
Communications of BAO, Vol. 68, Issue 1, 2021, pp. 38-49

Unique definition of relative velocity of luminous source

as measured along the observer’s line-of-sight in a
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Abstract

Using a way of separating the spectral shifts into infinitesimally displaced `relative´ spectral
bins and sum over them, we overcome the ambiguity of the parallel transport of four-velocity,
in order to give an unique definition of the so-called kinetic relative velocity of luminous source
as measured along the observer’s line-of-sight in a generic pseudo-Riemannian space-time. The
ubiquitous relationship between the spectral shift and the kinetic relative velocity is utterly distinct
from a familiar global Doppler shift rule (Synge, 1960). Such a performance of having found a
kinetic relative velocity of luminous source, without subjecting it to a parallel transport, manifests
its virtue in particular case when adjacent observers are being in free fall and populated along the
null geodesic, so that it is reduced to a global Doppler velocity as studied by Synge. We discuss
the implications for the instructive case of spatially homogeneous and isotropic Robertson-Walker
space-time, which leads to cosmological consequences that the resulting kinetic recession velocity
of a galaxy is always subluminal even for large redshifts of order one or more, and thus, it does not
violate the fundamental physical principle of causality.
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1. Introduction

For test particles and observers there is no unique way to compare four-vectors of the velocities
at widely separated space-time events in a curved Riemannian space-time, because general relativity
(GR) provides no a priori definition of relative velocity. This inability to compare vectors at different
points was the fundamental feature of a curved space-time. Different coordinate reference frames and
notions of relative velocity yield different results for the motion of distant test particles relative to a
particular observer. The three distinct coordinate charts are employed by Bolós (2006, 2007), Bolós &
Klein (2012), Bolós et al. (2002), Klein & Collas (2010), Klein & Randles (2011), each with different
notions of simultaneity, to calculate the four geometrically defined inequivalent concepts of relative ve-
locity: Fermi, kinematic, astrometric, and the spectroscopic relative velocities. The four definitions of
relative velocities depend on two different notions of simultaneity: ”spacelike simultaneity” (or ”Fermi
simultaneity”) (Klein & Randles, 2011, Walker, 1935) as defined by Fermi coordinates of the observer,
and ”lightlike simultaneity” as defined by optical (or observational) coordinates of the observer (Ellis,
1985). The Fermi and kinematic relative velocities can be described in terms of the ”Fermi simul-
taneity”, according to which events are simultaneous if they lie on the same space slice determined by
Fermi coordinates. Thereby, for an observer following a timelike worldline in Riemannian space-time,
Fermi-Walker coordinates provide a system of locally inertial coordinates. If the worldline is geodesic,
the coordinates are commonly referred to as Fermi or Fermi normal coordinates. Useful feature of
Fermi coordinates was that the metric tensor expressed in these coordinates is Minkowskian to first
order near the path of the Fermi observer, with second order corrections involving only the curvature
tensor (Manasse & Misner, 1963). In (Klein & Randles, 2011), the authors find explicit expressions
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for the Fermi coordinates for Robertson-Walker (RW) space-times and show that the Fermi chart
for the Fermi observer in non-inflationary RW space-times is global. However, rigorous results for
the radius of a tubular neighborhood of a timelike path for the domain of Fermi coordinates are not
available. The spectroscopic (or barycentric) and astrometric relative velocities, which can be derived
from spectroscopic and astronomical observations, mathematically, both rely on the notion of light
cone simultaneity. According to the latter, two events are simultaneous if they both lie on the same
past light cone of the central observer. It is shown that the astrometric relative velocity of a radially
receding test particle cannot be superluminal in any expanding RW space-time. Necessary and suffi-
cient conditions are given for the existence of superluminal Fermi speeds. Note that for the Hubble
velocity, the proper distance is measured along non geodesic paths, while for the Fermi velocity, the
proper distance is measured along spacelike geodesics. In this respect the Fermi velocity seems to be
more natural, but the Hubble velocity is defined at all space-time points, whereas the Fermi velocity
makes sense only on the Fermi chart of the central observer. Although alluded four definitions of
relative velocities have own physical justifications, all they are subject to many uncertainties, and the
ambiguity still remains.

Keeping in mind aforesaid, below we restrict our analysis to seeking solution for particular case
when a test particle is being a luminous object. In this case, the problem of a definition of relative
velocity can be significantly simplified because of available spectral shift measured by observer. The
hope appears that a relative velocity of luminous source as measured along the observer’s line-of-sight
(speed) can be defined in unique way straightforwardly from kinematic spectral shift rule, which holds
on a generic pseudo-Riemannian manifold (Synge, 1960). In the same time, aforementioned inability
to immediately compare the four-velocity vector V µ

S of the luminous object S with the four-velocity
vector V µ

O of the observer O in pseudo-Riemannian space-time necessitates to seek a useful definition
of the relative velocity by bringing both vectors to a common event. Historically, Synge has subjected
the vector V µ

S to parallel transport along the null geodesic to the observer, and deduced a global
Doppler effect in terms of energy and frequency. It is well known that null geodesics are peculiar,
in a sense that they lie in a metric space wherein they are being only 1D-affine spaces, so that only
a parallel displacement, not a metric distance is defined along them. As a corollary, their geometric
properties become a rather unexpected mixture of affine and metric properties. At first glance, we
seem to have attractive proposal of choosing a null geodesics for the parallel transport since it does not
require any additional structures, like particular foliation of space-time, which in turn is applicable
to any space-time. However, a resulting Doppler effect is inconclusive, because a definition of relative
velocity has disadvantage that there is no unique way to compare four-vectors of the velocities at
widely separated space-time events by parallel transport.

