the mass scale µ. The energy density (35) is an even
periodic function of the magnetic flux Φ enclosed by compact dimension
with the period equal to the flux quantum Φ0.

The cosmological constant measured in units of the AdS curvature scale
a, aDε, depends on the ratio β/a, on the parameter α̃, determining the mag-
netic flux enclosed by the compact dimension and on the ratio L/z0. Note
that the energy density depends on the length of the compact dimension and
on the location of the brane in the form of the combination L/z0. The latter
property is a consequence of the maximal symmetry of the AdS spacetime.

5. Conclusion

We have investigated the VEV of the surface energy-momentum tensor
for a charged scalar field, induced on a brane in background of a locally AdS
spacetime with a compact spatial dimension. The brane is parallel to the
AdS boundary and the field operator obeys Robin boundary condition on
it. In general, the Robin coefficients on the left and right hand sides of the
brane are different. The VEV of the surface energy-momentum tensor is
expressed in terms of the VEV for the field squared. The latter is divergent
and a regularization is required with the further renormalization. Here we
have used the generalized zeta function regularization scheme. In this way,
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(a) (b)

Figure 1: The dependence of aDε (determined by the eq. (35)) on the
ratio β/a with fixed values of z0/L = 1, α̃ = 0.45, for minimally (a) and
conformally (b) coupled massless scalar fields (m = 0).

for both regions y ≥ y0 (R-region) and y ≤ y0 (L-region) the VEV of the
field squared on the brane is decomposed into the pole and finite parts. The
finite parts depend on the normalization mass scale µ. This dependence dis-
appears in the total energy density on the brane for odd values of the spatial
dimension if the Robin coefficients for the R- and L-regions are related as
β1 = −β2. In this special case, the VEV of the surface energy density is
given by (4.17) and for the corresponding pressures one has p = −ε. This
corresponds to a cosmological constant induced on the brane by quantum
effects.
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