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Abstract

A new approach to solving of the Ambartsumian’s functional equation is presented. Its application
is illustrated on the two classical cases: a) in the case of a plane-parallel semi-infinite medium with
monochromatic anisotropic scattering and b) the simple one-dimensional problem of diffuse reflection of
radiation from the scattering-absorbing semi-infinite medium in the case of the general law of redistribu-
tion of radiation by frequencies. The desired: a) azimuthal harmonics of reflection function dependent on
two angular variables are explicitly expressed through the according eigenfunctions of one angle variable
and b) diffuse reflection function of two frequency variables also expressed through a system of according
eigenfunctions which have only one frequency variable. This does not require the use of any simplify-
ing assumptions or special decompositions of the characteristics of elementary act of scattering: a) of
scattering indicatrix and b) of the redistribution function of radiation by frequencies.

Keywords:radiative transfer, diffuse reflection problem, Ambartsumian’s nonlinear functional equation,
eigenfunctions and eigenvalues problem

1. Introduction and purpose of the work

The problem of diffuse reflection of radiation from a plane-parallel semi-infinite medium is one of the most
important classical standard problems of theoretical astrophysics and, in particular, the theory of radiative
transfer in scattering-absorbing media. It is widely used both in the interpretation of luminescence: planetary
and stellar atmospheres, cosmic nebulae and various Space gas and dust complexes, and in the problems of
optics of the Earth’s atmosphere and ocean, the vegetation cover of the earth, as well as in the physics of
nuclear reactors and radiation protection from ionizing radiation. The nonlinear integral equation for the
direct determination of the diffuse reflection function from a semi-infinite medium in case of monochromatic
scattering was obtained by introducing into the radiative transfer theory the so-called ”Ambartsumian’s
principle of invariance and the method of addition of layers” (Ambartsumian, 1942b, 1943a,b, 1944). In the
case of anisotropic scattering for the azimuthal harmonics of the reflection coefficient, the Ambartsumian’s
functional equation has the form (see, for example, Sobolev (1972) p. 51 or Yanovitskij (1995) p. 71).

(µ+ µ′) ρm (µ, µ′) = λ
4χ

m (−µ, µ′) + λ
2µ

′
1∫
0

χm (µ, µ′′) ρm (µ′′, µ′) dµ′′

+λ
2µ

1∫
0

ρm (µ, µ′′)χm (µ′′, µ′) dµ′′ + λµµ′
1∫
0

1∫
0

ρm (µ, µ′′′)χm (µ′′′,−µ′′) ρm (µ′′, µ′) dµ′′dµ′′′
(1)

Here: ρm (µ, µ′) is the azimuthal harmonic of the desired brightness coefficient, χm (µ, µ′) is the azimuthal
harmonic of the scattering indicatrix, λ is the single scattering albedo of the quantum in the elementary act
of scattering, µ′ and µ are respectively the cosines of the angles of incidence and reflection of radiation from
a semi-infinite medium with respect to the normal to its inner boundary. In the case of a one-dimensional
semi-infinite medium, when there is a redistribution of radiation by frequencies, a similar equation was
obtained by Sobolev (1955), which in generally accepted notations is written in the form:

2
λ [α (x) + α (x′)] ρ (x, x′) = r (x, x′) +

+∞∫
−∞

r (x, x′′) ρ ( x′′, x′) dx′′

+
+∞∫
−∞

ρ (x, x′′′) r (x′′′, x′) dx′′′   +
+∞∫
−∞

+∞∫
−∞

ρ (x, x′′′) r (x′′′, x′′) ρ (x′′, x′) dx′′dx′′′
(2)
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Here: ρ (x, x′) dx is the probability of diffuse reflection of the quantum from the medium in the (x, x+dx)
range of dimensionless frequencies, when entering a medium quantum had a frequency of x′, r (x′′′, x′′) is
the frequency redistribution function of radiation at an elementary act of scattering, α(x) is the absorption
coefficient profile.