Our primary interest, in the present article is rather to extend those geometrical ideas developed
by (Synge, 1960), to build a series of infinitesimally displaced shifts and then sum over them in order
to achieve an unique definition of the so-called kinetic relative velocity of luminous source, with-
out subjecting it to a parallel transport, as measured along the observer’s line-of-sight in a generic
pseudo-Riemannian space-time. These peculiarities deserve careful study, because they furnish valu-
able theoretical clues about the interpretation of kinetic velocity of luminous object relative to observer
in GR, a systematic analysis of properties of which happens to be surprisingly difficult by conventional
methods. The problem of subjecting the four-velocity vector of the luminous source to parallel trans-
port will not be broached in this paper, though it is hoped that the present formulation of the theory
will facilitate the task. A resulting general relationship between the spectral shift and the kinetic
relative velocity is utterly distinct from a familiar global Doppler shift. We discuss the implications
for a particular case of a global Doppler shift along the null geodesic, and the spatially homogeneous
and isotropic Robertson-Walker space-time of standard cosmological model. The latter leads to im-
portant cosmological consequences that the resulting kinetic recession velocity of a galaxy is always
subluminal even for large redshifts of order one or more, and thus, it does not violate the funda-
mental physical principle of causality. This provides a new perspective to solve startling difficulties
of superluminal `proper´ recession velocities, which the conventional scenario of expanding universe
of standard cosmological model presents (see e.g. Bolós & Klein, 2012, Bunn & Hogg, 2009, Chodor-
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owski, 2011, Davis & Lineweaver, 2004, Emtsova & Toporensky, 2019, Grøn & Elgarøy, 2007, Harrison,
1993, 1995, Kaya, 2011, Klein & Collas, 2010, Klein & Randles, 2011, Murdoch, 1977, Narlikar, 1994,
Peacock, 1999, 2008, Peebles, 1993, Peebles et al., 1991, Silverman, 1986, Whiting, 2004). In some
instances (in earlier epochs), the distant astronomical objects are observed to exhibit redshifts in ex-
cess of unity, and only a consistent theory could tackle the key problems of a dynamics of such objects.

With this perspective in sight, we will proceed according to the following structure. To start
with, Section 2 deals with the relationship of the overall spectral shift, z, and the speed of source
(S) relative to observer (O) in its rest frame along the line of sight, in a general Riemannian space-
time. On these premises, in Subsection 2.1, we show that a general solution is reduced to global
Doppler shift along the null geodesic, as it is studied by Synge (1960). We use a general solution as a
backdrop to explore in Subsection 2.2 a new concept of the kinetic recession velocity of an astronomical
object in other context of RW space-time of standard cosmological model. In these terms we reconcile
the cosmological interpretation of redshift with the correct solution to a kinematic interpretation of
redshifts as accumulation of a series of infinitesimal spectral shifts. The kinetic recession velocity is
always subluminal even for large redshifts of order one or more, and thus, it does not violate the
fundamental physical principle of causality. Concluding remarks are given in Section 3.

2. The relative speed along the observer’s line-of-sight in a generic
pseudo-Riemannian space-time

Avoiding from any mistakes, we preferred to work in an infinitesimal domain. The principle
foundation of our setup comprises the following steps. Let (o) and (s) be two world lines respectively
of observer O and source S in the pseudo-Riemannian space-time. Suppose the passage of light signals
from S to O is described by a single infinity of null geodesics Γ(v) connecting their respective world
lines. To clarify the issues further, it should help a few noteworthy points of Fig. 1. Avoiding from
any mistakes, we preferred to work in an infinitesimal domain. The S(1) and S(2) are two neighboring
world points on (s). The parametric values for these geodesics are v, v+ M v, respectively, where
v = const and M v is infinitesimally small. Accordingly, the world line (s) is mapped pointwise on
the (o) by a set of null geodesics Γ(v). That is, a set of null geodesics are joining (s) to (o), each
representing the history of a wave crest. The totality of these null geodesics forms a 2-space with
equation xµ = xµ(u, v), which is determined once (s) and (o) are given. The u denote the affine
parameter on each of these geodesics running between fixed end-values u = 0 on (s) and u = 1 on (o).
The O(1) and O(2) are corresponding world points on (o), where the null geodesics from S(1) and S(2)
meet it. Also we will denote by τO and τS the proper times of the observer and the source, respectively,
and M τO and M τS are the elements of proper time corresponding to the segments (the clock measures
of) O(1)O(2) and S(1)S(2). Imagine now a dense family of adjacent observers Oj (j = 1, ..., n− 1) with
the world lines (oj) populated between the two world lines (o) and (s). Each observer Oj measures the
frequency of light rays emitted by the source S as it goes by. The Oj(1) and Oj(2) are two neighboring
world points on (oj) where the null geodesics from S(1) and S(2) meet it. The uj denote the values of
affine parameter on each of the null geodesics chosen at equal infinitesimally small δui, so that u = uj
on (oj). The τOj denotes the proper times of the adjacent observers, i.e. M τOj are the elements of
proper time corresponding to the segment Oj(1)Oj(2). Here and throughout we use the proper space
scale factor li (i = 0, 1, 2, ..., n) which encapsulates the beginning and evolution of the elements of
proper time M τS of source, namely l0 = c M τS , l1 = c M τO(1)

, ... , ln−1 = c M τOn−1 , ln = c M τO.
Each line segment li−1 of proper space scale factor (at the affine parameter ui−1) is identically mapped
on the line segment (li − δli−1) of proper space scale factor (at infinitesimally close affine parameter
ui), such that li−1 ≡ (li − δli−1), where δli denotes infinitesimal segment aiOi(2). If there are N wave
crests of the light, the wavelength of light λOi at the observers Oi (i = 1, ..., n, where On ≡ O), who
measures the wavelength of light ray as it goes by, satisfies the following condition:

