
Communications of BAO, Vol. 70, Issue 2, 2023, pp. 170-187

Inertia I: The global MSp-SUSY induced uniform motion
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Abstract

In this communication our main emphasis is on the review of the foundations of standard Lorentz code
(SLC) of a particle motion. To this aim, we develop the theory of global, so-called, `double space´- or
master space (MSp)-supersymmetry, subject to certain rules, wherein the superspace is a 14D-extension
of a direct sum of background spaces M4⊕ MSp by the inclusion of additional 8D fermionic coordinates.
The latter is induced by the spinors θ and θ̄ referred to MSp. While all the particles are living on
M4, their superpartners can be viewed as living on MSp. This is a main ground for introducing MSp,
which is unmanifested individual companion to the particle of interest. Supersymmetry transformation is
defined as a translation in superspace, specified by the group element with corresponding anticommuting
parameters. The multiplication of two successive transformations induce the motion. As a corollary, we
derive SLC in a new perspective of global double MSp-SUSY transformations in terms of Lorentz spinors
(θ, θ̄). This calls for a complete reconsideration of our ideas of Lorentz motion code, to be now referred
to as the individual code of a particle, defined as its intrinsic property. In MSp-SUSY theory, obviously as
in standard unbroken SUSY theory, the vacuum zero point energy problem, standing before any quantum
field theory inM4, is solved. The particles inM4 themselves can be considered as excited states above the
underlying quantum vacuum of background double spaces M4⊕ MSp, where the zero point cancellation
occurs at ground-state energy, provided that the natural frequencies are set equal (q20 ≡ νb = νf ), because
the fermion field has a negative zero point energy while the boson field has a positive zero point energy.
On these premises, we derive the two postulates on which the Special Relativity (SR) is based.

Keywords: Special relativity–Lorentz and Poincaré invariance–Supersymmetry–Supersymmetric models

1. Introduction

In the present article we study the first part of the phenomenon of inertia dedicated to the inertial
uniform motion. This article is a more detailed exposition of the first part of work (Ter-Kazarian, 2024).
Governing the motions of planets, both fundamental phenomena of nature the gravity and inertia reside
at the very beginning of physics. Despite the advocated success of general relativity (GR) in explaining
the gravity, which was a significant landmark in the development of the field, the problem of inertia stood
open and it is still the most important incomprehensive problem that needs to be solved. Today there is no
known feasible way to account for credible explanation of this problem, consisting of two parts: the inertial
uniform motion of a body, and how this is affected by applied forces (the accelerated motion and inertia
effects).

The beginning of the study of phenomenon of inertia can be attributed to the works of Galileo (Drake,
1978) and Newton (Newton, 1687). Certainly, more than four centuries passed since the famous far-reaching
discovery of Galileo (in 1602-1604) that all bodies fall at the same rate (Drake, 1978), which led to an early
empirical version of the suggestion that the gravity and inertia may somehow result from a single mechanism.
Besides describing these early gravitational experiments, Newton in Principia Mathematica (Newton, 1687)
has proposed a comprehensive approach to studying the relation between the gravitational and inertial
masses of a body. Ever since, there is an ongoing quest to understand the reason for the universality
of the gravity and inertia, attributing to the weak principle of equivalence (WPE), which establishes the
independence of free-fall trajectories of the internal composition and structure of bodies. The variety of
consequences of the precision experiments from astrophysical observations makes it possible to probe this
fundamental issue more deeply by imposing the constraints of various analyzes. Currently, the observations
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performed in the Earth-Moon-Sun system, or at galactic and cosmological scales, probe more deeply the
WPE.

The inertia effects cannot be in full generality identified with gravity within GR as it was proposed
by Einstein in 1907, because there are many experimental controversies to question the validity of such
a description, for details see (Ter-Kazarian, 2012) and references therein. The universality of the gravity
and inertia effects attribute to the geometry but as having a different natures. Unlike gravity, here a
curvature has arisen entirely due to the inertial properties of the Lorentz-rotated frame of interest, i.e. a
”fictitious gravity” which can be globally removed by appropriate coordinate transformations, refers to this
coordinate system itself, without relation to other systems or matter fields. The key to our construction
procedure of the toy model (Ter-Kazarian, 2012) is an assignment to each and every particle individually
a new fundamental constituent of hypothetical 2D, so-called, master-space (MSp), subject to certain rules.
The MSp, embedded in the background 4D-space, is an unmanifested indispensable individual companion to
the particle of interest. This together with the idea that the inertia effects arise as a deformation/(distortion
of local internal properties) of MSp, are the highlights of the alternative relativistic theory of inertia (RTI).
The crucial point is to observe that, in spite of totally different and independent physical sources of gravity
and inertia, the RTI furnishes justification for the introduction of the WPE.

