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Abstract

The paper shows that the parameters X1 and C used to standardize the luminosity of type Ia su-
pernovae in the SALT2 model are highly dependent on redshift. This leads to the fact that during
standardization, with increasing z, the average absolute stellar magnitude of type Ia supernovae arti-
ficially increases and, therefore, for a given apparent magnitude, we attribute to them, on average, a
greater distance than they actually have. And therefore it is believed that they are receding with accel-
eration. Therefore, such standardization is unsuitable for measuring distances to type Ia supernovae. If
the standardization parameter (−αX1 + βC) is replaced by the redshift-dependent parameter (ϵz), then
the parameter ΩΛ turns into 0 in the ΛCDM model.
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1. Introduction

Type 1a supernovae are considered standard candles. Standard candles are light sources that have the
same brightness regardless of place and time. The Hubble diagram is commonly used to estimate the value
of cosmological parameters. But on the Hubble diagram, the spread of points is quite large. To reduce
the scatter of points and to estimate the cosmological parameters more accurately, it will be necessary to
standardize the luminosity’s of type Ia supernovae. In modern cosmology, the SALT2 model is most often
used to standardize the luminosity of supernovae (Guy & et al. (2007)). This model uses two parameters
X1 and C. Where X1 characterizes the shape of the light curve (describes the stretching of the light curve
in time), and the parameter C describes the color of the supernova at maximum brightness. In particular,
the distance estimate assumes that supernovae with the same color, shape, and galactic environment have,
on average, the same intrinsic luminosity for all redshifts. Given these parameters, the standardization
equation can be written as follows:

µ = Bobs − (MB − αX1 + βC)

where µ = 5 logDL(z) + 25 is the distance modulus, Bobs corresponds to the peak apparent magnitude in
the B band, and α, β,MB are the parameters of the standardization equation for distance estimation.

When standardizing the luminosity, it is assumed that the dependence of the decay time of the brightness
of supernovae on the maximum brightness, as well as the dependence of the color at the peak on the maximum
brightness, do not depend on the age of the predecessor. In Lee & et al. (2022) showed that there is a strong
relationship between the parameters α, β and the age of the population of the host galaxy. This dependence
lies in the fact that in younger galaxies type 1a supernovae at maximum brightness have a weaker luminosity
than supernovae in relatively old galaxies. Since redshift characterizes age on average, the dependence of
these parameters on redshift should be observed. Rigault & et al. (2020) studied the star formation rate in
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local environments of type 1a supernovae and found a strong dependence of the standardization parameters
on the local star formation rate. In this paper, we study the dependence of standardization parameters on
redshift (z) based on some known samples of type Ia supernovae (Kowalski & et al. (2008), Amanullah &
et al. (2010), Betoule & et al. (2014)). All data is taken from the authors of these articles, without any
changes. It is shown that there is a strong correlation between these parameters and z. We will also discuss
what happens if we replace the (−αX1 + βC) term with a redshift dependent term (ϵz).

2. Results

On Fig.1. the dependence of the value ∆M = −αX1 + βC, introduced to standardize the luminosities
of type 1a supernovae, on the redshift is shown for the sample of Kowalski & et al. (2008).

Figure 1. Dependence of the value ∆M introduced for standardization of luminosities of type Ia supernovae
on redshift, for the sample of Kowalski & et al. (2008). Correlation significance < 0.02 (2.4σ).

As can be seen from the figure, there is an obvious relationship between the discussed quantities. Let us
evaluate the significance of the correlation. For this we will use the value

t =
√

(n− 2)÷ (1−R2)

which the subject of Student’s distribution. Here R the correlation coefficient between the values ∆M and
z

We get t=2.41, from which it follows that the significance of the correlation is high α = 1− P ≈ 0.02.
On Fig.2. the dependence of the value ∆M = −αX1 + βC on the redshift is shown, for the sample of

Amanullah & et al. (2010). As can be seen, there is a strong correlation at the level of 3.5σ.
On Fig.3. the dependence of the value ∆M = −αX1 + βC on the redshift is shown, for the sample of

Betoule & et al. (2014). There is also a strong correlation at the level of 6.7σ.
For the last sample (Betoule & et al. (2014), we consider the dependence of the parameters αX1 and βC

on the redshift separately.
In Fig.4. The redshift dependence of αX1, introduced to standardize the luminosity’s of type 1a super-

novae, is shown for the sample of Betoule & et al. (2014). Significance of correlation > 0.999 (5σ).
In Fig.5. The dependence of the value of βC, introduced to standardize the luminosity’s of type 1a

supernovae, on redshift is shown for the sample of Betoule & et al. (2014). Significance of correlation
> 0.999 (5σ).

