
Communications of BAO, Vol. 68, Issue 1, 2021, pp. 56-74

Growth and merging phenomena of black holes:

observational, computational and theoretical efforts

G.Ter-Kazarian∗

Byurakan Astrophysical Observatory, 378433, Aragatsotn District, Armenia

Abstract

We briefly review the observable signature and computational efforts of growth and merging
phenomena of astrophysical black holes. We examine the meaning, and assess the validity of
such properties within theoretical framework of the long-standing phenomenological model of black
holes (PMBHs), being a peculiar repercussion of general relativity. We provide a discussion of
some key objectives with the analysis aimed at clarifying the current situation of the subject.
It is argued that such exotic hypothetical behaviors seem nowhere near true if one applies the
PMBH. Refining our conviction that a complete, self-consistent gravitation theory will smear out
singularities at huge energies, and give the solution known deep within the BH, we employ the
microscopic theory of black hole (MTBH), which has explored the most important novel aspects
expected from considerable change of properties of space-time continuum at spontaneous breaking
of gravitation gauge symmetry far above nuclear density. It may shed further light upon the growth
and merging phenomena of astrophysical BHs.
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1. Introduction

One of the achievements of contemporary observational astrophysics is the development of a quite
detailed study of the physical properties of growth and merging phenomena of astrophysical black
holes, even at its earliest stages. But even thanks to the fruitful interplay between the astronomical
observations, the theoretical and computational analysis, the scientific situation is, in fact, more
inconsistent to day. Wheeler in 1967 coined a spacetime region, where the gravitational field is so
strong that no information carrying objects and signals can escape it, by the term ‘a black hole’ (BH),
although the possibility of the existence of such objects was discussed a long time before this. At the
end of the eighteenth century Michell and Laplace independently came to the conclusion that if the
mass of a star were large enough its gravity would not allow light to escape. Though this conclusion was
based on the Newtonian theory the obtained result for the size of such ‘dark stars’ (the gravitational
radius) coincides with the later prediction of Einstein’s theory of gravity (see e.g. Barrow & Barrow,
1983, Israel, 1987). A principle feature that makes general relativity (GR) distinctively different from
other field theories is the occurrence of curvature singularities in spacetime. The singularities lead
to regions of the universe that cannot be observed. This causes an observer’s inability to access the
degrees of freedom that are hidden beyond the horizon which, in turn, leads to thermodynamical
behavior of BHs. Notwithstanding, much remarkably efforts have been made in understanding of BH
physics, many important issues still remain unresolved and, thus, a situation is unclear, than described
so far. The astrophysical significance of the issue, and the importance of considering the gravitational
collapse of a matter cloud within the framework of the GR theory, with reasonable physical properties
for the matter included, stems from the fact that GR predicts that a star more massive than about
five to eight times the mass of the Sun, cannot stabilize to a neutron star final state at the end
of its life cycle. It must collapse continually under the force of its own gravity on exhausting its
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internal nuclear fuel, and there are no known forces of nature that would halt such a collapse. General
relativity predicts that such a star must then terminate into a spacetime singularity where densities
and spacetime curvatures blow up and the physical conditions are extreme. The estimates on the mass
limit for a star in order to collapse, of course, are indefinitely vary depending on different models for
the star’s interior and equation of state for matter at very high densities. One of the most important
open issues in the theory and astrophysical applications of modern day BH and gravitation physics
is that of the Roger Penrose’s Cosmic Censorship Conjecture (CCC) (Penrose, 1969). The CCC
assumption that any physically realistic gravitational processes must not lead to the formation of a
singularity which is not covered by an horizon, thus hiding it from external observers in the universe.
This of course includes the complete gravitational collapse of a massive star which, if the CCC is true,
must terminate generically into a BH final state only. Such a singularity is then crucial and is at the
basis of much of the modern theory and astrophysical applications of BHs today. Despite the past
four decades of serious efforts, we do not have as yet available any proof or even any mathematically
precise formulation of the cosmic censorship hypothesis. The consideration of dynamical evolution of
collapse is a crucial element of the CCC. Many solutions of Einstein field equations are known which
present naked singularities (such as, for example, the super-spinning Kerr solutions), nevertheless
almost none of these solutions can be obtained as the dynamically evolved final state of some initially
regular matter configuration. For this reason, over the last decades a great deal of work has been
done to test the CCC in the few dynamically evolving spacetimes we know. These are typically the
scenarios that describe gravitational collapse in spherical symmetry, and some non-spherical collapse
models have also been considered, for examples of critical collapse with angular momentum. In recent
years, a wide variety of gravitational collapse models have been discovered where exact analytical
calculations (e.g Giambo, 2004, Goswami & Joshi, 2002, Joshi & Malafarina, 2011, 2013, Villas da
Rocha & Wang, 2000, and ref. therein) have meanwhile shown that mass concentrations collapsing
under their own weight will no longer form BHs as collapse endstate, rather naked singularities, except
for configurations of highest symmetry which are, however, of measure zero among all initial data. By
this, even the theoretical existence of BHs is no longer justified. The first examples were restricted
to some classes of inhomogeneous dust collapse, and they were extended to the case of collapse in
the presence of only tangential pressures, and perfect fluids. The existence of classes of pressure
perturbations is shown explicitly, which has the property such that an injection of a small positive (or
negative) pressure in the Oppenheimer, Snyder and Datt (OSD) model (Datt, 1938, Oppenheimer &
Snyder, 1939), or in a Tolman-Bondi-Lemaitre (TBL) (Bondi, 1947, Lemàıtre, 1933, Tolman, 1934)
inhomogeneous dust collapse to a BH (simplest generalization of the OS model), leads the collapse
to form a naked singularity, rather than a BH (Joshi & Malafarina, 2013). The classic OSD scenario
is the basic paradigm for BH physics today, and the TBL models describe the most general family
of dust, i.e. pressureless, collapse solutions. This result is therefore intriguing, because it shows
that arbitrarily close to the dust BH model, we have collapse evolution with non-zero pressures that
go to a naked singularity final state, thus proving a certain ”instability” of the OSD BH formation
picture against the introduction of small pressure perturbations. In such a case, the super-ultra-dense
regions, or the spacetime singularity, that forms at the end of collapse would be visible to faraway
observers in the universe, rather than being hidden in a BH. Thus, rigorous calculations have shown
that the expectations of the 1970s have been hasty, that CCC assumption has been premature, because
while the CCC states that the OSD collapse final fate is necessarily replicated for any realistic stellar
collapse in nature, the result here shows that an arbitrarily small pressure perturbation of the OSD
model can change the final outcome of collapse to a naked singularity and therefore the OSD BH may
be considered ‘unstable’ in this sense.

In this respect, the first goal of this communication is to review briefly the necessary ideas behind
the various specific constructions and suggestions on the conceptual problems of GR, the singularities
and the thermodynamics of BHs in semiclassical and quantum physics. The second goal is to concen-
trate on the critical discussion of the past and present states, evaluating those strategies, approaches
etc., that are explicitly and unambiguously given and applicable in any generic spacetime. This short
review encompasses the many discoveries which unlocked the mysteries or exposed some of the illu-
sions of the considered field. Without it we cannot show how the matters stand, we almost bound of
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necessity to enter upon it, if we would write of them at all.
To innovate the solution to aforementioned problems, the third goal is to advocate with alternative

proposal by utilizing the MTBH, which has explored a novel aspects expected from considerable
change of properties of space-time continuum at spontaneous breaking of gravitation gauge symmetry
far above nuclear density. It may shed further light upon the growth and merging phenomena of
astrophysical BHs.