Traditionally, when solving equations (1) and (2), various expansions of the characteristics of the elemen-
tary act of scattering are used: in the case of anisotropic scattering, the scattering indicatrix is decomposed
into Legendre polynomials (Ambartsumian, 1942a, 1943a, Chandrasekhar, 1950), then the m-th azimuthal
harmonic of the scattering indicatrix takes the form

χm
(
µ, µ′′) = N∑

i=m

cmi Pm
i (µ)Pm

i

(
µ′) , (3)

where Pm
i (µ) are the adjunctive Legendre functions. In the case of non-coherent scattering, for example, the

bilinear decomposition of the frequency redistribution function by its eigenfunctions - αj (x) (Engibaryan,
1971, Gevorkyan & Khachatryan, 1985, Gevorkyan et al., 1975, Khachatrian et al., 1991) was used

r
(
x, x′

)
=

∑
j

Ajαj (x)αj

(
x′
)
. (4)

Thus, the kernels of nonlinear integral equations (1) and (2) approximately became degenerate, which
made it possible to obtain the solution of the main problem explicitly, through the so-called of Ambartsum-
ian’s auxiliary functions φm

i (µ) and φj (x) having a smaller number of variables:

(
µ+ µ′) ρm (

µ, µ′) = λ

4

N∑
i=m

cmi (−1)i+m φm
i (µ)φm

i

(
µ′) , (5)

[
α (x) + α

(
x′
)]

ρ
(
x, x′

)
=

λ

2

∑
j

Ajφj (x)φj

(
x′
)
, (6)

effectively reducing their finding to the corresponding systems of functional equations:

φm
i (µ) = Pm

i (µ) +
λ

4
µ

N∑
j=m

cmj (−1)i+j φm
j (µ)

1∫
0

Pm
i (µ′)φm

j (µ′)

µ+ µ′ dµ′, (7)

φm (x) = αm (x) +
λ

2

∑
k

Akφk (x)

+∞∫
−∞

φk (x
′)αm (x′)

α (x) + α (x′)
dx′. (8)

However, in cases where the representation of real or model indicatricis, as well as the functions of
redistribution of radiation by frequencies, require taking into account a significantly large number of terms
in expansions of types (3) and (4), the task will be significantly more complicated. Indeed, for example,
with a real cloud indicatrix (Smoktiy & Anikonov, 2008), 229 is required in the decomposition (3), and with
its approximate replacement by the Henyey-Greenstein phase function type model, 152 terms are required
(see below, Figure 1, from the book Smoktiy & Anikonov (2008) Fig. 4.1.1).

In the case of non-coherent scattering, the construction of a general representation of the redistribu-
tion function (4), taking into account various physical factors, is already a rather time-consuming task
(Arutyunyan, 1991, Gevorkyan & Khachatryan, 1985, Khachatrian et al., 1991):

rV
(
x, x′

)
=


rIII (x, x

′) , σj = 0
rII (x, x

′) , σi = 0
rI (x, x

′) , σj = σi = 0
, rV

(
x, x′

)
=

∑
k

β2k (x, σi, σj)β2k (x
′, σi, σj)

λk (σj)
,

β2k (x, σi, σj) =
∑
m

γkm (σj)α2m (x, σi) , αk (x, σi) =
σi
π

+∞∫
−∞

αk (t) dt

(x− t)2 + σi2
, (9)

not even to mention the number of necessary terms of the expansion to achieve a certain predetermined
accuracy of the desired solution of the diffuse reflection problem. In the case of incoherent scattering, it is
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Figure 1. The scattering indicatrix - 1, χ (cos γ) for the cloud model (solid line) and the model indication
χH−G (cos γ) Henyey-Greenstein- 2 (dashed line) approximating it. On the ordinate axis, the indicatrix
χ(cosγ), and on the abscissa axis, the scattering angle γ in degrees.

also important to mention the method of directly searching for the reflection function in the form Gevorkyan
& Khachatryan (1985), Khachatrian et al. (1991):

ρ
(
x, x′

)
=

∑
i

∑
k

ρik
αi (x)αk (x

′)

α (x)
, ρik =

+∞∫
−∞

+∞∫
−∞

ρ
(
x, x′

) αi (x)αk (x
′)