Thus, in all studied samples of type 1a supernovae, a strong dependence of the luminos-
ity standardization parameter on the redshift is observed. The correlation is also observed
separately for both parameters X1 and C.
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Figure 2. The same as in fig. 2 for a sample of Amanullah & et al. (2010). The correlation is significant at
the 3.5σ level.

Such a correlation means that at large z we artificially increase the average absolute magni-
tude of supernovae during standardization and, therefore, for a given apparent magnitude, on
average, we attribute to them a greater distance than they actually have. And so we believe
that they are being receding with acceleration.

Thus, we can conclude that such standardization is unsuitable for measuring the distances
of type 1a supernovae.

Let’s see what happens if we ignore these corrections and estimate the cosmological parameters for the
ΛCDM model without standardizing the luminosity’s.

We will also try to replace these parameters with a parameter characterizing the evolution of supernovae.
We assume that the dependence of the absolute magnitude on the redshift is linear.

For this, we will use observational data from Betoule & et al. (2014), without making any changes to
the apparent magnitude Bobs of supernovae.

This sample was obtained from a collaboration between SDSS-II (Sloan Digital Sky Survey) and SNLS
(SuperNova Legacy Survey) (Betoule & et al. (2014): https://vizier.cds.unistra.fr/viz-bin/VizieR?-source=
J/A+A/568/A22).

The collaboration was called JLA - Joint Light curve Analysis. It includes some stars at low redshifts
(z < 0.1), stars selected from SDSS-II (0.05 < z < 0.4) and stars selected from SNLS (0.2 < z < 1). A total
of 740 spectroscopically confirmed Type Ia supernovae with high-quality light curves.

During the simulation, the authors obtained the following values of the cosmological parameters: ΩM =
0.295; ΩΛ = 0.705 (Betoule & et al. (2014)). Let’s see what we get.

If we do not take into account evolution, then we will have:

M(z) = M0 = Bobs − 5 logDL − 25 (1)

With the assumption of evolution:

M(z) = M0 + ϵz = Bobs − 5 logDL − 25 (2)

where Bobs is the apparent magnitude, M0 is the absolute magnitude at z = 0, DL is the luminosity
distance, ϵ is the absolute magnitude evolution coefficient.

Or we can replace the standardization equation with the equation

µ = Bobs − (M0 + ϵz) (3)
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Figure 3. The same as in fig. 2 and 3 for a sample of Betoule & et al. (2014). The correlation is significant
at the 6.7σ level.

In the case of the ΛCDM model, the dependence of the luminosity distance on redshift is given by the
following formula:

DL(z,ΩM ,ΩΛ,ΩK) = CH−1
0 (1 + z) |ΩK |−

1
2 sinn

{
|ΩK |

1
2

∫ z

0
dz

[
(1 + z)2 (1 + ΩMz)− z(2 + z)ΩΛ

]− 1
2

}
(4)

where z is the redshift of the object. H0 is the Hubble constant (Accepted H0 = 72.305 km.s−1.Mps−1).
ΩK is related to the curvature of space and in the case of flat universe it is 0 (Carroll & et al. (1992):
ΩK = 1− ΩM − ΩΛ, sinn = sinh, when ΩK ≥ 0 and sinn = sin, when ΩK ≤ 0. In the case of ΩK = 0, we
will have:

DL(z,ΩM ,ΩΛ) =
C(1 + z)

H0
×∫ z

0
dz

[
(1 + z)2(1 + ΩMz)− z(2 + z)ΩΛ

]− 1
2 (5)

or

DL =
C(1 + z)

H0

∫ z

0
dz

[
(1 + z)3ΩM +ΩΛ

]− 1
2

If we assume that ΩΛ = 1, and ΩM = 0, we will have (Weinberg (2008))

DL(z) =
C

H0

(
z + z2

)
(6)

If ΩΛ = 0, and ΩM = 1, we have

DL(z) =
2C

H0

[
(1 + z)−

√
1 + z

]
(7)

It should be noted that in 1998, prior to the work of Riess & et al. (1998) and Perlmutter & et al. (1999)
commonly used the equations of general relativity (GR) with zero cosmological constant (Λ = 0). Using this
model, Mattig (1958) integrated these equations exactly and obtained the luminosity distance as a function
of redshift.