Although some key theoretical ideas were introduced with a satisfactory substantiation, we have
also attempted to maintain a balance between being overly detailed and overly schematic. With this
perspective in sight, we will proceed according to the following structure. To start with, in Section 2,
we provide a brief discussion of the observable signature and computational efforts on understanding of
growth and merging properties of BHs. Section 3 deals with the analysis aimed at clarifying the current
situation of such properties within theoretical framework of PMBH. To fill the void which the standard
PMBH presents and to innovate the solution to alluded problems, in Section 4 we recount some of the
highlights behind of the MTBH, whereas the infra-structures will inevitably be accommodated inside
the EH. The concluding remarks are given in Section 5.

2. The observable signature and computational efforts on under-
standing of growth and merging properties of BHs

With typical bolometric luminosity∼ 1045−48erg s−1, the active galactic nuclei (AGNs) are amongst
the most luminous emitters in the universe, particularly at high energies (gamma-rays) and radio
wavelengths. From its historical development, up to current interests, the efforts in the AGN physics
have evoked the study of a major unsolved problem of how efficiently such huge energies observed can
be generated. This energy scale severely challenges conventional source models. The fact that accretion
processes really take place in AGNs is already established and proven by many observations. The huge
energy release from compact regions of AGN requires extremely high efficiency (typically ≥ 10 percent)
of conversion of rest mass to other forms of energy. This serves for the majority of theoreticians as
the main argument, without any physical justification, in favour of supermassive BHs (SMBHs), in
the centers of, almost all, galaxies as central engines of massive AGNs. Within this scenario, a BH
has been formed as an almost inevitable endpoint of the gravitational collapse of a large fraction
of total mass of supermassive configuration occurring after entire burning of the whole amount of
spared intrinsic energy. The BHs are fueled steadily from the thick accretion disks. Such evolutionary
processes of accretion onto massive BHs as the prime energy sources have immense emissive power. The
astrophysical BHs come in a wide range of masses, from ≥ 3M� for stellar mass BHs (Orosz, 2003)
to ∼ 1010M� for SMBHs (Lauer, 2007, Lynden-Bell, 2013). Demography of local galaxies suggests
that most galaxies harbour quiescent SMBHs in their nuclei at the present time and that the mass of
the hosted BH is correlated with properties of the host bulge. The visible universe should therefore
be contained at least 100 billion supermassive BHs. A complex study of evolution of AGNs requires
an answer to the key questions how the first black holes formed, how did massive BHs get to the
galaxy centers, and how did they grow in accreting mass, namely an understanding of the important
phenomenon of mass assembly history of accreting seeds of SMBHs. Given the current masses, most
BH growth happens in the AGN phase. A significant fraction of the total BH growth, 60% (Treister,
2010), happens in the most luminous AGN, quasars. In an AGN phase, which lasts ∼ 108 years, the
central SMBH can gain up to ∼ 107−8M�, so even the most massive galaxies will have only a few of
these events over their lifetime. The observations support the idea that BHs grow in tandem with
their hosts throughout cosmic history, starting from the earliest times. These ideas gather support
especially from a breakthrough made in recent observational, theoretical, and computational efforts on
understanding of coevolution of BHs and their host galaxies, particularly through self-regulated growth
and feedback from accretion-powered outflows (see e.g. Kelly (2010), Natarajan (2011), Shankar et al.
(2009), Treister & Urry (2012), Volonteri & Natarajan (2009), Volonteri et al. (2010)). Whereas the
multiwavelength methods are used to trace the growth of seed BHs, and the prospects for future
observations are reviewed. The observations provide strong support for the existence of a correlation
between SMBHs and their hosts out to the highest redshifts. Particularly, the observations of the
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quasar luminosity function show that the most supermassive BHs get most of their mass at high
redshift, while at low redshift only low mass BHs are still growing (Barger, 2005). This is observed
both in optical (Croom, 2009) and hard X-ray luminosity functions (Barger, 2005), which indicates
that this result is independent of obscuration. Natarajan (2011) has reported that the initial BH seeds
form at extremely high redshifts from the direct collapse of pre-galactic gas discs. Populating dark
matter halos with seeds formed in this fashion and using a Monte-Carlo merger tree approach, he
has predicted the BH mass function at high redshifts and at the present time. The most aspects of
the models that describe the growth and accretion history of supermassive BHs, and evolution of this
scenario have been presented in detail by Volonteri & Natarajan (2009), Volonteri et al. (2010). In
these models, at early times the properties of the assembling BH seeds are more tightly coupled to
properties of the dark matter halo as their growth is driven by the merger history of halos. While a
clear picture of the history of BH growth is emerging, significant uncertainties still remain (Treister &
Urry, 2012), and in spite of recent advances (Natarajan, 2011, Treister, 2010), the origin of the seed
BHs remains an unsolved problem at present.

While the exact mechanism for the formation of the first BHs is not currently known, there are
several prevailing theories (Volonteri, 2010). A large number of representative models towards this
are available in literature, (see e.g. Bromm & Loeb, 2003, Devecchi & Volonteri, 2009, Kelly, 2010,
Natarajan, 2011, Natarajan & Treister, 2009, Shankar et al., 2009, Vestergaard, 2004, Volonteri, 2010,
Volonteri & Natarajan, 2009, Volonteri et al., 2010, Willott, 2010), but all they are subject to many
uncertainties. Each proposal towards formation and growth of initial seed BHs has its own advantage
and limitations in proving the whole view of the issue. For example, most aspects of the models
that describe the growth and accretion history of SMBHs, the evolution and assembly history of this
scenario have been explored in detail in (Volonteri & Natarajan, 2009, Volonteri et al., 2010). In
these models, at early times the properties of the assembling SMBH seeds are more tightly coupled to
properties of the dark matter halo as their growth is driven by the merger history of halos. Specifically,
the Hubble Space Telescope measurements of stellar kinematics highlight an evidence for the ubiquity
of SMBHs.

However, the most important characteristics of the AGN powerhouse, the central masses and
structures, and the BH formation and growth processes are not understood well. This issue is many-
sided and fundamental, and can be settled fairly only by more investigations to be done for its better
understanding. The scientific situation is, in fact, more inconsistent than described so far. Within
respect to standard models, a hard look at the BH physics reveals following severe problems.

The observed time-scales for flux variations of some objects are inconsistent with contemporary BH
accretion models. That is, on the basis of the diagram of the minimum variability time-scale versus
the bolometric luminosity for 60 sources it has been shown that, in spite of auxiliary assumption of
asymmetric emission geometry, a few BL Lac objects - B2 1308 + 72, 3C 66A, OJ 287, AO 0235 +
16 and Quasars - 3C 345, 3C 446, 3C 454.3, LB 9743 remained in forbidden zone (particularly the
three of them) (Bassani et al., 2010), namely their observed sizes appeared to be less than the sizes
of corresponding spheres of the event horizon.