N = ln
λn

= ln−1

λn−1
= · · · = l1

λ1
= l0

λ0
, (1)
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Figure 1. The infinitesimal spectral shifts as measured locally by emitter and adjacent receivers in a
generic pseudo-Riemannian space-time. The (o) and (s) are two world lines respectively of observer
O and source S. A dense family of adjacent observers Oj (j = 1, ..., n − 1) with the world lines (oj)
populated between the two world lines (o) and (s). A set of null geodesics (the dotted lines) is mapping
(s) on (o), each representing the history of a wave crest. Each line segment li−1 of proper space scale
factor (at the affine parameter ui−1) is identically mapped on the line segment (li − δli−1) of proper
space scale factor (at infinitesimally close affine parameter ui), such that li−1 ≡ (li − δli−1), where δli
denotes infinitesimal segment aiOi(2).

where λi (≡ λOi). The wavelength λi of light ray is varied on the infinitesimal distance between the
observers Oi+1 and Oi in a general Riemannian space-time in proportion to the proper space scale
factor li :

λi+1

λi
=

MτOi+1

MτOi
= li+1

li
, (2)

such that the spectral shift zi reads

zi = λi
λS
− 1 = li

l0
− 1 =

MτOi
MτS
− 1. (3)

The spectral shift zi, in general, can be evaluated straightforwardly in terms of the world function
Ω(SOi) for two points S(x′) and Oi(x(i)) (i = 1, ..., n) through an integral defined along the geodesic
ΓSOi(v) joining them (Synge, 1960), taken along any one of the curves v = const. Following Synge,
the world function Ω(SOi) can be defined for any of the geodesics in the family linking points on (oi)
and (s):

Ω(SOi) = Ω(x′x(i)) ≡ Ωi(v) = 1
2(uOi − uS)

∫ uOi
uS

gµνU
µUνdu, (4)

taken along ΓSOi(v) with Uµ =
dxµ

(i)

du , has a value independent of the particular affine parameter chosen.
The holonomic metric g = gµν ϑµ⊗ ϑν = g(eµ, eν)ϑµ ⊗ ϑν , is defined in the Riemannian space-time,
with the components, gµν = g(eµ, eν) (µ = 0, 1, 2, 3) in the dual holonomic base {ϑµ ≡ dxµ}. We have
taken uS = 0 and uOi ≤ 1 for given world function Ω(i)(v), which becomes

Ω(i)(v) = 1
2uOi

∫ 1
0 gµνU

µUνdu. (5)

By virtue of δUµ/δu = 0, we have gµνU
µUν = const along ΓSOi(v), therefore, (4) is reduced to

Ω(i)(v) = 1
2(uO(i)

− uS)2gµνU
µUν , (6)

with the last part evaluated anywhere on ΓSOi(v). Taking uS = 0 and uOi = 1, and applying
conventional methods (Synge, 1960), we then have

Ω(i)(v) = 1
2gµνU

µUν = 1
2εL

2
i , Li =

∫ Oi
S ds, (7)
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that is, to within the factor ε = ±1, the world-function is half the square of the measure, Li, of
geodesic joining S and Oi. Synge has proved that the following relations hold in general:

∂Ω(i)(v)

∂xµ

∣∣∣
S

= −uOi gµν ∂x
ν

∂u

∣∣
S
,

∂Ω(i)(v)

∂xµ

∣∣∣
Oi

= uOi gµν
∂xν

∂u

∣∣
Oi
. (8)

The right hand sides are invariant under transformation of the affine parameter. If the geodesic is not
null, one has

∂Ω(i)

∂x′µ = −Liτµ(S),
∂Ω(i)

∂xµ
(i)

= Liτµ(Oi), (9)

where τµ(S) and τµ(Oi) are the unit tangent vectors to the geodesic at S and Oi.

For null geodesics ΓS(1)Oi(1)(v) and ΓS(2)Oi(2)(v+ M v), in particular, the world functions Ω(i)(v)
does not change in the interval v and v+ M v, therefore

∂Ω(i)(v)

∂xµ
dxµ

dv

∣∣∣
Oi

+
∂Ω(i)(v)

∂xµ
dxµ

dv

∣∣∣
S

= 0, (10)

which yields
pµ(i)V

µ
(i) M τOi − pµ(S)V

µ
(S) M τS = 0, (11)

where V µ
(i) = dxµ/dτOi |Oi(1) and V µ

(S) = dxµ/dτS |S(1)
are the respective four-velocity vectors of observer

Oi and source S (or world lines (oi) and (s)) at points Oi(1) and S(1), p
µ
(i) = dxµ(i)/dui and pµ(S) =

dx
′µ/du0 are respective four-momenta of light ray (tangent to null geodesic) at the end points. Then,

by virtue of (2), we obtain

1 + zi = li
l0

=
pµ(S)V

µ
(S)

pµ(i)V
µ
(i)

. (12)

For i = n, (12) becomes a well-known generalization of the overall spectral shift rule in a Riemannian
space-time (Synge, 1960)

z = MτO
MτS
− 1 =

pµ(S)V
µ
(S)

pµ(O)V
µ
(O)

− 1. (13)

Let us subject the vector V µ
(S) to parallel transport along the null geodesic ΓS(1)O(1)

(v) to the observer.