α (x′)
dx′dx. (10)

As we can see here, the desired solution of the problem of diffuse reflection ρ (x, x′) is directly represented
by a ”double bilinear” series of eigenfunctions αi (x) of the general frequency redistribution law r (x, x′) ,
where the coefficients ρik are from the corresponding system of nonlinear equations. The authors of the
work Gevorkyan & Khachatryan (1985) point to the effectiveness of this method of searching for ρ (x, x′) in
comparison with the previous one in terms of numerical calculations, motivating this by the presence here
of a criterion that ensures the proper accuracy of solving the problem. However, similar to the previous
method, it is also necessary to pre-construct the expansion r (x, x′).

A natural question arises: is it possible to solve the problem of diffuse reflection, as before, to be
reduced to finding auxiliary functions of a smaller number of variables, but at the same time to do without
decomposing the characteristics of the elementary act of scattering? From the foregoing, it already follows
the expediency of such a formulation of the question, since the search for the necessary decomposition of the
nuclei of the elementary act of scattering is an additional and not always simple task. Moreover, the primary
physical features of the characteristics of a single scattering act after each new scattering become smoother
due to the next integration procedure. As a result, the final characteristics of the fields of multiple scattered
radiation, of course, will have a smoother behavior, which will greatly simplify their description. Thus, from
physical considerations, it follows that, in the form of corresponding expansions, it is more expedient to
directly find the resulting radiation fields instead of the nuclei of the elementary scattering act. Obviously,
under equal conditions, the corresponding series for ρm (µ, µ′) and ρ (x, x′) will be shorter than (3) and (4).
The purpose of the presented work is the analytical implementation of this possibility, using the example of
the above two cases described by functional equations (1) and (2).
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2. Formulation and solution of the problem

a) Anisotropic monochromatic scattering. On the right side of equation (1) we enter the notation

Km
(
µ, µ′) ≡ (

µ+ µ′) ρm (
µ, µ′) , (11)

at the same time
ρm

(
µ, µ′) = ρm

(
µ′, µ

)
⇒ Km

(
µ, µ′) = Km

(
µ′, µ

)
. (12)

It is not difficult from equation (1), taking into account (11), to obtain for the introduced symmetric and
positive function Km (µ, µ′) a functional equation

Km (µ, µ′) = λ
4χ

m (−µ, µ′) + λ
2µ

′
1∫
0

χm (µ, µ′′) Km(µ′′,µ′)
µ′′+µ′ dµ′′ + λ

2µ
1∫
0

Km(µ,µ′′)
µ+µ′′ χm (µ′′, µ′) dµ′′+

λµµ′
1∫
0

1∫
0

Km(µ,µ′′′)
µ+µ′′′ χm (µ′′′,−µ′′) Km(µ′′,µ′)

µ′′+µ′ dµ′′dµ′′′
. (13)

Let us pose the standard problem of finding eigenvalues and eigenvectors of a symmetric integral operator
1∫
0

Km (µ, µ′) . . . dµ′:

νml βm
l (µ) =

1∫
0

Km
(
µ, µ′)βm

l

(
µ′) dµ′,

1∫
0

βm
n (µ)βm

l

(
µ′) dµ′ = δln. (14)

Since the unknown in (14) kernel Km (µ, µ′) is given only by means of its nonlinear functional equation (13),

then to find the appropriate eigenfunctions act with the integral operator
1∫
0

. . . βm
l (µ′) dµ′ on equation (13)

and take into account (14). Then, in the subintegral expressions of the resulting ratio, we take into account
the possibility of an approximate representation, with any predetermined accuracy, the desired positive and
symmetric kernel Km (µ, µ′) by means of a bilinear series of its eigenfunctions

Km
(
µ, µ′) = ∑

n

νmn βm
n (µ)βm

n

(
µ′) . (15)

After simple calculations, we come to a system of equations:

νml βm
l (µ) =

λ

4
Zm
l (µ) +

λ

2

∑
n

νmn Dm
nl (µ) + λ

∑
n

∑
k

νmn νmk V m
nkl (µ) . (16)