The growth behavior of BHs widely based on the premises of runaway core collapse scenario. The
latter has always been a matter of uncertainties because we do not have a thorough understanding of
details of accretion physics, say, of the physical properties of invoked relativistic plasma flows outside a
horizon, with compact coruscating bright spots due to beaming, or magnetohydrodynamic shocks and
reconnection in the inner jet. Distinguishing these possibilities requires spatially resolved images much
finer than the horizon size, which could be feasible in the near future. Then it is interesting to compare
the accretion method with other methods such as radio timing or even the current research of BH
imaging using Event Horizon Telescope. Although a thorough comparison is beyond the scope of the
present communication, it will be an interesting topic for discussion elsewhere. Timing observations
provide a useful means to study the properties of space–time around extreme gravity systems, such
as BHs. That is, if external tracers lead to an estimated horizon radius, Rg, under a very generic
assumption that the object is a BH, then it is possible that finer observations will reveal internal
substructures smaller than Rg or flaring events quicker than the time-scale Rg/c. Pulsar timing,
therefore, has been identified as a space–time probe because of the high precision achievable in the
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timing measurements. It is also because of the unique nature of pulsars – highly compact and thus
uneasily disrupted, narrow mass range, and for millisecond pulsars, high stability in the rotation
rate (a stable, reliable clock). Saxton (2016) proposed that pulsar timing observations will be able
to distinguish between systems with a centrally dense dark matter sphere and conventional galactic
nuclei that harbour a SMBH. The lack of a perfect horizon means that the effective strong-lensing
silhouette of the central structure may differ significantly from SMBH predictions. Besides, there
are some theoretical expectations for swarming of pulsars (and other compact stars) to concentrate
in galaxy nuclei (Freitag et al., 2006, Miralda-Escudé & Gould, 2000, Pfahl & Loeb, 2005). So far,
one magnetar is known near Sgr A*, and there is debate about how many pulsars might also be
discoverable (e.g. Macquart & Kanekar (2015)). In particular, our Galactic Center (Sgr A*) deviates
from containing a SMBH for at least 15 reasons (Kundt, 2012), the 15th being the happy survival, so
far, of cloudlet G2 during its ongoing approach of Sgr A*.

What kind of observational signature the BHs bear, if any, and whether such phenomena can
possibly be observed? Wouldn’t they hide forever, on grounds of their expected dimness, their not
being able to radiate? Such questions were first asked seriously between theorists and observers, with
a distinct emphasis on candidates of stellar mass. A first, promising suggestion was the X-ray emitting
stellar binary system Cyg X-1, the brightest stellar X-ray source in the Cygnus region, whose optically
invisible component had to be more massive than a neutron star. And how to blow the jets seen to
spring forth from the dark component of the Cyg X-1-system? Binary neutron stars are observed to
blow jets, whereas BHs cannot do that because they lack an inclined, co-rotating magnetosphere, for
generating the jets’ pair plasma (Kundt, 2011). In Fischer and Kundt could not find a single BH in
the whole class of (stellar-mass) BH-candidates (Kundt & Fischer, 1989).

Most impressive evidence against a BH at our Galactic center presented by Su et al. (2010, 2011).
The FERMI Bubbles (or plumes), at photon energies . 102GeV, probably emitted by buoyantly rising
relativistic pair plasma from the near vicinity of Sgr A*, throughout the Milky-Way halo, to heights
well above 20 kpc. These same halo structures had already been detected and mapped decades earlier
by Sofue (2000), from radio and X-ray data.

Galactic centers are often observed to be quite luminous, stormy, jet-blowing, and pluming (at
. 102 GeV), from their center all the way out into their halo. How is this central activity powered?
Kundt (1996) assumed that it caused by nuclear burning of the central disk, combined with magnetic
reconnections in its (very) fast and deferentially rotating corona. A burning disk avails of abundant
rotational, infall, and nuclear energy, for both non-thermal and thermal ejections: of radiation, jets,
winds, and plumes. A SMBH would suppress all this.

3. Assessment of Growth and Merging Properties of Black Holes
With in Phenomenological Models

With aforementioned observational advances, a tacit assumption of theoretical interpretation of
astrophysical scenarios is a general belief reinforced by statements in textbooks, that the PBHM is
capable to describe the growth and merging behavior of accreting BHs. Altogether, the question then
arises: What procedure is in fact employed by the astronomers in the course of reaching the conclusion
while estimating a growth of energy-mass of astrophysical BH? The following stepwise properties are
commonly attributed to above procedure:

• From observations of surroundings of the BH, at first, the astronomers by simulation estimated
a total amount of the outside mass that potentially can be swallowed driven by an accretion
onto BH.

• Secondly, this quantity of mass, without any substantiation, is simply accepted as a real physical
measure of growth of energy-mass of the astrophysical BH.

Although arguably all these reasoning seemed appealing and attractive, nevertheless there is no con-
vincing reason to rely on a validity of such procedure and, therefore, we do not share this view. It is
rather surprising that the PBHM is routinely used to explore the growth and merging phenomena of
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astrophysical BHs. Such beliefs are suspect and should be critically re-examined. In the framework of
PMBHs there is no provision for growth and merging behavior of BHs because of the nasty inherent
appearance of BH singularities, and that if the infinite collapse to the singularity inside the BH is
accepted as a legitimate feature of Nature. Certainly, during a super-increasing of total mass of con-
figuration one undoubtedly will arrive (irrelevant to gravitational theory in use) to a critical turning
point of relativistic collapse, beyond which the gravitational forces of compression prevail over all the
other forces. Than it is enough to add from the outside a small amount of energy near-by the critical
point in order to begin a process of irresistible infinite catastrophic compression of configuration under
the pressure of grand forces. The improbability of such an inference has been greatly enhanced by the
breaking down of the theory inside the event horizon which is causally disconnected from the exterior
world. Either the Kruskal continuation of the Schwarzschild metric, or the Kerr metric, shows that
the static observers fail to exist inside the horizon. The PMBH then presents a major challenge that
renders time reversibility impossible. Objects thrown into the BH can never be retrieved, because it
will get into infinite collapse to the central singularity inside the BH. Any timelike worldline must
strike the central singularity which wholly absorbs the infalling matter. Therefore, the ultimate fate
of collapsing matter once it has crossed the BH surface is unknown. This certainly inhibits one to
answer quantitatively such purely academic question, say, what is a further evolution of the decrease
of the energy and entropy carried by the accreting mass that was swallowed by the BH; or what is
further evolution of the coalescence and merger of binary BHs at grazing collision of members, when
triggered by the emission of gravitational waves their orbits will tighten by spiraling inwards. At
this, immediately the question arises whether or not yet observable four laws of the mechanics for a
stationary, asymptotically flat, black BH in four will be valid as well for not stationary processes of
BH formation and growth.