This yields at O(1) the vector βµ(S1) = gµν
′
(O(1), S(1))V

ν′

(S1), where the two point tensor gµν
′
(O(1), S(1))

is the parallel propagator. The latter is determined only by the points S(1) and O(1). At S(1) → O(1),

we have the coincidence limit [gµν
′
](O(1)) = gµν(O(1)). Then we obtain a relativistically invariant form

of global Doppler shift:

z =
pµ(O1)β

µ
(S1)

pµ(O1)V
µ
(O1)

− 1, (14)

where V µ
(O1) is the four-velocity vector of the observer O at point O(1), pµ(S1) and pµ(O1) are the tangent

vectors to the typical null geodesics ΓS(1)O(1)
(v) at their respective end points. Narlikar (Narlikar,

1994) has proved a rule (14) in other context of standard cosmological model of expanding universe.
A Doppler effect (14), having recast in an alternative form by Synge (1960), reads:

z = 1− 1

(1+β2
(O(1))

)
1
2 +βR(O(1))

, (15)

where cβµ(S1) = vµ(S1), cβ(O(1)) = v(O(1)), cβR(O(1)) = vR(O(1)), and

v2
(O(1))

= v(α)(O(1))v
(α)
(O(1))

, v(α)(O(1)) = vµ(S1)ξ
µ
(α)(O(1))

,

vR(O(1)) = vµ(S1))r
µ
(O(1))

= v(α)(O(1))v
(α)
(O(1))

.
(16)

Reviewing notations the three-velocity of (s) relative (o) are defined by the tree invariant components
v(α)(O(1)), v(S1) is the relative speed, vR(O(1)) is the speed of recession of (s). Whereas ξµ(α)(O(1))

is the

frame of reference on world-line (o) with ξµ0(O(1))
= V µ

(O(1))
, the unit vector rµ(O(1)) at O(1) is orthogonal
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to world-line (o) (rµ(O(1))V
µ

(O(1))
= 0) and lying in the 2-element which contains the tangent at O(1) to

(o) and S(1)O(1).

In studying further a set of null geodesics Γ(v) with equations xµ(ui, v) (where v = const), we
may deal with the deviation vector ηµ(i) drawn from Oi(1)S(1) to Oi(2)S(2), and that we have along null
geodesic

ηµ(i)
∂xµ

∂ui
= const. (17)

The equation (17) yields
ηµ(i+1)p

µ
(i+1) = ηµ(i)p

µ
(i). (18)

Then
ηµ(i+1) = V µ

(i+1)li+1, ηµ(i) = V µ
(i)li,

ηµ(i+1)p
µ
(i+1) = Ei+1li+1, ηµ(i)p

µ
(i) = Eili,

(19)

where Ei = pµ(i)V
µ

(i) is the energy of light ray relative to an observer Oi. Combining (2) and (19), we

may write the ratio (λi+1/λi) in terms of energy of photon and the world-function

λi+1

λi
= li+1

li
= Ei

Ei+1
=

pµ(i)V
µ
(i)

pµ(i+1)V
µ
(i+1)

=
Ωµ(i)V

µ
(i)

Ωµ(i+1)V
µ
(i+1)

, (20)

where Ωµ(i) = (uOi − uS)Uµ. Therefore, the infinitesimal `relative´ spectral shift δzi between the
observers Oi+1 and Oi will be

δzi = δλi
λi

= λi+1−λi
λi

= δli
li

= li+1−li
li

=
pµ(i)V

µ
(i)

pµ(i+1)V
µ
(i+1)

− 1 =

Ωµ(i)V
µ
(i)

Ωµ(i+1)V
µ
(i+1)

− 1 = δ̃zi
1+zi

≡ zi+1−zi
1+zi

.
(21)

For definiteness, let consider case of ln > l0 (being red-shift, Fig. 1). In similar way, of course, we may
treat a negative case of ln < l0 (being blue-shift), but it goes without saying that in this case a source
is moving towards the observer. In first case, the observers at the points Oi(2) (i = 1, ..., n− 1) should
observe the monotonic increments of `relative´ spectral shifts (δz1, δz2, δz3, ..., δzn−1) when light ray
passes across the infinitesimal distances (O1(2), S(2)), (O2(2), O1(2)), ..., (On(2), O(n−1)(2)). Thus, the
wavelength of light emitted at S(2) is stretched out observed at the points Oi(2). While weak, such
effects considered cumulatively over a great number of successive increments of `relative´ spectral shifts
could become significant. The resulting spectral shift is the accumulation of a series of infinitesimal
shifts as the light ray passes from luminous source to adjacent observers along the path of light ray.
This interpretation holds rigorously even for large spectral shifts of order one or more. If this view
would prove to be true, then it would lead to the chain rule for the wavelengths:

λO(n2)

λ0
≡ λn

λ1
= λn

λn−1
· λn−1

λn−2
· · · λ2λ1 ·

λ1
λ0

=
∏n−1
i=1 (1 + δzi), (22)

where λ0 ≡ λS(2)
, such that

1 + z = λn−λ0
λ0

=
∏n−1
i=1 (1 + δzi) =

∏n−1
i=1

pµ(i)V
µ
(i)

pµ(i+1)V
µ
(i+1)

=
∏n−1
i=1

Ωµ(i)V
µ
(i)

Ωµ(i+1)V
µ
(i+1)

. (23)

With no loss of generality, we may of course apply (23) all the way to n → ∞. Let us view the
increment of the proper space scale factor, li = l(ui), over the affine parameters ui (i = 1, 2, ..., n) as
follows: li = l0 + iε, where ε can be made arbitrarily small by increasing n. In the limit n → ∞, all
the respective adjacent observers are arbitrarily close to each other, so that δzi = δli/li ' ε/l0 → 0.
This allows us to write the following relation for the infinitesimal `relative´ redshifts:

(δzn−1 = δzn−2 = · · · = δz1 = ε/l0)n→∞ = limn→∞ δz
(a)
(n−1) ≡

limn→∞

(
1

n−1

∑n−1
i=1 δzi

)
,

(24)
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provided, δz
(a)
(n−1) is the average infinitesimal increment of spectral shift. There does not seem to be

any reason to doubt a validity of (24). Certainly, the identification adopted here can be readily proved
as follows. The relation (23) then becomes

1 + z = limn→∞
∏n−1
i=1 (1 + δzi) = limn→∞

(
1 + δz

(a)
(n−1)