However, the RTI obviously is incomplete theory unless it has conceptual problems for further motivation
and justification of introducing the fundamental concept of MSp. The way we assigned such a property to
the MSp is completely ad hoc and there are some obscure aspects of this hypothesis. Moreover, this theory
should certainly be incomplete without revealing the physical processes that underly the inertial uniform
motion of a particle in flat space. Therefore, the present paper purports to develop a consistent solution of
this problem, which is probably the most fascinating challenge for physical research.

From its historical development the principles of classical mechanics are constructed on the premises of
our experience about relative locations and relative motions. In reducing the decision to that of whether a
body is at rest or in uniform motion is disjunctive and, therefore, it is inherently indeterminate. This aspect
of mechanics which deserves further investigation, unfortunately, has attracted little attention in subsequent
developments. There is nothing in the basic postulates of physics to decide on the issue. The view that the
problem of motion can be completely discussed in terms of observables implies that a kinematical description
of all the relative motions in the universe completely specifies the system, so that kinematically equivalent
motions must be dynamically equivalent. The notion of uniform motion of a particle, which is the mill-stone
put into physics by hand, at first glance seemed to be classified as an empirical term rather than as a notion
of pure reason and, thus, this is not a subject of perception. Although this question seems to be a purely
philosophical problem, nevertheless, it has an outstanding physical significance for fundamentals of physics,
and the SR in particular. Certainly, in recent years the violation of CPT and Lorentz invariance at huge
energies has become a major preoccupation of physicists. This idea gathers support from a breakthrough
made in recent observational and theoretical efforts in this field.

One of the achievements of present experimental high energy astrophysics is the testing of violation of
SR for ultra-high energy cosmic rays (UHECRs) and TeV-γ photons observed (for a comprehensive review
see (Batista & et al., 2019)). The Lorentz invariance violation (LIV) phenomenology for UHECRs has been
intensely studied in the last few decades, even though the progress has been dramatic. A propagation in
intergalactic space through the cosmic microwave background (CMB) radiation necessarily should reduce
energy of UHECRs below the Greisen-Zatsepin-Kuzmin (GZK) limit, 5×1019 eV. The existence of this effect
is uncertain owing to conflicting observational data and small number statistics. This is commonly referred
as the GZK anomaly. Observed air showers experiment show an excess of muons compared to predictions
of standard hadronic interaction models above ≃ 1016 eV, which indicates a longer-than-expected muon
attenuation length. If the muon excess cannot be explained by improved hadronic event generators with
in the Standard Model, new physics could qualitatively play a role. Comparatively large increases of muon
number over a small primary energy range would likely be a hint for Lorentz symmetry violation at very
high Lorentz factors.

The TeV-γ paradox is another one related to the transparency of the CMB. The HEGRA has detected
high-energy photons with a spectrum ranging up to 24 TeV (Aharonian & et al., 1999) from Mk 501, a
BL Lac object at a redshift of 0.034 (∼ 157 Mpc). The recent confirmation that at least some γ-ray bursts
originate at cosmological distances (Metzger & et al., 1997, van Paradis & et al., 1997) suggests that the
radiation from these sources could be used to probe some of the fundamental laws of physics.

Most ideas in phenomenology reflect the expectation that the characteristic scale of quantum spacetime
effects, which will strongly affect the nature of spacetime, should be within a two or three orders of magnitude
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of the Planck scale, EP =MP c
2 (∼ 1.22×1019 GeV). Enormous efforts have been made over the past decade

to test LIV as quantum spacetime effects in terms of expansions in powers of Planck energy scale in various
scenarious of quantum gravity, see e.g. (Alfaro & Palma, 2003, Amelino-Camelia & Piran, 2001, Mattingly,
2005). But since the theory of quantum gravity based on noncommutative geometry is at earlier stage of
development, and the possibility to preserve a Lorentz-invariant interpretation of noncommutative space-
time is still not excluded (Balachandran et al., 2008, Chaichian et al., 2004, Fiore & Wess, 2007), it is natural
to tie the LIV to various alternatives for the yet nonexistent theory, see e.g. (Alfaro & Palma, 2002, 2003,
Alfaro et al., 2002a,b). However, even thanks to the fruitful interplay between phenomenological analysis
and high energy astronomical experiments, the scientific situation remains, in fact, more inconsistent to
day. Moreover, a systematic analysis of these properties happens to be surprisingly difficult by conventional
theoretical methods.