3.1. Some Conceptual Problems Plagued GR

A general relativity has stood the test of time and can claim remarkable success, although there
are serious problems of the energy-momentum conservation laws of gravitational interacting fields, the
localization of energy of gravitation waves, the role of singularities of BHs, and also severe problems
involved in quantum gravity. This state of affairs has not much changed up to present and proposed
abundant models are not conductive to provide non-artificial and unique recipe for resolving these
controversial problems. Eventually, experimental gravitation is a major component of the field, char-
acterized by continuing efforts to test the GR’s predictions. GR certainly can claim remarkable success
at the post-Newtonian level where the experiments have reached high precision, including the light
deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar
motion, and frame-dragging (Will, 2014). Thereby gravitational wave damping has been detected in
an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor bi-
nary pulsar system (Hulse & Taylor, 1975), also see subsequent observations of its energy loss (Taylor
& Weisberg, 1982). A growing family of binary pulsar systems is currently yielding new tests focusing
on strong gravity and gravitational waves. These experiments will search for new physics beyond
GR at many different scales: the large distance scales of the astrophysical, galactic, and cosmological
realms; scales of very short distances or high energy; and scales related to strong or dynamical gravity.

The geometrical interpretation of gravitation, having arisen from the dual character of the metrical
tensor in its metrical and gravitational aspects, is a noteworthy result of GR. Although this has the
advantage in solving the problems of cosmology, nevertheless such a distinction of the gravitational
field among the fields yields the difficulties in the unified theories of all interactions of elementary
particles, and in quantization of gravitation. Moreover, there are problems of energy-momentum
conservation laws of gravitational interacting fields, the localization of energy of gravitation waves,
the singularities or BHs, and also severe problems involved in quantum gravity. The well defined local
energy-momentum density for the gravitational field may set the conceptual basis for the understanding
of energy loss by gravitational radiation.

The difficulty for this is rooted in the weak principle of equivalence (WPE), i.e. the universality of
free fall. The gravitational action only depends on the gravitational field, since any further background
structure would be precluded by diffeomorphism invariance. Since the WPE can be used to get rid
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of the gravitational field on a given point of spacetime, a crucial conceptual and practical caveats
are involved in the association of energy and angular momentum with the gravitational field. That
is, Riemannian geometry in general does not admit a group of isometries, therefore, it is impossible
to define energy-momentum as Noether local currents related to exact symmetries. This has chal-
lenged validity of the concepts of energy and angular momentum, when one attempts to perform their
straightforward extension to the gravitational field.

Such an approach rapidly meets important conceptual difficulties. Namely, the formulation of
meaningful global or quasi-local mass and angular momentum notions in GR and in the particular
context of BH spacetimes always needs the introduction of some additional structure in the form of
quasi-local quantities and quasi-symmetries that restricts the study to an appropriate subset of the
solution space of GR. Although a remarkable surge of activity of investigations in this field has arisen
recently, but the theory of quasi-local observables in general relativity is far from being complete. It is
surprising that one has not only no ultimate, generally accepted expression for the energy-momentum
and especially for the angular momentum, but there is no consensus in the relativity community even
on general questions, for example, what should one mean by energy-momentum?

In the literature there are various, more or less ad hoc, lists of criteria of reasonableness of the quasi-
local quantities (e.g. Christodoulou & Yau (Christodoulou & Yau)). However, finding an appropriate
quasi-local notion of energy-momentum has proven to be surprisingly difficult (for the comprehensive
review see Szabados (2004)). The situation is much less clear in the case of extended but finite
spacetime domains, otherwise there are still controversies and open issues. For example, the Bartnik
mass (Bartnik, Bartnik, 1989), which is a natural quasi-localization of the ADM mass, overestimates
the physical quasi-local mass; or, the Hawking energy (Hawking, 1968) and its slightly modified version,
the Geroch energy (Geroch, 1973), which are a well defined 2-surface observable, have not been linked
to any systematic (Lagrangian or Hamiltonian) scenario. Similar situation holds for, e.g., the Penrose
mass (Penrose, 1982, Penrose & Rindler, 1986), Dougan-Mason energy-momenta (Dougan & Mason,
1991), Brown-York-type expressions (Brown & York, 1993), etc, (for details see (Szabados, 2005)).

The emphasis in modern gravitational research is on the fundamental questions at the intersection
between particle physics and cosmology, including quantum gravity and the very early universe. The
GR as a geometrized theory of gravitation clashes from the very outset with basic principles of field
theory. In accord to above said, this rather stems from the fact that Poincaré transformations no longer
act as isometries, which posed severe problems in a Riemannian space interacting quantum field theory.
The major unsolved problem is the non-uniqueness of the physical vacuum and the associated Fock
space. A peculiar shortcoming is in the following two key questions to be addressed yet: (i) the absence
of the definitive concept of space-like separated points, particularly, in the canonical approach, and the
light-cone structure at each spacetime point; (ii) the separation of positive- and negative-frequencies
for completeness of the Hilbert-space description. Due to it, a definition of positive frequency modes
cannot, in general, be unambiguously fixed in the past and future, which leads to |in > 6= |out >,
because the state |in > is unstable against decay into many particle |out > states due to interaction
processes allowed by lack of Poincaré invariance. A non-trivial Bogolubov transformation between
past and future positive frequency modes implies that particles are created from the vacuum and this
is one of the reasons for |in >6= |out >. This state of affairs has not much changed up to present and
proposed abundant models are not conductive to provide non-artificial and unique recipe for resolving
such controversies.

3.2. Curvature Singularities

In the framework of GR, the PBHM implies the most general Kerr-Newman BH model, with
the only independent observable integral parameters of total mass (M), angular momentum (J) and
charge (Q). Note that, even in the vacuum, asymptotically flat, four dimensional case relatively little
is known about stability of the solutions to Einstein’s equations beyond the linear level. In particular,
the Kerr solution has not been proved to be stable, although both linearized analytic calculations
and numerical calculations indicate that it is (e.g. Krivan et al. (1997)). Even though being among
the most significant advances in astrophysics, it is rather surprising that PBHM is routinely used to
explore the BH growth and merging phenomena as though it cannot be accepted as convincing model
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for addressing this problem. Certainly, in this framework the very source of gravitational field of the
BH is a kind of meaningless curvature singularity at the central point of the stationary nonrotating
(J = 0, Q = 0) Schwarzschild BH, or a ring singularity at the center of the rotating axisymmetric Kerr
BH, which are hidden behind the event horizon. The theory breaks down inside the event horizon
which is causally disconnected from the exterior world. The Kruskal manifold is the maximal analytic
extension of the Schwarzschild and Kerr solutions inside event horizon, so no more regions can be
found by analytic continuation. But, the Kruskal continuation shows that the static observers fail to
exist inside the horizon. This interior solution is not physically meaningful and essentially irrelevant.

Black holes then present a major challenge that they render time reversibility impossible. Objects
thrown into a BH can never be retrieved, because any timelike worldline must strike the central
singularity which wholly absorbs the infalling matter. Any object that collapses to form a BH will go
on to infinite collapse to a singularity inside the BH. This feature is interpreted either as BHs connect
our world to other universe via wormholes (Coleman, 1988, Hawking, 1988), or as an information
thrown into a BH can not be retrieved anymore. There is also an opposite view point that any object
thrown into a BH actually does leave some signals behind in own world (Dray & ’t Hooft, 1985a,b).
Whatever it will be, in both cases the PBHM ultimately precludes any accumulation of matter inside
event horizon and, thus, neither the growth of BHs nor the increase of their mass-energy density could
occur at accretion of outside matter, or by means of merger processes.