Here, the quantities Zm
l (µ) , Dm

nl (µ) , V
m
nkl (µ) obviously include the desired eigenfunctions βm

l (µ):

Zm
l (µ) =

1∫
0

χm
(
−µ, µ′)βm

l

(
µ′) dµ′, wm

nl

(
µ′′) = βm

n

(
µ′′) 1∫

0

βm
n (µ′)

µ′′ + µ′β
m
l

(
µ′)µ′dµ′,

Dm
nl (µ) =

1∫
0

χm
(
µ, µ′′)wm

nl

(
µ′′) dµ′′ + µβm

n (µ)

1∫
0

βm
n (µ′′)

µ+ µ′′ dµ
′′

1∫
0

χm
(
µ′′, µ′)βm

l

(
µ′) dµ′,

V m
nkl (µ) = µβm

n (µ)

1∫
0

βm
n (µ′′′)

µ+ µ′′′ dµ
′′′

1∫
0

χm
(
−µ′′′, µ′′)wm

kl

(
µ′′) dµ′′. (17)

To determine the unknown in (16) eigenvalues νml , it is not difficult from (16), taking into account (17) and
the orthogonality condition (14), to obtain a system

νml =
λ

4
bml +

λ

2

∑
n

νmn cmnl + λ
∑
n

∑
k

νmn νmk fm
nkl, (18)
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where the values bml , cmnl , f
m
nkl in turn depend on the desired eigenfunctions:

bml =

1∫
0

1∫
0

βm
l (µ)χm

(
−µ, µ′)βm

l

(
µ′) dµ′dµ, cmnl =

1∫
0

1∫
0

βm
l (µ)χm

(
µ, µ′′)wm

nl

(
µ′′) dµ′′dµ,

fm
nkl =

1∫
0

1∫
0

wm
nl

(
µ′′′)χm

(
µ′′′,−µ′′)wm

kl

(
µ′′) dµ′′dµ′′′. (19)

Expressions (16)-(19) together represent a system of equations for the self-consistent determination of the
desired eigenfunctions and eigenvalues of the kernel Km (µ, µ′) . The solution of the initial problem of
determining the azimuthal harmonics of the brightness coefficient is given by expression

ρm
(
µ, µ′) = ∑

nν
m
n βm

n (µ)βm
n (µ′)

µ+ µ′ . (20)

b) A one-dimensional medium in the case of the general of the frequency redistribution. In equation (2)
we introduce the notations:

K
(
x, x′

)
≡

[
α (x) + α

(
x′
)]

ρ
(
x, x′

)
, φ

(
x, x′

)
≡ δ

(
x− x′

)
+ ρ

(
x, x′

)
, (21)

then it will take the form:

2

λ
K

(
x, x′

)
=

∫ +∞

−∞

∫ +∞

−∞
φ
(
x, x′′′

)
r
(
x′′′, x′′

)
φ
(
x′′, x′

)
dx′′dx′′′. (22)

Hence, taking into account (21), for the value K (x, x′) we obtain a nonlinear integral equation:

2

λ
K

(
x, x′

)
=

∫ +∞

−∞

∫ +∞

−∞

[
δ
(
x− x′′′

)
+

K (x, x′′′)

α (x) + α (x′′′)

]
r
(
x′′′, x′′

) [
δ
(
x′′ − x′

)
+

K (x′′, x′)

α (x′′) + α (x′)

]
dx′′dx′′′.

(23)
Let us pose the problem of finding the eigenfunctions and eigenvalues of the positive and symmetric kernels
K (x, x′):

νiβi (x) =

∫ +∞

−∞
K

(
x, x′

)
βi

(
x′
)
dx′,

∫ +∞

−∞
βi (x)βj (x) dx = δij , (24)

The previously unknown nucleus K (x, x′) is given by means of its nonlinear functional equation (23). By
influencing this equation with the operator

∫ +∞
−∞ . . . βj (x) dx and taking into account the possibility of an

approximate representation of a symmetric positive kernel (with an arbitrary given precision) through a
bilinear series of its eigenfunctions