In the present paper we develop on so-called `double space´- or `MSp-SUSY´ theory, subject to certain
rules. The fundamental notion of the particle motion in full generality relies on the concept of locality which
refers to the original continuous spacetime. The important reason to question the validity of such a descrip-
tion is the fact that we do not understand the nature of phenomenon of motion. It must suffice to expect
some objections against the idealization of an arbitrarily precise localization in terms of points in spacetime.
In the first step it proves necessary to introduce a constitutive ansatz of the simple, yet tentative, unmani-
fested intermediate motion state, as shown in Section 2. We derive SLC in a new perspective of global double
MSp-SUSY transformations in terms of Lorentz spinors (θ, θ̄) referred to MSp. This allows to introduce the
physical finite relative time interval between two events as integer number of the own atomic duration time
of double transition of a particle from M4 to MSp and back. This is a main ground for introducing MSp,
which is unmanifested individual companion to the particle of interest. We place the emphasis on the fun-
damental difference between the standard SUSY theories and some rather unusual properties of MSp-SUSY
theory. While the standard SUSY theory can be realized only as a spontaneously broken symmetry since
the experiments do not show elementary particles to be accompanied by superpartners with different spin
but identical mass, the MSp-SUSY, in contrary, is realized as an exact SUSY, where all particles are living
on 4D Minkowski space, but their superpartners can be viewed as living on MSp.

With this perspective in sight, we will proceed according to the following structure. To start with,
Section 2 is devoted to probing SLC behind the `double space´- or MSp-SUSY. Giving a first glance at
MSp in Subsection 2.1, we motivate and justify its introduction, and outline the objectives of the proposed
symmetry. In Section 3 we give a hard look at MSp. The MSp-SUSY is worked out as a guiding principle
in Section 4. In Section 5, we turn to non-trivial linear representation of MSp-SUSY algebra. In Section 6,
we discuss the general superfields. On these premises, in Section 7, we derive the two postulates on which
the theory of SR is based. In light of the absence of compelling experimental evidence for LIV, there does
not appear to be any immediate motivation for the proposed theory. Therefore, as a physical outlook and
concluding remarks, we list in Section 8 of what we think is the most important that distinguish this theory
from phenomenological approaches of differing MAVs in the published literature. For brevity, whenever
possible undotted and dotted spinor indices often can be ruthlessly suppressed without ambiguity. Unless
indicated otherwise, we take natural units, h = c = 1.

2. Probing SLC behind the `double space´- or MSp-SUSY

With regard to our original question as to the understanding of the physical processes underlying the
motion, we tackle the problem in the framework of quantum field theory. In what follows, we should compare
and contrast the particle quantum states defined on the two background spacesM4 and MSp, forming a basis
in the Hilbert space. Let us consider functional integrals for a quantum-mechanical system with one degree
of freedom. Denote by x(t) the position operator in the Heisenberg picture, and by |x, t > its eigenstates.
The Schwinger transformation function, F (x′t′;xt), (Milton, 2000, 2015, Schwinger, 1960, 2000), is the
probability amplitude that a particle which was at x at time t, on the path with no coinciding points, will
be at point x′ at time t′. To express the function F (x′t′;xt) as a path integral in M4, we usually choose
n intermediate points (x′′i , t

′′
i ) on the path and divide the finite time interval into n + 1 small intervals:

t = t0, t1, . . . , tn+1 = t′; ti = t0 + iε, where ε can be made arbitrarily small by increasing n. According to
Trotter product formula (Hall, 2015), the noncommutativity of the kinetic and potential energy operators
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can be ignored. Then F (x′t′;xt) can be computed as a product of ordinary integrals

F (x′t′;xt) =

∫
dx′′ < x′t′ |x′′t′′ >< x′′t′′|xt > . (1)

In the limit n→ ∞, the function F (x′t′;xt) becomes an operational definition of the path integral.