)n−1
= limn→∞ (1+

1
n−1

∑n−1
i=1

δli
li

)n−1
= limn→∞

(
1 + 1

n ln ln
l0

)n
= ln

l0
=

pµ(S)V
µ
(S)

pµ(O)V
µ
(O)

,
(25)

and hence

1 + z = MτO
MτS

=
pµ(S)V

µ
(S)

pµ(O)V
µ
(O)

=
Ωµ(S)V

µ
(S)

Ωµ(O)V
µ
(O)

=

1 +
∑n−1

i=1 δ̃zi = limn→∞
∏n−1
i=1 (1 + δzi) = limn→∞

(
1 + δz

(a)
(n−1)

)n−1
,

(26)

where Ωµ(O) = (uO − uS)Uµ(O) and Ωµ(S) = −(uO − uS)Uµ(S). The first line of equation (26) is the
overall spectral shift rule (12), which proved a validity of the relation (24).

It is worth emphasizing that the general equation (26) is the result of a series of infinitesimal
stretching of the proper space scale factor in Riemannian space-time, whereas the path of a luminous
source appears nowhere, thus this equation does not relate to the special choice of transport path.
Therefore, to overcome the ambiguity of parallel transport of four-velocities in curved space-time, in
what follows we advocate exclusively with this proposal. To obtain some feeling about this state-
ment, below we give more detailed explanation. The infinitesimal increments of `relative´ spectral
shifts (δz1, δz2, δz3, ..., δzn−1), according to (15), can be derived from Doppler effect between adjacent
emitter and absorber in relative motion measured in the respective tangent local inertial rest frames
at infinitesimally separated space-time points. To obtain some feeling about this statement, below
we give more detailed explanation. Imagine a family of adjacent observers (Oai(ui)) situated at the
points ai (i = 1, ..., n) on the world lines (oi) at infinitesimal distances from the observers (Oi(2)), who
measure the wavelength of radiation in relative motion which cause a series of infinitesimal stretching
(δl0, ..., δln−1) of the proper space scale factor. Since each line segment li−1 of proper space scale factor
(at the affine parameter ui−1) is identically mapped on the line segment (li− δli−1) (where δli denotes
infinitesimal segment aiOi(2)) of proper space scale factor (at the affine parameter ui = ui−1 + δui−1),
the relative speed vOi(2)Oai (ui) of observer (Oi(2)(ui)) to adjacent observer (Oai)(ui) should be the
same as it is relative to observer (O(i−1)(2)(ui−1)), that is vOi(2)O(i−1)

(ui−1) ≡ vOi(2)Oai (ui). Con-
tinuing along this line, we may commit ourselves in the series of `relative´ spectral shifts, equiva-
lently, a certain substitution of increments of relative speeds. Taking into account that the infinites-
imal speeds of source (S) relative to observers (Oi(2)) arise at a series of infinitesimal stretching
of the proper space scale factor δli (i = 1, 2, ..., n) as it is seen from the Fig. 1, we may fill out
the whole pattern of monotonic increments of `relative´ spectral shifts (δz1, δz2, δz3, ..., δzn−1) by,
equivalently, replacing the respective pairs (O1(2), S(2)), (O2(2), O1(2)), ..., (On(2), O(n−1)(2)) with new
ones (O1(2), Oa1), (O2(2), Oa2), ..., (On(2), Oan), which attribute to the successive increments of relative
speeds vO1(2)S(u1), ..., vOn(2)O(n−1)(2)

(un) of the source (S) away from an observer (On(2)) in the rest
frame of (On(2)), viewed over all the values (i = 1, ..., n). This framework furnishes justification for the
concept of relative speed cβn ≡ vOn(2)S(2)

, to be now referred to as the kinetic relative velocity, of the
source (S) to observer (On(2)) along the line of sight. According to relation (24), at the limit n→∞,
the relative infinitesimal speeds tends to zero, vOi(2)Oai (ui) = cδβi = cδzi = cδli/li ' cε/l0 → 0, such
that

limn→∞ δβ1 = limn→∞ δβ2 = · · · = limn→∞ δβn−1 =

δβ(a)
(
≡ limn→∞

1
n−1

∑n−1
i=1 δβi

)
= limn→∞

1
nβn.

(27)

Remark: Although we are free to deal with any infinitesimal `relative´ spectral shift δzi for the pair
(Oi(2)) and (Oai), in local tangent inertial rest frame of an adjacent observer (Oai), where we may
approximate away the curvature of space in the infinitesimally small neighborhood, nevertheless, the
infinitesimal relative velocities arise in a generic pseudo-Riemannian space-time at a series of infinites-
imal stretching of the proper space scale factor as alluded to above, so that the SR law of composition
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of velocities cannot be implemented globally along non-null geodesic because these velocities are ve-
locities at the different events, which should be in a different physical frames, and cannot be added
together.

To facilitate further calculations of the relative velocity in quest, we can address the pair of
observers at points O(n)2 and an. Suppose V µ

On(2)
and V µ

Oan
be the unit tangent four-velocity vectors

of observers (On(2)) and (Oan) to the respective world-lines in a Riemannian space-time, thus in their
respective rest frame we have V 0

On(2)
= 1 and V 0

Oan
= 1, as the only nonzero components of velocity.