DL(z, q0) =
C

H0q20

[
q0z + (q0 − 1)

(√
1 + 2q0z − 1

)]
(8)
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Figure 4. Dependence of the value αX1 introduced for standardization of luminosity’s of type 1a supernovae
on redshift, for the sample of Betoule & et al. (2014). Correlation significance < 0.001 (5σ).

Where q0 is the deceleration parameter, in this case:

q0=
ΩM

2
(9)

(8) with q0 = 0.5 coinciding with (7).
For the luminosity distance in the case of a flat universe we will use formula (5), for the luminosity

distance in the model with zero cosmological constant (Λ = 0) we will use formula (8).
We will also discuss the general case (4) with nonzero space curvature.
On the Hubble diagram, the theoretical curve can be represented by the following relationship:

Bth
mag(z,ΩM ,ΩΛ,ΩK) = M0 + ϵz + 5 logDL(z,ΩM ,ΩΛ,ΩK) + 25 (10)

for the Friedmann-Robertson-Walker model, or

Bth
mag(z, q0) = M0 + ϵz + 5logDL(z, q0) + 25 (11)

for the model with zero cosmological constant.
We need to find those values of the parameters ΩM , ΩΛ, ΩK , M0, ϵ in the first case and q0, M0, ϵ in the

second case, so that the sum of squares (Bobs −Bth
mag(z)) would be minimal:

Chi2 =
∑

(Bobs −Bth
mag(z))

2
= min. (12)

In Table. 1. The values of the cosmological parameters of the ΛCDM and CDM models are given
under various assumptions about the curvature of space and the evolution of type 1a supernovae for the
JLA sample (Betoule & et al. (2014)).

It can be seen from the table that under the assumption of a flat Universe without the evolution of
supernova luminosity, we obtain ΩΛ = 0.505, ΩM = 0.495, but the error in this case is the largest. For a
flat Universe, the case with the assumption of the evolution of supernova luminosity’s is more acceptable.
But then the fraction of dark energy in the Universe turns out to be quite small (almost 0).

If we do not make restrictions on the curvature of space, then we will get a better approximation to
the Hubble diagram. In this case, both under the assumption of the absence of evolution of supernova
luminosity’s and under the assumption of the existence of evolution, the fraction of dark energy turns out
to be exactly equal to zero, and the curvature of space turns out to be negative. In this case, the required
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Figure 5. Dependence of the value βC introduced for standardization of luminosity’s of type 1a supernovae
on redshift, for the sample of Betoule & et al. (2014). Correlation significance < 0.001 (5σ).

Table 1. Values of the cosmological parameters of the ΛCDM and CDM models obtained under various
assumptions about the curvature of space and the evolution of type 1a supernovae for the JLA sample
(Betoule & et al. (2014)

Received
Supposed Evaluated M0 ϵ ΩΛ ΩM ΩK < Chi2 >
ΩK = 0,ΩΛ +ΩM = 1, ϵ = 0 M0,ΩΛ,ΩM -18.998 - 0.505 0.495 0 0.079493± 0.004761
ΩK = 0,ΩΛ +ΩM = 1, ϵ ̸= 0 M0, ϵ,ΩΛ,ΩM -18.961 0.361 0.058 0.942 0 0.079085± 0.004756
ΩΛ +ΩM +ΩK = 1, ϵ = 0 M0,ΩΛ,ΩM ,ΩK -18.960 - 0.000 0.216 0.784 0.079046± 0.004755
ΩΛ +ΩM +ΩK = 1, ϵ ̸= 0 M0, ϵ,ΩΛ,ΩM ,ΩK -18.959 -0.044 0.000 0.146 0.854 0.079045± 0.004755

Supposed Evaluated M0 ϵ q0 < Chi2 >
Λ = 0, ϵ = 0 M0, q0 -18.960 - 0.108 0.079046± 0.004755
Λ = 0, ϵ ̸= 0 M0, ϵ, q0 -18.959 -0.044 0.073 0.079045± 0.004755

evolution is small. True, if we assume evolution, then we will get a somewhat small value of Chi2, but we
cannot give preference to what.

The last two lines show the simulation results for the Universe model with zero cosmological parameter.
Thus, the best approximation of the Hubble diagram for the ΛCDM model is the same as the best approx-
imation of the CDM model. That is, the model with zero cosmological constant describes the Universe no
worse than the ΛCDM model.