2.1. Motivation of MSp: In search of symmetry

We assume that a flat MSp is the 2D composite space MSp ≡ M 2 (see (3)). The elementary act of
particle motion at each time step (ti) through the infinitely small spatial interval △xi = (xi+1 − xi) during
the time interval △ti = (ti+1− ti) = ε is probably the most fascinating challenge for physical research. Since
this is beyond our perception, it appears legitimate to consider extension to the infinitesimal Schwinger
transformation function, Fext(xi+1, ti+1;xi, ti), in fundamentally different aspect.

We hypothesize that
in the limit n → ∞(ε → 0), the elementary act of motion consists of an `annihilation´ of a particle at

point (xi, ti) ∈ M4, which can be thought of as the transition from initial state |xi, ti > into unmanifested
intermediate state, so-called, `motion´ state, |xi, ti >, and of subsequent `creation´ of a particle at infinitely
close final point (xi+1, ti+1) ∈M4, which means the transition from `motion´ state, |xi, ti >, into final state,
|xi+1, ti+1 >. The motion state, |xi, ti) >, should be defined on unmanifested `master´ space, M 2, which
includes the points of all the atomic elements, (xi, ti) ∈M 2 (i = 1, 2, ...).

This furnishes justification for an introduction of unmanifested master space, M 2. A fundamental
composition property of transformation functions (Schwinger, 2000), written in this limit for the extended
Schwinger transformation function,

lim
n→∞

(
Fext(xi+1, ti+1;xi, ti) =

∑
xi

< xi+1, ti+1|xi, ti >< xi, ti|xi, ti >

)
, (2)

would evidently imply that the number of intermediate points (xi) should be set to one. The possibility of
contemplating such a mechanism of motion is facilitated by the fact that although at first glance this is the
only, not necessarily the most perfect, but rather clear way of setting the problem. To clarify the setup of the
extended Schwinger transformation function, it should help a few noteworthy points of Fig. 1. The net result
of each atomic double transition of a particleM4 ⇌M 2 (fromM4 toM 2 and back) is as if we had operated
with a space-time translation on the original space M4. So, the symmetry we are looking for must mix the
particle quantum states during its propagation in order to reproduce the central relationship between the
two successive transformations of this symmetry and the generators of space-time translations. Namely, the
subsequent operation of two finite transformations will induce a translation in space and time of the states on
which they operate. Such successive transformations will induce inM4 the inhomogeneous Lorentz group, or
Poincaré group, and that the unitary linear transformation |x, t >→ U(Λ, a)|x, t > on vectors in the physical
Hilbert space. Thus, the underlying algebraic structure of this symmetry generators closes with the algebra
of translations on the original space M4 in a way that it can then be summarized as a non-trivial extension
of the Poincaré group algebra, including the generators of translations. Essentially the only truly appealing
possibility of known symmetry possessing such manageable properties is the supersymmetry (SUSY), see
e.g. (Aitchison, 2007, Baer & Tata, 2006, Dreiner et al., 2004, Fayet & Ferrara, 1977, Ferrara et al., 1974,
Sohnius, 1985, Wess & Bagger, 1993, West, 1987). SUSY is accepted as a legitimate feature of nature,
although the presence of specific `sparticle´ modes may be of some concern, since they have not (yet) been
observed, except a few examples (Aharonov & Casher, 1979, Jackiw, 1984, Landau, 1930, Ravndal, 1980).
SUSY-multiplets contain different spins but are always degenerate in mass and SUSY must be broken in
nature where elementary particles do not come in mass-degenerate multiplets.