Admitting an infinite collapse to the singularity inside the BH as a physical law of Nature, it
is impossible to answer, for example, what is further evolution of the coalescence and merger of
binary BHs at grazing collision of members when, triggered by the emission of gravitational waves,
their orbits will tighten by spiraling inwards? The nasty inherent appearance of BH singularities, in
fact, inhibit one to answer such purely academic questions. It is why an excising the BH interior,
for example, is currently considered as an approximate solution to avoid singularities in dynamical
simulations (e.g. Baumgarte & Shapiro (2003)).

3.3. Black Hole Thermodynamics in Semiclassical Physics

A current theoretical understanding of growth and merging behavior of BHs is based on the
Hawking’s theorem of surface area of a BH (Carter, 1979, Hawking, 1968). Namely, in any interaction
between matter or radiation with the BH, the time dependent horizon area is never allowed to decrease
with time. This is the meaning of the irreducible mass of the horizon, i.e. in a possible collision of
several BHs, the surface area of the resulting merged black hole always exceeds the sum of the separate
progenitor BHs. Say, if a BH was being off the ordinary mass shell and carried no entropy, it would
be possible to violate the law of energy conservation and 2nd law of thermodynamics, because the
energy and entropy in the exterior spacetime could be decreased by throwing matter into a BH. In the
framework of incomplete theory, therefore, the only way to maintain these laws there is nothing left
but to admit stepwise, without any substantiation, that (i) the BH resides on the ordinary mass shell
(EBH = MBH c

2) and (ii) it has entropy (SBH). Then the increase of these quantities may compensate
the decrease of the energy and entropy carried by the mass that was swallowed. This is the meaning
of the first and 2nd laws of BH dynamics (Bardeen et al., 1973). The law of increase of area looks like
the 2nd law of thermodynamics for the increase of entropy, if one assigns an entropy to BH that is
proportional to its surface, and that the surface gravity stands for a temperature (Bekenstein, 1973).
At first sight, this choice seems quite natural, but at closer inspection one finds that these intriguing
ideas have encountered to severe objection: the entropy of a thermodynamic system is a measure of the
large number of the real physical microstates that an observer would not be aware of when measuring
macroscopic parameters, and so-called no hair theorems allow BH, in best case, to have only a single
microstate.

Classically, BHs are perfect absorbers but do not emit anything; their physical temperature is
absolute zero. However, the spacetime associated to gravitational collapse to a BH cannot be ev-
erywhere stationary. Therefore, in semiclassical geometric optics approximation, a particle creation
determined by details of the collapse is allowed in non-stationary curved spacetime. This is a transient
phenomenon because exterior spacetime is stationary at late times of existence of horizon independent
of the details of the collapse. The infinite time dilation at the horizon of Schwarzschild BH suggests
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a possible flux of such particles, which is the meaning of the Hawking radiation - the radiation seen
by an observer in the space-time background of a Schwarzschild BH when gravity will pull one of the
members of pair into the BH permanently, while the other assumed to be escaped from the BH. Due
to this radiation, a BH that forms from gravitational collapse will eventually evaporate, after which
the spacetime has no event horizon. The equation for Hawking’s black body radiation temperature,
TH = c3~(8kBGNM)−1, clearly shows that the more mass is radiated away from the BH, the hotter
this becomes. What then is the endpoint of BH evaporation? Moreover, the thermal properties of
thermodynamic systems reflect the statistical mechanics of underlying microstates. Entropy is nor-
mally a measure of the degeneracy of microstates, Σ, in some underlying microscopic description of a
physical system, determined by Boltzmann’s formula S = kBlogΣ. Since the Bekenstein-Hawking en-
tropy of generalized second law (GSL) of BH thermodynamics, SHk

−1
B = 4GNM

2(c~)−1 = AH(2lPl)
−2

of a BH, where AH is the area of the horizon and lPl is the Planck length lPl =
√
GN~/c3 ≈ 1033

cm, is naturally a huge number, how can one exhibit such a wealth of microstates? Within string
theory, there is a class of BHs where these problems can be conveniently addressed, the so-called
extremal BHs, for which the mass is tuned, so that the tendency to gravitational collapse is precisely
balanced by the electrostatic repulsion. Consequently, the temperature vanishes and the BH behaves
somehow in this limiting case as if it were an elementary particle. These results, however, rely heavily
on supersymmetry and serious difficulties are met in attempts to extend them to non-supersymmetric
BHs (see below).

Continuation of the Schwarzschild metric to the Euclidean Schwarzschild metric implies that the
non-singularity of the Euclidean metric is required for equilibrium. The quantum field theory (QFT)
can be in equilibrium with a BH only at the Hawking temperature, which is inversely proportional
to the mass of BH. Thereby the thermal equilibrium of a BH with an infinite reservoir of radiation
at Hawking temperature is unstable since if the BH absorbs radiation its mass increases and its
temperature decreases.

Similarly, the two features violet Hawking’s area theorem: (i) in pair creation effectively a spacelike
energy flux is involved - in contrast to the one of the essential postulates of the area theorem which
requires that the energy-momentum tensor Tµν should satisfy the dominant energy condition. This
held if for all future-directed timelike vector fields v, the vector field j(v) ≡ −vµT ν

µ ∂ν is future-directed
non-spacelike, or zero, i.e. no spacelike energy fluxes are allowed; (ii) the mass of BH decreases during
evaporation by energy conservation, as well as inevitably do the surface area and entropy.

Hawking radiation allows an interpretation of the laws of BH mechanics as physically corresponding
to the ordinary laws of thermodynamics. Having associated the entropy SBH := [kc3/(4G~)]×Area(S)
to the (spacelike cross Section 5 of the) event horizon, the area theorem was replaced by a generalized
2nd law (GSL) of thermodynamics, which includes the sum of the entropies of all BHs plus the entropy
of matter in exterior spacetime (Bekenstein, 1974). The GSL provides means for the quantity SBH
to be the physical entropy of a BH. Notwithstanding it is possible to construct thought experiments
(e.g. the so-called Geroch process) in which the GSL is violated, unless a universal upper bound
Sm/E ≤ (2πk/~c)R for the entropy-to-energy ratio for bounded systems exists, where E and Sm are,
respectively, the total energy and entropy of the system, and R is the radius of the sphere that encloses
the system (Bekenstein, 1981, 1982).

A semi-classical method of modeling Hawking radiation as a tunneling of particles through a grav-
itational barrier has been developed in the framework of QFT on a curved gravitational background
(e.g. Birrell & Davies (1982), Kerner & Mann (2008) and references therein). Certain gravitational
backgrounds gave rise to thermal radiation from the vacuum. This provides an alternate conceptual
means for understanding the physics of cosmological pair production at a wide variety of cosmological
event horizons in exotic spacetimes. However, all these processes for certain do not give physical
insight regarding the nature of the microstates of a BH and nor does it offer a substantiated reason for
the BH entropy SBH . Moreover, in semi-classical analysis of the Hawking evaporation process, if the
correlations between the inside and outside of the BH are not restored during the evaporation process,
then by the time that the BH has evaporated completely, an initial pure state will have evolved to
a mixed state, i.e., information will have been lost in the process of BH formation and evaporation -
the black hole information paradox (e.g. Will (2014)). If information is lost into the BH, which is
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ascribable to the propagation of the quantum correlations into the singularity within the BH, this put
QFT in curved spacetime in conflict with a basic principle of quantum mechanics (Townsend, 1997),
because of incompatibility with the unitary time evolution of a state vector in a Hilbert space. This
violates the causality and energy-momentum conservation laws.