Let’s see how good these approximations are for the entire studied redshift interval.
On Fig. 6-9 show the residuals of the observational data (the difference between the observed and

theoretical apparent magnitudes) as a function of redshift.
In all figures, a horizontal line is obtained, almost indistinguishable from the line Bobs − Bth = 0. It

means that
1. The ΛCDM model describes the Universe well.
2. The observational data have been fairly well processed by the JLA authors over the entire redshift

range.
Let’s try to see what happens if we take ϵ = −0.264 in the formula µ = Bobs − (M0 + ϵz) (based on

the obtained dependence ∆M = αX1 − βC = 0.264z − 0.005 in Fig. 3) and estimate the cosmological
parameters.

It turns out ΩΛ = 0.73, ΩM = 0.27, M = −19.013. That is, approximately what is obtained in many
studies by standardizing supernovae according to the formula µ = Bobs − (MB − αX1 + βC).
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Figure 6. The difference between the observed and theoretical apparent magnitudes from the redshift for
the case ΩK = 0,ΩΛ +ΩM = 1, ϵ = 0.

3. Conclusion

The standardization of light curves for type 1a supernovae was invented in order to minimize the errors
and bring the observational data on the Hubble diagram closer to the theoretical ones and to obtain the
constraint on the cosmological parameters as accurately as possible. As a result, a close fit between observa-
tions and theory has been obtained (eg, Betoule & et al. (2014)). But, in our opinion, the authors of these
works made a serious systematic error.

This leads to the fact that at large z we artificially increase the average absolute magnitude of supernovae
during standardization and, therefore, for a given apparent magnitude, on average, we attribute to them a
greater distance than they actually have. And so we believe that they are being receding with acceleration.

Therefore, we can conclude that such standardization is unsuitable for determining the cosmological
parameters.

To determine the cosmological parameters, we study two options:
1. Do not standardize, i.e. use the apparent magnitudes of supernovae without any corrections.
2. For standardization, we assume that the absolute magnitudes of type 1a supernovae depend on the

redshift and instead of the standardization relation

µ = Bobs − (MB − αX1 + βC)

use relation
µ = Bobs − (MB + ϵz)

The following results are obtained:
• Assuming a flat Universe without supernova luminosity evolution, we obtain ΩΛ = 0.505,ΩM = 0.495,

but the error in this case is the largest. For a flat Universe, the case with the assumption of the evolution
of supernova luminosity’s is more acceptable. But then the share of dark energy in the Universe turns out
to be quite small (almost 0). For the evolution coefficient, we obtain ϵ = 0.361.

• If we do not impose restrictions on the curvature of space, we will get a better approximation to
the Hubble diagram. In this case, both under the assumption of the absence of evolution of supernova
luminosity’s and under the assumption of the existence of evolution, the fraction of dark energy turns out
to be exactly equal to zero, and the curvature of space turns out to be negative. In this case, the required
evolution is small and can even be neglected. True, if we assume evolution, then we get a somewhat small
value of Chi2, but the difference in Chi2 is so small that we cannot give preference to it.

In one case we get
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Figure 7. The difference between the observed and theoretical apparent magnitudes from the redshift for
the case ΩK = 0,ΩΛ +ΩM = 1, ϵ ̸= 0.

Figure 8. The difference between the observed and theoretical apparent magnitudes from the redshift for
the case ΩΛ +ΩM +ΩK = 1, ϵ = 0.

ΩΛ = 0.000, ΩM = 0.216, ΩK = 0.784, ϵ = 0, (analogue for the CDM model is q0 = 0.108)
otherwise we get
ΩΛ = 0.000, ΩM = 0.146, ΩK = 0.854, ϵ = −0.044, (analogue for the CDM model is q0 = 0.073).
From the above analysis, we can conclude that the reason for the result about the existence

of dark energy lies in the incorrect standardization of supernova luminosity’s. Apparently dark
energy doesn’t exist.

Evidence of the evolution of the luminosity’s of type 1a supernovae and the probable absence of dark
energy was also obtained in our other papers and reports Mahtessian & et al. (2020), Mahtessian & et al.
(2021), Mahtessian & et al. (2022), Mahtessian & et al. (2023)), as well as by other authors (for example,
Kang & et al. (2020)).
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Figure 9. The difference between the observed and theoretical apparent magnitudes from the redshift for
the case ΩΛ +ΩM +ΩK = 1, ϵ ̸= 0.
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