K
(
x, x′

)
=

∑
j

νjβj (x)βj
(
x′
)
, (25)

after simple calculations, it is not difficult to obtain a system of nonlinear equations for the desired eigen-
functions βk (x)

2

λ
νkβk (x) = Zk (x) +

∑
j

νjDjk (x) +
∑
j

∑
i

νiνjVjik (x) . (26)

The quantities Zk (x) , Djk (x), Vjik (x) appearing here are determined by means of the searched eigenfunc-
tions βk (x) :

Zk (x) =

∫ +∞

−∞
r
(
x, x′

)
βk

(
x′
)
dx′, wlk

(
x′′

)
= βl

(
x′′

) ∫ +∞

−∞

βl (x
′)

α (x′′) + α (x′)
βk

(
x′
)
dx′,

Djk (x) = βj (x)

∫ +∞

−∞

βj (x
′′′)

α (x) + α (x′′′)
Zk

(
x′′′

)
dx′′′ +

∫ +∞

−∞
r
(
x, x′′

)
wjk

(
x′′

)
dx′′,

Vjik (x) = βj (x)

∫ +∞

−∞

βj (x
′′′)

α (x) + α (x′′′)
dx′′′

∫ +∞

−∞
r
(
x′′′, x′′

)
wik

(
x′′

)
dx′′. (27)
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In the system (26), the values of the eigenvalues νk are not yet known. Influencing the same integral
operator

∫ +∞
−∞ . . . βj (x) dx to the system (26), taking into account the orthogonality of eigenfunctions, we

obtain a nonlinear algebraic system for determining eigenvalues νk :

2

λ
νk = bk +

∑
j

νjcjk +
∑
j

∑
i

νiνjfjik. (28)

The quantities unknown here bk , cjk , fjik, as in (26), are expressed in terms of the desired eigenfunctions
βi (x) of the problem (24) and are represented as:

bk =

∫ +∞

−∞

∫ +∞

−∞
βk (x) r

(
x, x′

)
βk

(
x′
)
dxdx′,

cjk = 2

∫ +∞

−∞

∫ +∞

−∞
βk

(
x′′′

)
r
(
x′′′, x′′

)
wjk

(
x′′

)
dx′′dx′′′,

fjik =

∫ +∞

−∞

∫ +∞

−∞
wjk

(
x′′′

)
r
(
x′′′, x′′

)
wik

(
x′′

)
dx′′dx′′′. (29)

Thus, the one-dimensional problem of diffuse reflection of radiation from a semi-infinite scattering-absorbing
medium under the general law of frequency redistribution, similar to the problem of anisotropic scattering,
is reduced to a self-consistent joint solution of systems (26)-(29) for determining νk and βk (x) , and then
constructing the final solution in the form of

ρ
(
x, x′

)
=

∑
jνjβj (x)βj (x

′)

α (x) + α (x′)
. (30)

3. Relationship with other methods

As mentioned above, the proposed approach to solving the problem of diffuse reflection will be more
economical in comparison with the methods of decomposition of a single scattering act, since here the bilinear
series is searched directly for quantities describing multiple scatterings. And the latter undoubtedly have a
smoother and ”integral” behavior than functions describing a single act of scattering. Due to the smoother
behavior of these ”resultant” radiation fields, it is natural to expect that the same accuracy in solving the
original problem here will be achieved by a smaller number of terms of the bilinear expansion. That is,
under equal conditions, the decomposition of the characteristics of the resulting field will be described by a
smaller number of eigenfunctions than the number of auxiliary functions in the methods mentioned above.
Another advantage is that it is no longer necessary to solve the additional problem of the decomposition of
the characteristics of the elementary act of scattering. For a quantitative comparison of the effectiveness
of the described two methods for solving the initial problem, it is very advisable to establish a two-way
relationship between the quantities βm

i (µ) and φm
i (µ) , as well as between βi (x) and φi (x) .

a) Anisotropic monochromatic scattering. Comparison of solutions (5) and (20) gives∑
n