Some authors claim that the resolution requires an understanding of the Planck scale physics.
Putting together the basic laws of physics, i.e. Heisenberg’s uncertainty principle 4p4x ∼ ~, the
existence of gravitating mass E = mc2 and Schwarzschild radius Rg = 2Gm/c2 in Einstein’s theory
of gravity, these unambiguously assert the Planck’s length LP :=

√
~G/c3 = 1.6 · 10−33 cm to be a

lower limit on the possible accuracy of position measurements (e.g. Fredenhagen (1995)). The universe
at the Planck scale is strong gravity where the Riemannian curvature of spacetime is comparable to
the inverse square of a favorite Planck length scale. Another possible scale for strong gravity is the
TeV scale associated with many models for unification of the forces, or models with extra spacetime
dimensions.

3.4. Black Hole Thermodynamics in Quantum Physics

Stemming primarily from classical and semiclassical analyses, the discovery of the thermodynamic
behavior of BHs has given rise to quantum physics occurring in strong gravitational fields. At the
purely classical level, BHs with in GR, of course, has nothing to do with the Planck scale quantum
physics, because just outside the event horizon of an astrophysical black hole is weak gravity. Moreover,
if pure states evolve to mixed states in a fully quantum treatment of the gravitational field, then at
least the aspect of the classical singularity as a place where information can get lost must continue to
remain present in quantum gravity. Nevertheless, the efforts to understand the mysterious statistical
mechanical properties of BHs has led to many speculations about their quantum gravity origin. This
in part is also due to the fact that the QFT in curved spacetime predicts an infinitely increase of a
local temperature on the horizon of a BH. This should not be believed when kT reaches the Planck
energy (∼ ~c/G)1/2c2 because quantum gravity effects cannot then be ignored and this temperature is
then of the order maximum temperature in string theory. The latter appeals to GR as the low energy
effective theory. Certainly, the quantum gravity is not needed to derive the BH entropy, since it can
be derived even from the general principles of a conformal field theory (CFT) on the horizon of the
BHs Carlip (e.g. 2002), Park (e.g. 2002).

However, BHs are localized objects, thus one must be able to describe their properties and dynamics
even at the quasi-local level. The Schwarzschild BH, fixing its temperature at infinity, has negative
heat capacity. Similarly, in an asymptotically anti-de-Sitter spacetime fixing the BH temperature
via the normalization of the timelike Killing vector at infinity is not justified because there is no
such physically distinguished Killing field (Brown et al., 1994). These difficulties lead to the need
of a quasi-local formulation of BH thermodynamics. While the laws of BH thermodynamics refer to
the event horizon, which is a global concept in the spacetime, the subject of the recent quasi-local
formulations is to describe the properties and the evolution of the so-called trapping horizon, which is
a quasi-locally defined notion (e.g. Hayward (1998)).

The area scaling character of the entropy perhaps implies a holographic principle (Susskind, 1995,
’t Hooft, 1993), formulated in the (spacelike) holographic entropy bound. This suggests that, at the
fundamental (quantum) level, one should be able to characterize the state of any physical system
located in a compact spatial domain by degrees of freedom on the surface of the domain too. This
relation holds whenever holography dual of the QFT exists. In accord, the number of physical degrees
of freedom in the domain is bounded from above by the area of the boundary of the domain instead of
its volume, and the number of physical degrees of freedom on the 2D surface is not greater one-fourth
of the area of the surface measured in Planck area units L2

P . If Σ be a compact spacelike hypersurface
with boundary S, then the entropy S(Σ) of the system in Σ should satisfy S(Σ) ≤ kArea(S)/(4L2

P ).
Formally, this bound can be obtained from the Bekenstein bound with the assumption that 2E ≤
Rc4/G, i.e. that R is not less than the Schwarzschild radius of E. Also, as with the Bekenstein
bounds, this inequality can be violated in specific situations (Bousso, 2002, Wald, 2004). The origin
of the holographic principle must lie in the number of fundamental degrees of freedom involved in
a unified description of spacetime and matter (Bousso, 1999, 2002). This covariant entropy bound
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is much more quasi-local than the previous formulations, and is based on spacelike 2D surfaces and
the null hypersurfaces determined by the 2D surfaces in the spacetime. Its classical version has been
proved by Flanagan et al. (2000).

Another quasi-local formulation of the holographic principle is suggested by Szabados (2005).
Though not yet fully understood in general, the holographic principle is the key issue to the corre-
spondence of anti-de Sitter spaces/conformal field theories (AdS/CFT) (Aharony, 2000, Maldacena,
1998). The AdS/CFT argues that the quantum gravity on (d + 2)-dimensional anti-de Sitter space-
time (AdSd+2) is equivalent to a certain conformal field theory in d + 1 dimensions (CFTd+1). By
appealing to a duality between gravitational systems and conformal field theories, consequently the
string theory seems to be able to count the described above microstates explicitly (e.g. Gubser et al.
(1996)). In fact, the microstates are those due to entanglement of the vacuum of the BH (Israel,
1976). Indeed, one can always define the entanglement entropy in any quantum mechanical system.
This is the entropy for an observer in the d-dimensional space-like submanifold A, in a given (d + 1)-
dimensional QFT, who is not accessible to B, which is a complement of A, as the information is lost
by the smearing out in region B.

This origin of entropy looks analogous to the BH entropy. That is, the microstates of the BH are
due to the entangled nature of the BH vacuum, and are a result of an observer’s inability to access
the degrees of freedom that are hidden beyond the horizon. The subsystem B is analogous to the
inside of a BH horizon for an observer sitting in A, i.e., outside of the horizon. Indeed, this was
the historical motivation of considering the entanglement entropy in QFT (Aharony, 2000, ’t Hooft,
1985). Brustein et al. (2006) argue that the entanglement mechanism is not specific to BHs but to
any spacetime with a bifurcating Killing horizon.

For a comprehensive review of recent progresses on the holographic understandings of the entangle-
ment entropy in the AdS/CFT correspondence, BH entropy and covariant formulation of holography,
see (Nishioka et al., 2009). As notably pointed out by these authors, even after quite intense efforts in
AdS/CFT for recent years, fundamental mechanism of the AdS/CFT correspondence still remains a
mystery. In particular, one cannot answer which region of AdS is responsible to particular information
in the dual CFT. There is also an essential discrepancy between the entanglement entropy and the BH
entropy, that the entanglement entropy is proportional to the number of matter fields, while the BH
entropy is not. The former includes ultraviolet divergences as opposed to the latter. Thus, due to the
existing discrepancies and the lack of clear predictions verified by observations, there is no compelling
reason to rely on string theory as it stands.

3.5. Where Our Analysis is Leading to

Many important issues still remain unresolved. Primary among these are the BH information
paradox and issues related to the degrees of freedom responsible for the BH thermodynamics.