The ray passes an observer Oan(un)(≡ O(n−1)(2)(un−1)) with the proper space scale factor ln−1 who
measures the wavelength to be λn−1. The ray passes next observer On(2)(un) with the proper space
scale factor ln = ln−1 + δln−1. The ray’s wavelength measured by observer On(2)(un) is increased by
δλn−1 = λn − λn−1 leading to infinitesimal `relative´ spectral shift δzn−1. For comparing the vectors
V µ
On(2)

and V µ
Oan

at different events, it is necessary to seek a useful definition of the relative velocity

by bringing both vectors to a common event by subjecting one of them to parallel transport. Since all
the paths between infinitesimally separated space-time points O(n)2 and an are coincident at n→∞,
for comparing these velocities there is no need to worry about specific choice of the path of parallel
transport of four-vector. Therefore, we are free to subject further the unit tangent four-velocity vector
V µ
Oan

to parallel transport along the null geodesic ΓanOn(2) to the point On(2). A parallel transport

yields at On(2) the vector βµ(On(2)) = gµν′(O(n)2, Oan)V ν′
Oan

, where the two point tensor gµν′(O(n)2, Oan)
is the parallel propagator, which is determined by the points Oan and O(n)2. At Oan → O(n)2, we have
the coincidence limit [gµν ](On(2)) = gµν(On(2)). As we have at point On(2) two velocities V µ

On(2)
and

βµ(On(2))
= gµνβν(On(2)), we may associate Doppler shift δzn−1 to four-velocity βµ(On(2))

of observer Oan

observed by an observer On(2) with four-velocity V µ
On(2)

as measured by the latter. Then, following ?,

the infinitesimal Doppler shift can be written:

δzn−1 = δλn−1λn−1 = pµ(On(2))β
µ
(On(2))

pµ(On(2))V
µ

(On(2))
− 1 =

1− 1(1 + β2
(On(2)

)1/2 + βR(On(2)),
(28)

where cβµ(On(2))
= vµ(On(2))

, cβ(On(2)) = v(On(2)), cβR(On(2)) = vR(On(2)), and

v2
(On(2))

= v(α)(On(2))v
(α)
(On(2))

, v(α)(On(2)) =

vµ(On(2))ξ
µ
(α)(On(2))

, vR(On(2)) = vµ(On(2))r
µ
(On(2))

=

v(α)(On(2))v
(α)
(On(2))

.

(29)

Reviewing notations the three-velocity of an observer (Oan) relative to observer at (On(2)) is v(α)(On(2)),

the relative speed is v(On(2)), and vR(On(2)) is the speed of recession of (Oan). Whereas ξµ(α)(On(2))
is

the frame of reference on world-line (o) with ξµ0(On(2))
= V µ

(On(2))
, the unit vector rµ(On(2))

at On(2)

is orthogonal to world-line (o) (rµ(On(2))V
µ

(On(2))
= 0) and lying in the 2-element which contains the

tangent at On(2) to (o) and S(2)O(2).
In the local inertial rest frame ξµ(α)(On(2))

of an observer (On(2)), the velocity vector βµOn(2) takes

the form (γ, γδβ(On(2)), 00), where an observer (Oan) is moving away from the observer (On(2)) with

the relative infinitesimal three-velocity δβ(On(2)) (in units of the speed of light) in a direction making
an angel θ(On(2)) with the outward direction of line of sight ΓOanOn(2) from Oan to O(n)2, and γ =

(1− δβ2
(On(2))

)−1/2. Therefore, the equation (28) is reduced to

δzn−1 = 1 + δβ(On(2)) cos θ(On(2))

√
1− δβ2

(On(2))
− 1 = βR(On(2))−

β2
R(On(2))

+ 12β2
(On(2))

+ · · · ' βR(On(2)) =

p(α)(On(2))v
(α)
(On(2))

EOn(2) = δβ(On(2)) cos θ(On(2)).

(30)

Thus, at n→∞, the wavelength measured by the observer On(2) is increased by the first-order Doppler

shift caused unambiguously by the infinitesimal relative speed δβ
(r)
n−1 ≡ δβ(On(2)) cos θ(On(2)) along the
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Figure 2. The relative velocity along the line of sight (βr.s.) of luminous source (S) with −1 ≤ z ≤ 4 to
observer (O), the global Doppler velocity (βDop), and their difference (in units of the speed of light).

line of sight with end-points Oan and On(2) (cos θ(On(2)) → 1):

δzn−1 = δln−1ln−1 = δβ
(r)
n−1. (31)

The SR law of composition of velocities along the line of sight can be implemented in the tangent
inertial rest frame of an observer On(2):

δβ
(r)
n−1 = βn − βn−11− βnβn−1 ' δβn−11− β2

n−1, (32)

where vn−1 = cβn−1 and vn = cβn are, respectively, the three-velocities of observers Oan and On(2)

along the line of sight with end-points Oan and On(2). According to (27), at n → ∞, a resulting
infinitesimal increment δzn−1 of spectral shift reads

limn→∞ δzn−1 = limn→∞
δβn−1

1−β2
n−1

= limn→∞
βn

n(1−β2
n)
, (33)

For our goal, the most straightforward guess at the convenient form of (26), by virtue of (24), is given
by

1 + z =
pµSV

µ
S

pµOV
µ
O

=
Ωµ(S)V

µ
(S)

Ωµ(O)V
µ
(O)

= limn→∞(1 + δzn−1)n. (34)

Certainly, it is more rewarding to go ahead with this relation, which incorporated with (33), yield a
finite spectral shift

1 + z =
pµSV

µ
S

pµOV
µ
O

=
Ωµ(S)V

µ
(S)

Ωµ(O)V
µ
(O)

= limn→∞

[
1 + 1

n

(
βn

(1−β2
n)

)]n
. (35)

This straightforwardly leads to the kinematic relationship of the overall spectral shift, z, and the speed
βr.s. (in units of the speed of light) of source (S) relative to observer (O ≡ On) in its rest frame along
the line of sight in a general Riemannian space-time:

1 + z =
pµSV

µ
S

pµOV
µ
O

=
Ωµ(S)V

µ
(S)

Ωµ(O)V
µ
(O)

= exp
(

βr.s.
1−β2

r.s.