The successive atomic double transitions of a particle M4 ⇌ M 2 can necessarily be investigated co-
herently, at least conceptually, with SUSY-theory techniques, but certainly, we need to drastically change
the scope of the standard SUSY to build up the `double space´- or `MSp´-SUSY theory. As we will see,
this is firstly related to the `superspace´ which is a direct sum extension of background double spaces
M4 ⊕M 2, with an inclusion of additional fermionic coordinates induced by the spinors (θ, θ̄), which re-
fer to M 2. Secondly, thanks to the embedding map (10), the spinors (θ, θ̄), in turn, induce the spinors
θ(θ, θ̄) and θ̄(θ, θ̄) (see (93)), as to M4. Consequently, the `symmetric´ superspace can be parameterized by
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Figure 1. The extended Schwinger transformation function geometry. The `master´ space, MSp ≡ M 2,
embedded in the background 4D-space M4, is an unmanifested indispensable individual companion to the
particle of interest, devoid of any external influence. A creation of a particle in M 2 means its transition
from initial state defined on M4 into intermediate state defined on M 2, while an annihilation of a particle
in M 2 means vice versa. The same interpretation holds for the creation and annihilation processes in M4.
The net result of each atomic double transition of a particle M4 ⇌M 2 (from M4 to M 2 and back) is as if
we had operated with a space-time translation on the original space M4. The atomic displacement, ∆η

(a)
, is

caused in M 2 by double transition of a particle, M 2 ⇌ M4. All the particles are living on M4, while their
superpartners can be viewed as living on M 2.

Ω = Ωq(x
m, θ(θ, θ̄), θ̄(θ, θ̄))×Ωq(η

m, θ, θ̄)(see (66)). This is just enough to achieve the desired goal of deriv-
ing SLC in terms of spinors related to M 2. This allows to introduce the physical finite relative time interval
between two events, as integer number of the own atomic duration time of double transition of a particle
M4 ⇌ M 2 (97). It is to be stressed that the ground state of MSp-SUSY model has a vanishing energy
value and is nondegenerate (SUSY unbroken). All the particles are living on M4, and their superpartners
can be viewed as living on M 2. The particles in M4 themselves can be considered as excited states above
the underlying quantum vacuum of background double spaces M4 ⊕M 2, where the zero point cancellation
occurs at ground-state energy, provided that the natural frequencies are set equal (q20 ≡ νb = νf ), because
the fermion field has a negative zero point energy while the boson field has a positive zero point energy.

3. A hard look at MSp: Embedding M 2 ↪→ M4

A notable conceptual element of our approach is the concept of, so-called, `master´ space (MSp), which
is indispensably tied to propagating particle of interest without relation to the other particles. The geometry
of MSp is a new physical entity, with degrees of freedom and a dynamics of its own. We assume that a flat
MSp is the 2D composite space,

M 2 = R1
(+) ⊕R1

(−). (3)

The ingredient 1D-space R1
m is spanned by the coordinates ηm. The following notational conventions are

used throughout this paper: all quantities related to the space M 2 will be underlined. In particular, the
underlined lower case Latin letters m,n, ... = (±) denote the world indices related to M 2. The Lorentz
metric in M 2 is

g = g(em, en)ϑ
m ⊗ ϑn, (4)

where ϑm = dηm is the infinitesimal displacement. The basis em at the point of interest in M 2 is consisted
of two real null vectors:

g(em, en) ≡< em, en >=
∗omn, (

∗omn) =

(
0 1
1 0

)
. (5)

The norm, id ≡ dη̂, reads id = e ϑ = em ⊗ ϑm, where id is the tautological tensor field of type (1,1), e is

a shorthand for the collection of the 2-tuplet (e(+), e(−)), and ϑ =

(
ϑ(+)

ϑ(−)

)
. We may equivalently use a
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temporal x0 ∈ T 1 and a spatial x1 ∈ R1 variables xr(x0, x1)(r = 0, 1), such that

M 2 = R1 ⊕ T 1. (6)

The norm, id, now can be rewritten in terms of displacement, dxr, as

id = dx̂ = e0 ⊗ dx0 + e1 ⊗ dx1, (7)

where e0 and e1 are, respectively, the temporal and spatial basis vectors:

e0 =
1√
2

(
e(+) + e(−)

)
, e1 =

1√
2

(
e(+) − e(−)

)
,

g(er, es) ≡< er, es >= diag(1,−1),
(8)

and the corresponding coordinates are

x0 = 1√
2

(
η(+) + η(−)

)
, x1 = 1√

2

(
η(+) − η(−)

)
. (9)