Yet about 47 years after its conjecturing, solid physical information regarding the physical origin
of BH entropy is still lacking, which arises several puzzling questions. For example, since there is
no unique rigid notion of time translations in a classical GR-dynamics, the BH entropy at least
appears to be incompatible with any notion of ergodicity. Up to date no one was able to make a
convincing calculation of BH entropy based on statistical mechanics, which associates entropy with a
large number of microstates being compatible with a concept of ergodicity. In this regard, proving the
GSL is generally valid would require using quantum-statistical mechanics, but this discipline does not
exist. This then ruptures the familiar BH entropy illusion which has insufficient dimensions.

Although no results on BH thermodynamics have been subject to any experimental or observational
tests, the attempts of theoretical interpretation of the BH thermodynamics provide a basis for further
research and speculation on the nature of its quantum gravitational origin. In the entanglement
entropy and thermal atmosphere approaches, the relevant degrees of freedom are those associated
with the ordinary degrees of freedom of quantum fields outside of the BH.

The string theory implies weak coupling states, so it is not clear what the degrees of freedom of
these weak coupling states would correspond to in a low energy limit where these states may admit a
BH interpretation. There is no indication in the calculations that these degrees of freedom responsible
for BH entropy should be viewed as being localized near the BH horizon. As pointed out by Will
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(2014), it is far from clear as to whether one should think of these degrees of freedom as residing
outside of the BH (e.g., in the thermal atmosphere), on the horizon (e.g., in Chern-Simons states),
or inside the BH (e.g., in degrees of freedom associated with what classically corresponds to the
singularity).

At first sight described above choice for the definition of the laws of gravitation, and thereof for
that of thermodynamics and entropy of BHs, seems quite natural, however, we do not share this view.
It seems that the holographic principle, even at quantum level, indeed could not ultimately restore
the complete information on the real physical state, but rather the elusive one, of any system located
in a compact spatial domain by the degrees of freedom on the surface of the domain. Moreover, since
there is no unique rigid notion of time translations in a classical general relativistic dynamics, the BH
entropy at least appears to be incompatible with any notion of ergodicity. This then ruptures the BH
entropy illusion which has insufficient dimensions. Only the complete internal solution was able to
give a reliable information on the thermodynamic behavior and entropy of black hole, if and only if
it is known deep within the BH. Thus, it is premature to draw conclusions and only time will tell
whether any of described above intriguing arguments is correct and actually realized in Nature.

Our misgiving about the views above also comes in part from a leading principle, that an appearance
of singularities indicates only to the actual limits of validity of the theory, beyond which the laws
of physics are violated. This we might expect to be reinforced by a robust intuition founded on
past experience of simple physics. From this perspective, the aforementioned predictions on the BH
physics are then suspected to be only artifacts of incomplete theory. Consequently, a new conceptual
framework will be required in order to have a proper understanding of the BH physics.

Thus we conclude that PBHM, at least at its current state of development, is quite incapable of
making predictions on growth and merging properties of the astrophysical BHs. One should therefore
deliberately forebear from presumption of such behaviors, which seem nowhere near true if one applies
the phenomenological model. That in this framework there is no provision for growth behavior of BHs,
is because one assigns only an insufficient attributes to this. The PBHM is a rather restricted model.

Yet, it is still thought provoking how one can be sure that some hitherto unknown source of
internal pressure does not become important above such extreme densities and halt the collapse? The
failure of the PMBH does not necessarily imply a failure of the BH concept in general. In spite of a
thorough search no reason could be found to introduce the required huge energy scale in BH physics
but considerable change of properties of space-time continuum in density range far above nuclear
density. We believe that a complete, self-consistent gravitation theory will smear out singularities at
huge energies, and give the solution known deep within the BH. Only such a true solution was able to
give a reliable information on the thermodynamic behavior and entropy of BH. This may shed further
light upon the growth and merging phenomena of astrophysical BHs.

4. The MTBH

To fill the void which the standard PBHM presents, one plausible idea to innovate the solution to
mentioned above key problems would appear to be MTBH (Ter-Kazarian, 2010, 2014, 2015, 2016a,b,
Ter-Kazarian & Shidani, 2017, 2019) and references therein. Being suitable for applications in ultra-
high energy astrophysics, the MTBH is a bold assumption in its own right. Needless to say that we
will refrain here from providing lengthy details of MTBH. Wherever new results follow from earlier
work, we restricted ourself only by a simple reference to earlier papers.

The MTBH is an extension of PBHM and rather completes it by exploring the most important
processes of spontaneous breaking of gravitation gauge symmetry at huge energies, and thereof for
that of rearrangement of vacuum state. Whereas a significant change of properties of space-time con-
tinuum, so-called inner distortion (ID), arises simultaneously with the strong gravity. This manifests
its virtues below the ID-threshold length (0.4fm), yielding the transformations of Poincaré generators
of translations, see e.g. (Ter-Kazarian & Shidani, 2019). Accordingly, a matter found in ID-region of
spacetime continuum is undergone phase transition of II-type, i.e., each particle goes off from the mass
shell. Hence, a shift of mass and energy-momentum spectra occurs upwards along the energy scale.
The thermodynamics of a resulting matter, so-called proto-matter, is drastically differed from the

G.Ter-Kazarian
doi: https://doi.org/10.52526/25792776-2021.68.1-56

67

https://doi.org/10.52526/25792776-2021.68.1-56


Growth and merging phenomena of black holes: observational, computational and theoretical efforts

thermodynamics of strongly compressed ordinary matter. The energy density and internal pressure
have sharply increased in the central region of configuration, proportional to gravitational forces of
compression up to ∼ 1025 order of magnitudes with respect to corresponding central values of neutron
star. In the resulting so-called proto-matter, the pressure becomes dominant over gravitational force
at very short distances when matter falls into central singularity as the collapse proceeds and, thus,
it halts the infinite collapse. This supplies a powerful pathway to form a the equilibrium superdense
proto-matter core (SPC), subject to certain rules. The stable equilibrium holds for outward layers
too. This counteracts the collapse and equilibrium condition remains valid even for the masses up
to ∼ 1010M�. As a corollary, this theory has smeared out the central singularities of BH at very
strong gravitational fields. One of the most remarkable drawback of MTBH is the fact that instead of
infinite collapse and central singularity, an inevitable end product of the evolution of massive object
is the stable SPC, where static observers exist. It will ultimately circumvent a principle problem
of an observer’s inability to access the degrees of freedom that are hidden beyond the horizon, and
a necessity to assign the elusive entropy to BH. This in somehow or other implies that a physical
entropy is assigned to SPC as a measure of the large number of thermodynamical real microstates of
proto-matter, which is compatible with a concept of ergodicity. This may shed further light upon the
growth and merging phenomena of astrophysical BHs, that are in evidence throughout the universe.

The ID mechanism accommodates the highest energy scale in central SPC. Encapsulated in an
entire set of equations of equilibrium configuration, the SPC is a robust structure that has stood the
tests of the most rigorous theoretical scrutinies of a stability (Ter-Kazarian et al., 2007). It also helps
to reassure us that the stable equilibrium holds in outward layers too. In this way, an accumulation of
matter is allowed about SPC. Moreover, above nuclear density, the SPC always resides inside the event
horizon, therefore it could be observed only in presence of accreting matter. The external physics of
accretion onto the SPC in first half of its lifetime is identical to the processes in phenomenological
BH models. In other words, there is no observable difference between the gravitational field of SPC
and Schwarzschild BH, so that the observable signature of BHs available in literature is of direct
relevance for the SPC-configurations too. But MTBH manifests its virtue when one looks for the
internal physics, accounting for growth and merging behavior of BHs.