)
, (36)

where, hereinafter, the relative speed βr.s. ≡ limn→∞ βn in quest is marked with subscript ()r.s.. The
relative speed of luminous source is plotted on the Fig. 2 for redshifts −1 ≤ z ≤ 4. Next we will study
a particular case of establishing a global Doppler shift from a general solution (36).
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2.1. A global Doppler shift along the null geodesic

Suppose the velocities of observers say Oi(2) (i = 1, ..., n − 1), being in free fall, populated along
the null geodesic ΓS(2)O(2)

(v+ M v) of light ray (Fig. 1), vary smoothly along the line of sight with
the infinitesimal increment of relative velocity δβri . The (i)-th observer situated at the point i(2) of
intersection of the ray’s trajectory ΓS(2)O(2)

(v+ M v) with the world line (oi) at affine parameter ui,
and measures the frequency of light ray as it goes by. According to the equivalence principle, we may
approximate away the curvature of space in the infinitesimally small neighborhood of two adjacent
observers. We should emphasize that if we approximate an infinitesimally small neighborhood of a
curved space as flat, the resulting errors are of order (δli/ln)2 in the metric. If we regard such errors
as negligible, then we can legitimately approximate space-time as flat. The infinitesimal increment
of spectral shift δzi is not approximated away in this limit because it is in that neighborhood of
leading order (δli/li). That is, approximating away the curvature of space in the infinitesimally small
neighborhood does not mean approximating away the infinitesimal increment δzi. Imagine a thin
world tube around the null geodesic ΓS(2)O(2)

(v+ M v) within which the space is flat to arbitrary
precision. Each observer has a local reference frame in which SR can be taken to apply, and the
observers are close enough together that each one O(i+1)(2) lies within the local frame of his neighbor
Oi(2). This implies the vacuum value of a velocity of light to be universal maximum attainable velocity
of a material body found in this space. Such statement is true for any thin neighborhood around a
null geodesic. Only in this particular case, the relative velocity of observers can be calculated by the
SR law of composition of velocities globally along the path of light ray. We may apply this law to
relate the velocity βi+1 to the velocity βi, measured in the i-th adjacent observer’s rest frame. The
end points of infinitesimal distance between the adjacent observers O(i+1)(2) and Oi(2) will respectively
be the points of intersection of the ray’s trajectory with the world lines oi+1(ui+1) and (oi)(ui). This
causes a series of infinitesimal increment of the proper space scale factor from initial value l0 =M τS
to the given value li =M τOi , which in turn causes a series of infinitesimal increment of spectral shift
δzi = δλi/λi = δli/li. Within each local inertial frame, there are no gravitational effects, and hence
the infinitesimal spectral shift from each observer to the next is a Doppler shift. Thus, at the limit
n → ∞, a resulting infinitesimal frequency shift δzi, can be unambiguously equated to infinitesimal
increment of a fractional SR Doppler shift δz̄i from observer Oi(2) to the next O(i+1)(2) caused by
infinitesimal relative velocity δβ̄ri :(

δzi = δli
li

)
n→∞

=
(
δz̄i = δβ̄ri = β̄i+1−β̄i

1−β̄i+1β̄i
' δβ̄i

1−β̄2
i

)
n→∞

, (37)

where by (̄) we denote the null-geodesic value, as different choice of geodesics yields different results for
the motion of distant test particles relative to a particular observer. The relation (37), incorporated
with the identity (24), yield

(δzn−1 =)n→∞ =
(
δβn−1

1−β2
n

)
n→∞

=
(
δz̄

(a)
(n−1) = δβ̄

r(a)
(n−1) ≡

1
n−1

∑n−1
i=1

δβ̄i
1−β̄2

i

)
n→∞

,
(38)

which, by virtue of (27), for sufficiently large but finite n gives

βn
1−β2

n
=
∑n−1

i=1
δβ̄i

1−β̄2
i

=
∫ β̄n

0
dβ̄

1−β̄2 , (39)

or
β̄n = e%n−1

e%n+1 , %n ≡ 2βn
1−β2

n
. (40)

Hence the general solution (36), by means of relation (39), is reduced to a global Doppler shift (14)
along the null geodesic:

1 + z = exp
(

βr.s.
1−β2

r.s.

)
=
√

1+β̄r.s.
1−β̄r.s.

=
pµ(O2)V

µ
(S2)

pµ(O2)V
µ
(O2)

, (41)

where β̄rec = limn→∞ β̄n, V µ
(S2) and V µ

(O2) are the four-velocity vectors, respectively, of the source S(2)

and observer O(2), pµ(S2) and pµ(O2) are the tangent vectors to the typical null geodesics ΓS(2)O(2)
(v)
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at their respective end points. This procedure, in fact, is equivalent to performing parallel transport
of the source four-velocity in a general Riemannian space-time along the null geodesic to the observer.
Note that any null geodesic from a set of null geodesics mapped (s) on (o) can be treated in the similar
way. In Minkowski space a parallel transport of vectors is trivial and mostly not mentioned at all.
This allows us to apply globally the SR law of composition of velocities to relate the velocities β̄i+1

to the β̄i of adjacent observers along the path of light ray, measured in the i-th adjacent observer’s
frame. Then, according to (37)-(41), a global Doppler shift of light ray emitted by luminous source as
it appears to observer at rest in flat Minkowski space can be derived by summing up the infinitesimal
Doppler shifts caused by infinitesimal relative velocities of adjacent observers.