Suppose the position of the particle is specified by the coordinates xm(s) (x0 = t) in the basis em (m=0,1,2,3)
at given point in the background M4 space. Consider a smooth (injective and continuous) embedding
M 2 ↪→ M4. That is, a smooth map f : M2 −→ M4 is defined to be an immersion (the embedding which
is a function that is a homeomorphism onto its image):

e0 = e0, x0 = x0, e1 = n⃗, x1 = |x⃗|, (10)

where x⃗ = eix
i = n⃗|x⃗| (i = 1, 2, 3). Given the inertial frames S(4), S

′
(4), S

′′
(4), ... in unaccelerated uniform

motion in M4, we may define the corresponding inertial frames S(2), S
′
(2), S

′′
(2),... in M 2, which are used

by the non-accelerated observers for the positions xr, x′r, x′′r, ... of a free particle in flat M 2. According
to (10), the time axes of the two systems S(2) and S(4) coincide in direction, and the time coordinates are
taken the same. For the case at hand,

v(±) =
dη(±)

dx0 = 1√
2
(v0 ± v1), v1 = dx1

dx0 = |v⃗| = | dx⃗
dx0 |, (11)

and that
u = emv

m = (v⃗ 0, v⃗ 1), v⃗ 0 = e0v
0, v⃗ 1 = e1v

1 = n⃗|v⃗| = v⃗, (12)

therefore, u = u = (e0, v⃗). To explain why MSp is two dimensional, we note that only 2D real null vectors (8)
are allowed as the basis at given point in MSp, which is embedded in M4. Literally speaking, the M 2 can
be viewed as 2D space living on the 4D world sheet.

Suppose the elements of the Hilbert space can be generated by the action of field-valued operators
ϕ(x) (χ(x), A(x)) (x ∈ M4), where χ(x) is the Weyl fermion and A(x) is the complex scalar bosonic field
defined on M4, and accordingly, of field-valued operators ϕ(η) (χ(η)), A(η))) η ∈ M2), where χ(η) is the
Weyl fermion and A(η) is the complex scalar bosonic field defined on M 2, on the translationally invariant
vacuum:

|x >= ϕ(x)|0 >, |x1, x2 >= ϕ(x1)ϕ(x2)|0 > (referring to M4),
|η >= ϕ(η)|0 >, |η1, η2 >= ϕ(η1)ϕ(η2)|0 > (referring to M 2).

(13)

The displacement of the field takes the form

ϕ(x1 + x2) = eix
m
2 pm ϕ(x1) e

−ixm
2 pm , ϕ(η1 + η2) = eiη

m
2 pm ϕ(η1) e

−iη
m
2 pm , (14)

where pm = i∂m is the generator of translations on quantum fields ϕ(x), and pm = i∂m is the generator of
translations on quantum fields ϕ(η) ≡ ϕ(x0, x1):

[ϕ, pm] = i∂m ϕ, [ϕ, pm] = i∂m ϕ, (15)

where, according to embedding map (10), (m = (±) or 0, 1). The relation between the fields ϕ(x) and
ϕ(η) can be given by the proper orthochronous Lorentz transformation. For a field of spin-S⃗, the general
transformation law reads

ϕ′α(x
′) =M β

α ϕβ(x) = exp
(
−1

2ϑ
mnSmn

) β

α
ϕβ(x) = exp

(
−iϑ⃗ · S⃗ − iζ⃗ · K⃗

) β

α
ϕβ(x), (16)
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where the two-by-two matrix M (M ∈ SL(2, C)) of determinant one represents the action of the Lorentz
group on two-component Weyl spinors, ϑ⃗ is the rotation angle about an axis k⃗ (ϑ⃗ ≡ ϑk⃗), and ζ⃗ is the boost
vector ζ⃗ ≡ e⃗v · tanh−1 |v⃗|, provided e⃗v ≡ v⃗/|v⃗|, ϑi ≡ (1/2)εijk ϑk (i, j, k = 1, 2, 3), and ζi ≡ ϑi0 = −ϑ0i.
The antisymmetric tensor Smn = −Snm, satisfying the commutation relations of the SL(2.C), is the (finite-
dimensional) irreducible matrix representations of the Lie algebra of the Lorentz group, and α and β label the
components of the matrix representation space, the dimension of which is related to the spin Si ≡ (1/2)εijk Sk
of the particle. The spin S⃗ generates three-dimensional rotations in space and the Ki ≡ S0i generate the
Lorentz-boosts. The fields of spin-zero (S⃗ = K⃗ = 0) scalar field A(x) and spin-one An(x), corresponding to
the (1/2, 1/2) representation, transform under a general Lorentz transformation as folloqws:

A(η) ≡ A(x), (spin 0);

Am(η) = Λm
nA

n(x), (spin 1).
(17)

The map from SL(2, C) to the Lorentz group is established through the σ⃗-Pauli spin matrices, σm =
(σ0, σ1, σ2, σ3) ≡ (I2, σ⃗), σ̄

m ≡ (I2,−σ⃗), where I2 is the identity two-by-two matrix. Both hermitian
matrices P and P ′ or P and P ′ have expansions, respectively, in σ or σ:

(σm p′m) =M(σm pm)M †, (σm p′m) =M(σm pm)M †, (18)

where M(M ∈ SL(2, C)) is unimodular two-by-two matrix. According to embedding map (10), the σ-
matrices are

σm = σ(±) = 1√
2
(σ0 ± σ1) = 1√

2
(σ0 ± σ3). (19)

The matrices σm form a basis for two-by-two complex matrices P :

P = (pmσ
m) = (p(±)σ

(±)) = (p0σ
0 + p1σ

1), (20)

provided p(±) = i∂η(±) , p0 = i∂x0 and p1 = i∂x1 . The real coefficients p′m and pm, like p′m and pm, are related

by a Lorentz transformation p′m = Λ
n
m pn, because the relations det(σm pm) = p20 − p21 and detM = 1 yield

p′0
2 − p′1

2 = p20 − p21. Correspondence of pm and P is uniquely: pm = 1
2Tr(σ

m P ), which combined with (18)
yields

Λ
m
n(M) = 1

2 Tr
(
σmMσnM †) . (21)

Meanwhile (χσm ζ̄)Am is a Lorentz scalar if the following condition is satisfied:

Λ
m
n (M)σ

n
αα̇ = (M−1)α

βσ
m

ββ̇
(M−1)†β̇ α̇. (22)

A two-component (1/2, 0) Weyl fermion, χβ(x), therefore, transforms under Lorentz transformation to yield
χ

α
(η):

χβ(x) −→ χ
α
(η) = (MR)

β
α χβ(x), α, β = 1, 2, (23)

where the orthochronous Lorentz transformation, corresponding to a rotation by the angles ϑ3 and ϑ2 about,
respectively, the axes n3 and n2, is given by rotation matrix

MR = ei
1
2
σ2ϑ2ei

1
2
σ3ϑ3 . (24)

There with the rotation of an hermitian matrix P is

pmσ
m =MR pmσ

mM †
R, (25)

where pm and pm denote the momenta pm ≡ m(chβ, shβ sinϑ2 cosϑ3, shβ sinϑ2 sinϑ3,
shβ cosϑ2), and pm ≡ m(chβ, 0, 0, shβ).

A two-component (0, 1/2) Weyl spinor field is denoted by χ̄β̇(x), and transforms as

χ̄β̇(x) −→ χ̄α̇(η) = (M−1
R )†α̇

β̇
χ̄β̇(x), α̇, β̇ = 1, 2. (26)

The so-called `dotted´ indices have been introduced to distinguish the (0, 1/2) representation from the
(1/2, 0) representation. The `bar´ over the spinor is a convention that this is the (0, 1/2)-representation.
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We used the Van der Waerden notations for the Weyl two-component formalism: (χ̄
α̇
)∗ = χ

α
and χ̄

α̇
= (χ

α
)∗.

The infinitesimal Lorentz transformation matrices for the (1/2, 0) and (0, 1/2) representations,

M ≃ I2 − i
2 ϑ⃗ · σ⃗ − 1

2 ζ⃗ · σ⃗, for (12 , 0);

(M−1)† ≃ I2 − i
2 ϑ⃗ · σ⃗ + 1

2 ζ⃗ · σ⃗, for (0, 12)
(27)

give Smn = σmn for the (1/2, 0) representation, and Smn = σ̄mn for the (0, 1/2) representation, where the
bilinear covariants that transform as a Lorentz second-rank tensor read

(σmn) β
α ≡ i

4(σ
m
αα̇ σ̄

nα̇β − σnαα̇ σ̄
mα̇β), (σ̄mn)α̇

β̇
≡ i

4(σ̄
mα̇α σn

αβ̇
− σ̄nα̇α σm

αβ̇
), (28)

provided σ̄m ≡ (I2; −σ⃗), (σm ∗)αβ̇ = σmβα̇ and (σ̄m ∗)α̇β = σ̄mβ̇α.