To clarify the distinction between the PBHM and the MTBH, it should help a few noteworthy
points of Figure 1 which schematically plotted non-rotating BH in phenomenological and microscopic
frameworks.

Figure 1. Left panel: Phenomenological model of non-spinning BH. The meaningless singularity occurs
at the center inside the BH. Right panel: Microscopic model of non-spinning BH, with the central stable
SPC. An infalling matter with the time forms PD around the SPC. In final stage of growth, a PD
has reached out the edge of the event horizon. Whereas a metric singularity inevitably disappears
and UHE neutrinos may escape from event horizon to outside world through vista - a thin belt area
S = 2πRgd - with opening angle θν . Accepted notations: EH=Event Horizon, AD=Accretion Disk,
SPC=Superdense Proto-matter Core, PD=Proto-matter Disk.

A crucial point of the MTBH is that a central singularity cannot occur, which is now replaced by
SPC, where the static observers are existed. The seed BH might grow up driven by the accretion of
outside matter when it was getting most of its mass.

Some evidence for a rotating BH in phenomenological and microscopic frameworks is highlighted
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Figure 2. Left panel: Kerr model of spinning BH. The meaningless ring singularity occurs at the
center inside the BH. Right panel: Microscopic model of rotating SPC in earlier part of first half of its
lifetime T < TBH . The picture is not to scale. Abbreviated notations: OEH :=Oblate Event Horizon,
SPC :=Superdense Proto-matter Core, RS :=Ring Singularity, PCH := Prolate Cauchy Horizon.

in Figure 2. In the first half of its lifetime, the external physics outside of outer oblate event horizon
of accretion onto the rotating SPC is very closely analogous to the processes in Kerr’s model. But
a difference between Kerr and microscopic models is the interior solutions. The interior solution of
MTBH is physically meaningful, because it has smeared out a central ring singularity of the Kerr
BH replacing it by the equilibrium SPC inside event horizon. The Figure 3 emphasizes an apparent
distinction between Kerr model and rotating SPC in second half of its lifetime. That is, a thin co-
spinning proto-matter disk with time has reached out the edge of the outer oblate event horizon,
where a metric singularity inevitably disappears. Then, similar to previous non-rotating case, the
ZeV-neutrinos produced in deep layers of SPC and proto-matter disk may escape from event horizon
to outside world. These neutrinos are collimated in very small opening angle.

Without loss of generality, the typical features of SPC-configurations are summarised in the Fig-
ure 4 and Figure 5, to guide the eye. The radial profiles of the pressure, the density, the dimensionless
gravitational (x0)- and ID (x)- potentials are plotted in Figure 2, for example, for the given SPC
of the mass ∼ 6.31 × 103M� (that of the Sun, M�), and the state equation is presented in Fig-
ure 3. The special units in use denote POV = 6.469× 1036 erg cm−3, ρOV = 7.195× 1015 g cm−3 and
rOV = 13.68 km.

The available solar system observational verifications, at weak gravitational fields, offer many
opportunities to improve tests of relativistic gravity. As it is seen from Figure 2 and Figure 3, the
agreement is satisfactory between the proposed theory of gravity, underlying MTBH, and mentioned
observational verifications. Thereby the free adjustable parameter ε in metric component, in case of

static spherically symmetrical system, g00 ' 1 − Rg

r̃ + ε
R2

g

r̃2
, can be written in terms of Eddington-

Robertson expansion parameters β and γ, as ε = 2(β − γ). The best fit for satisfactory agreement
between the proposed theory of gravity and observation is reached at ε = (2.95 ± 3.24) × 10−5.
Moreover, it is consistent with GR up to the limit of neutron stars. However, this theory manifests
its virtues applied to the physics at huge energies.

For preceding developments of MTBH, and its implications for ultra-high energy (UHE) astro-
physics, the interested reader is invited to consult the original papers.

We have undertaken a large series of numerical simulations with the goal to trace an evolution of
the mass assembly history of plausible accreting supermassive BH seeds in 377 AGNs to the present
time, and examine the observable signatures today (Ter-Kazarian, 2014, 2015). The MTBH explains
the origin of ZeV-neutrinos, which are of vital interest for the source of UHE-particles. We compute
the ZeV-neutrino fluxes from plausible accreting supermassive BHs, closely linked with the 377 AGNs.

We reconcile the observed unusual high luminosity of NuSTAR X-ray pulsations from M82X-2 with
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Figure 3. Microscopic model of rotating SPC in second half of its lifetime. An infalling matter already
formed a thin co-spinning proto-matter disk which has reached out the edge of the outer oblate event
horizon. A singularity inevitably disappears and the neutrinos escape to outside world through the
vista. Abbreviated notations: OEH :=Oblate Event Horizon, SPC :=Superdense Proto-matter Core,
PCH := Prolate Cauchy Horizon, PD :=Proto-matter Disk.

the most extreme violation of the Eddington limit (Ter-Kazarian, 2016a,b, Ter-Kazarian & Shidani,
2017).

We construct microscopic models of accreting intermediate mass BHs (IMBHs). The mass esti-
mates collected from the literature of all the observational evidence for 137 IMBH-candidates, allow
us to calculate all their essential physical characteristics (Ter-Kazarian & Shidani, 2019).

5. Concluding Remarks

Below we briefly reflect upon a few relevant points. There are deep conceptual and technical prob-
lems involved, and these provide scope for the arguments discussed. Despite the past four decades
of serious efforts, we do not have as yet available any proof or even any mathematically precise for-
mulation of the cosmic censorship hypothesis. We present examples of rigorous calculations, which
have shown that the expectations of the 1970s have been hasty, that CCC assumption has been pre-
mature. We review briefly the observable signature and computational efforts of growth and merging
phenomena of astrophysical BHs We collect and briefly discuss the necessary ideas behind the various
specific constructions and suggestions on the conceptual problems of GR, the singularities and the
thermodynamics of BHs in semiclassical and quantum physics. We concentrate on the critical dis-
cussion of the past and present states, evaluating those strategies, approaches etc., that are explicitly
and unambiguously given and applicable in any generic spacetime. It was far from being complete,
and our claim here is not to discuss the problems considered in detail, but rather to give a collection
of problems that are effectively or potentially related to interpretation of the growth and merging
properties of BHs with in the phenomenological model.

We argue that PBHM, at least at its current state of development, is quite incapable of making
predictions on growth and merging properties of the astrophysical BHs. To innovate the solution to
aforementioned problems, we outline the key points of MTBH, which has explored a novel aspects
expected from considerable change of properties of space-time continuum at spontaneous breaking of
gravitation gauge symmetry far above nuclear density. It may shed further light upon the growth
and merging phenomena of astrophysical BHs. Of course, much remains to be done before one can
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Figure 4. The radial profiles of the pressure, the density, the dimensionless gravitational (x0)- and ID
(x)- potentials of the SPC of mass ∼ 6.31× 103M�.

Figure 5. The state equation of the SPC of mass ∼ 6.31× 103M�.

determine whether this approach can ever contribute to the larger goal of gaining new insight into the
growth and merging phenomena of astrophysical BHs.
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