2.2. The implications for the standard cosmological model

In the framework of standard cosmological model, one assumes that the universe is populated with
comoving observers. In the homogeneous, isotropic universe comoving observers are in freefall, and
obey Wayl’s postulate: their all worldlines form a 3-bundle of non-intersecting geodesics orthogonal to
a series of spacelike hypersurfaces, called comoving hypersurfaces. In case of expansion, all worldlines
are intersecting only at one singular point. The clocks of comoving observers, therefore, can be
synchronized once and for all. Let the proper time, t, of comoving observers be the temporal measure.
Suppose R(t) is the scale factor in expanding homogenous and isotropic universe. One considers in,
so-called, cosmological rest frame a light that travels from a galaxy to a distant observer, both of
whom are at rest in comoving coordinates. As the universe expands, the wavelengths of light rays
are stretched out in proportion to the distance L(t) between co-moving points (t > t1), which in turn
increase proportionally to R(t) (Harrison, 1993, 1995):

λ(t)
λ(t1) = dt

dt1
= R(t)

R(t1) = L(t)
L(t1) . (42)

Reviewing notations in this `cosmic wavelength stretching´ relation, L1 ≡ L(t1) is the proper distance
to the source at the time when it emits light, L(t) is the same distance to the same source at light
reception.

In what follows, the mathematical structure has much in common with those constructions used for
deriving of (21)-(36). After making due allowances for (42), particularly, the infinitesimal `relative´
increment δzj (j = 1, ..., n− 1) of redshift reads

δzj =
δλj
λj

=
λj+1−λj

λj
=

δLj
Lj

=
Lj+1−Lj

Lj
=

δ̃zj
1+zj

≡ zj+1−zj
1+zj

, 1 + zj =
δλj
λ1
, (43)

where, the role of proper space scale factor li is now destined to the scale factor R(ti) ∝ L(ti).
Consequently, the general relation (36) straightforwardly yields the particular solution as a corollary for
the case of expanding RW space-time of standard cosmological model, i.e. the kinematic relationship
of the overall cosmological redshift, z, and kinetic recession velocity (βrec ≡ βr.s.) (in units of the speed
of light) of the comoving distant galaxy (A1) of redshift z, which crossed past light cone at time t1
away from comoving observer (O):

1 + z = R(t)
R(t1) = exp

(
βrec

1−β2
rec

)
. (44)

This interpretation so achieved has physical significance as it agrees with a view that the light waves
will be stretched by travelling through the expanding universe, and in the same time the kinetic re-
cession velocity of a distant astronomical object is always subluminal even for large redshifts of order
one or more. It, therefore, does not violate the fundamental physical principle of causality. Moreover,
the general solution is reduced to global Doppler shift (41) along the null geodesic, studied by Synge
(1960) (see also Bunn & Hogg (2009), Narlikar (1994)).

If, and only if, for the distances at which the Hubble empirical linear `redshift-distance´ law
(cz = HL) is valid, the relationship between the physical recession velocity, vrec, and the expansion
rate, L̇ (= HL), reads

βrec =

√
1+4 ln2(1+L̇/c)−1

2 ln(1+L̇/c)
. (45)
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3. Concluding remarks

Let us briefly summarize the main results of this work. This report is about the much-discussed
in literature question of interpretation of the spectral shift of radiation from a distant object in a
curved spacetime. We aim to provide a unique definition for the kinetic relative velocity between a
source and the observer as measured along the observer’s line-of-sight. Extending those geometrical
ideas of well-known kinematic spectral shift rule to infinitesimal domain, we try to catch this effect
by building a series of infinitesimally displaced shifts and then sum over them in order to find the
proper answer to the problem that we wish to address. Thereby, the general equation (26) is the
result of a series of infinitesimal stretching of the proper space scale factor in Riemannian space-time,
whereas the path of a luminous source appears nowhere, thus this equation does not relate to the
special choice of transport path. A resulting general relationship (36) between the spectral shift and
the kinetic relative velocity is utterly distinct from a familiar global Doppler shift (14). We discuss
the implications for a particular case when adjacent observers are being in free fall and populated
along the null geodesic, so that the kinetic relative velocity of luminous source is reduced to global
Doppler velocity (41) as studied by Synge. Moreover, the implications for the spatially homogeneous
and isotropic RW space-time of standard cosmological model leads to cosmological consequences that
resulting kinetic recession velocity of a distant astronomical object is always subluminal even for large
redshifts of order one or more and, thus, it does not violate the fundamental physical principle of
causality.
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Manasse F. K., Misner C. W., 1963, J. Math. Phys., 4, 735

Massa E., 1974, Gen.Rel. and Grav., 5, 555, 573, 715

Misner C. W., Thorne K. S., Wheeler J. A., 1973, Gravitation. Freeman

Murdoch H. S., 1977, QJRAS, 18, 242

Narlikar J. V., 1994, Am. J. Phys., 62, 903

Peacock J. A., 1999, Cosmological Physics. Cambridge Univ. Press (Ninth printing with corrections 2010), address = Paris

G.Ter-Kazarian
doi: https://doi.org/10.52526/25792776-2021.68.1-38

49

https://doi.org/10.52526/25792776-2021.68.1-38


Unique definition of relative speed along the line of sight of a luminous object in a Riemannian space-time

Peacock J. A., 2008, arXiv:[astro-ph], 0809.4573, 1

Peebles P. J. E., 1993, Principles of Physical Cosmology. Princeton Univ.Press.

Peebles P. J. E., Schramm D., Turner E., Kron R., 1991, Nature, 352, 769

Silverman A. N., 1986, Am. J. Phys., 54, 1092

Synge J. L., 1960, Relativity: The General Theory. North-Hollaand, Amsterdam

Ter-Kazarian G., 2021, Communications of the Byurakan Astrophysical Observatory (Submitted)

Walker A. G., 1935, Proc. Lond. Math. Soc., 4, 170

Whiting A. B., 2004, The Observatory, 124, 174

G.Ter-Kazarian
doi: https://doi.org/10.52526/25792776-2021.68.1-38

50

https://doi.org/10.52526/25792776-2021.68.1-38

	Introduction
	The relative speed along the observer's line-of-sight in a generic pseudo-Riemannian space-time
	A global Doppler shift along the null geodesic
	The implications for the standard cosmological model

	Concluding remarks