νmn βm
n (µ)βm

n

(
µ′) = λ

4

∑
i

cmi (−1)i+m φm
i (µ)φm

i

(
µ′) . (31)

Applying the condition of orthogonality of eigenfunctions βm
n (µ) , we obtain their connection with the

Ambartsumian’s auxiliary functions

νmn βm
n (µ) =

λ

4

∑
i

cmi (−1)i+m φm
i (µ) qmin, qmin ≡

1∫
0

φm
i

(
µ′)βm

n

(
µ′) dµ′. (32)

The application of the condition of orthogonality of eigenfunctions in the first of the relations (32) and the
subsequent consideration of the second leads to an explicit expression for determining eigenvalues νmn

νmn =
λ

4

∑
i

cmi (−1)i+m (qmin)
2 . (33)
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To find the unknown qmin appearing in (32) and (33), using its definition and explicit expression for βm
n (µ)

from (32) we obtain the relation

νmn qmkn =
λ

4

∑
i

cmi (−1)i+m amkiq
m
in, (34)

where amki are given by

amki (µ) =

1∫
0

φm
k (µ)φm

i (µ) dµ. (35)

From (34) and (33) we find the system

qmkn =

∑
ic

m
i (−1)i+m amkiq

m
in∑

ic
m
i (−1)i+m (qmin)

2
, (36)

and to find the eigenfunctions βm
n (µ) from (33) and (32), an explicit expression is obtained

βm
n (µ) =

∑
ic

m
i (−1)i+m φm

i (µ) qmin∑
ic

m
i (−1)i+m (qmin)

2
. (37)

Feedback, i.e., the definition of φm
i (µ) when the eigenfunctions βm

n (µ) are known, is obtained from the
well-known definition of Ambartsumian’s auxiliary functions

φm
i (µ) = Pm

i (µ) + 2µ (−1)i+m

1∫
0

Pm
i

(
µ′) ρm (

µ′, µ
)
dµ′. (38)

Substituting solution (20) here, we come to the expression

φm
i (µ) = Pm

i (µ) + 2µ (−1)i+m
∑
n

νmn βm
n (µ)Qm

ni (µ) , (39)

where is

Qm
ni (µ) ≡

1∫
0

βm
n (µ′)Pm

i (µ′)

µ+ µ′ dµ′. (40)

b) One-dimensional medium under the general law of redistribution of radiation by frequencies. Let’s com-
pare solutions (6) and (30), similar to the previous paragraph ”a”, we will have∑

j

νjβj (x) βj
(
x′
)
=

∑
k

Akφk (x)φk

(
x′
)
, (41)

then using the orthogonality condition of eigenfunctions βj (x) will give the expressions:

νjβj (x) =
∑
k

Akφk (x) qkj , qkj ≡
+∞∫
−∞

φk

(
x′
)
βj

(
x′
)
dx′, (42)

taking into account the orthogonality condition in the first relation (42), in turn, will give

νj =
∑
k

Ak (qkj)
2 . (43)

From (42) and (43) for the eigenfunctions βj (x) , we finally get an explicit expression

βj (x) =

∑
kAkφk (x) qkj∑
kAk (qkj)

2 . (44)

In the ratios (42) and (43), the magnitude of qkj is still unknown. To determine it, first by substituting the
first ratio from (42) to the second, we get the formulas:

νj qmj =
∑
k

Akamkqkj , amk ≡
+∞∫
−∞

φm (x)φk (x) dx, (45)
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and then, taking into account (43), we come to the system of equations

qmj =

∑
kAkamkqkj∑
kAk (qkj)

2 . (46)

As a result, if the auxiliary functions of Ambartsumian are determined by the method of decomposition of
the frequency redistribution function, then the transition to the eigenfunctions of the method proposed in
this work is carried out by solving the system (46) and explicit expressions (43), (44). To derive the feedback-
finding of auxiliary functions φm (x) through the previously known eigenfunctions βj (x) and eigenvalues νj ,
recall their definition

φm (x) = αm (x) +

+∞∫
−∞

ρ
(
x, x′

)
αm

(
x′
)
dx′. (47)

After substituting in (47) the solution (30), the final expressions will be obtained

φm (x) = αm (x) +
∑
j

νjβj (x)Qjm (x) , Qjm (x) =

+∞∫
−∞

βj (x
′)αm (x′)

α (x) + α (x′)
dx′. (48)

The presence of (33), (36), (37) together with (39), (40), also (43), (44), (46) together with (48) allow in both
problems ”a” and ”b” to evaluate and compare the accuracy of the results obtained by different methods.

4. The general scheme of the organization of calculations

To calculate the desired eigenfunctions and eigenvalues above, two pairs of systems were obtained: the
first pair - (16), (18) in the anisotropic scattering problem, and the second (26), (28) in the incoherent
scattering problem. Each pair is to be calculated jointly, in a self-consistent manner – a certain system of
orthonormal functions is taken as a zero approximation of the desired eigenfunctions (for example, in the
anisotropic scattering problem, the attached Legendre functions, and in the incoherent scattering problem,
Hermite polynomials). Obviously, the general structure of systems (16) and (26), as well as (18) and (28)
with an accuracy of factors of type λ/2 is identical, so the scheme for their calculation is the same. In the
problem of incoherent scattering, for example, the choice of the initial system of orthonormal functions will
be ”given” zero approximations of the desired quantities - [βk (x)]

(0).With their help, according to formulas

(29), the zero approximation: [bk]
(0) , [cjk]

(0) , [fjik]
(0)of the quantities is calculated. By substituting the

latter in the right side of the relation (28), as well as taking here [νk]
(0) ≡ [bk]

(0) as a zero approximation

of eigenvalues, the subsequent first approximation - [νk]
(1) for eigennumbers in the left side of (28), will

be obtained. Then, by means of formulas (27) using [βk (x)]
(0), the zero approximations of the functions

[Zk (x)]
(0) , [Djk (x)]

(0) , [Vjik (x)]
(0) are calculated. By substituting the values of the calculated functions in

the right side (26), using the calculated first approximation - [νk]
(1), the values of the first approximation -

[βk (x)]
(1)of eigenfunctions are obtained. Then, the values [βk (x)]

(n) are taken as the initial approximation
of the eigenfunctions and the entire described cycle is repeated. Calculations on such cycles of successive
approximations [βk (x)]

(n) are repeated until the number n is reached, which gives the necessary accuracy.
The same general scheme of organization of successive stages of calculations is illustrated in Fig. 2, in
relation to the problem of determining the azimuthal harmonics of the brightness coefficient in the case of
anisotropic scattering.

5. Conclusion

The paper presents a new possibility of solving Ambartsumian’s functional equation in the problem of
diffuse reflection of radiation from a semi-infinite scattering-absorbing medium. The expediency and effec-
tiveness of the proposed approach follows from the physically obvious fact that in the process of multiple
scattering of primary radiation - ”diffusion” of quanta (or particles) in the medium, with each subsequent
scattering act, the intensity of the formed radiation field (or the phase density of particles) becomes a
mathematically smoother quantity. Therefore the problem of representing the resulting field through a bi-
linear series of ”own” eigenfunctions is simpler and more efficient, compared to a similar problem of a single
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Figure 2. Diagram of sequential steps, self-consistent joint calculations of eigenvalues and eigenfunctions.

act of scattering. The method is analytically illustrated by two standard classical problems: finding the
azimuthal harmonics of the reflection coefficient of monochromatic radiation from a semi-infinite medium
with anisotropic scattering and diffuse reflection of radiation from a one-dimensional semi-infinite medium
with the general law of frequency redistribution of radiation. Explicit expressions of solutions to the con-
sidered problems of diffuse reflection, depending on two independent variables, through the corresponding
eigenfunctions of one independent variable, are obtained. To find the latter, as well as the corresponding
eigenvalues in each of these cases, a pair of two systems of nonlinear equations is derived: functional and
algebraic.

Acknowledgment. I express my sincere gratitude to Professor Levon Gurgen Arabadzhyan for nu-
merous discussions and valuable mathematical consultations during the implementation of this work.
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