4. The MSp-SUSY

The theoretical significance resides in constructing the MSp-SUSY as a guiding principle. If that is the
case as above, a creation of a particle in M 2 means its transition from initial state defined on M4 into
intermediate state defined on M 2, while an annihilation of a particle in M 2 means vice versa. The same
interpretation holds for the creation and annihilation processes in M4. All the fermionic and bosonic states
taken together form a basis in the Hilbert space. The basis vectors in the Hilbert space composed ofHB⊗HF

is given by
{|n b > ⊗|0 >f , |n b > ⊗f † |0 >f},

or
{|nb > ⊗|0 > f , |nb > ⊗f † |0 > f},

where we consider two pairs of creation and annihilation operators (b†, b) and (f †, f) for bosons and fermions,
respectively, referred to the background space M4, as well as (b†, b) and (f †, f) for bosons and fermions,

respectively, as to background master space M 2. The boson and fermion number operators are Nb = b†b or
N b = b†b, where Nb|nb >= nb|nb > and N b|n b >= n b|n b > (= 0, 1, ...,∞), and Nf = f †f or N f = f †f ,

provided Nf |nf >= nf |nf > and N f |n f >= n f |n f > (= 0, 1). Taking into account the action of (b, b†) or

(b, b†) upon the eigenstates |nb > or |n b >, respectively:

b|nb >=
√
nb|nb − 1 >, b†|nb >=

√
nb+1|nb + 1 >,

b|n b >=
√
n b|n b − 1 >, b†|n b >=

√
n b + 1|n b + 1 >,

(29)

we may construct the quantum operators, (q†, q†) and (q, q), which replace bosons by fermions and vice
versa:

q |n b, nf >= q0
√
n b |n b − 1, nf + 1 >,

q† |n b, nf >= q0
√
n b + 1 |n b + 1, nf − 1 >,

(30)

and that
q |nb, n f >= q0

√
nb |nb − 1, n f + 1 >,

q† |nb, n f > q0
√
nb + 1 |nb + 1, n f − 1 > .

(31)

This framework combines bosonic and fermionic states on the same footing, rotating them into each other
under the action of operators q and q. Putting two operators in one B = (b or b) and F = (f or f), the
canonical quantization rules can be written most elegantly as

[B, B†] = 1; {F, F †} = 1; [B, B] = [B†, B†] = {F, F} = {F †, F †}
= [B, F ] = [B, F †] = [B†, F ] = [B†, F †] = 0,

(32)

where we note that δijδ
3(p⃗ − p⃗′) and δijδ

3(⃗p − p⃗′) are the unit element 1 of the convolution product ∗,

while according to embedding map (10), we have p⃗ = n⃗|p⃗| = p⃗ and p⃗
′
= p⃗

′
. The operators q and q can be

constructed as

q = q0, b f
†, q† = q0 b

† f, q = q0 bf
†, q† = q0 b

† f. (33)

So, we may refer the action of the supercharge operators q and q† to the background space M4, having
applied in the chain transformations of fermion χ (accompanied with the auxiliary field F as it will be seen
later on) to boson A, defined on M 2:

−→ χ(F ) −→ A −→ χ(F ) −→ A −→ χ(F ) −→ . (34)
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Respectively, we may refer the action of the supercharge operators q and q† to the M 2, having applied in
the chain transformations of fermion χ (accompanied with the auxiliary field F ) to boson A, defined on the
background space M4:

−→ χ(F ) −→ A −→ χ(F ) −→ A −→ χ(F ) −→ . (35)

Written in one notation, Q = (q or q), the operators (33) become

Q = q0B
†F = (q or q), Q† = q0BF

† = (q† or q†). (36)

Due to nilpotent fermionic operators F 2 = (F †)2 = 0, the operators Q and Q† also are nilpotent: Q2 =
(Q†)2 = 0. Hence, the quantum system can be described in one notation by the selfadjoint Hamiltonian
H ≡ {Q†, Q} = (Hq ≡ {q†, q} orHq ≡ {q†, q}), and the generatorsQ andQ†, where the commutators as well
as anticommutators appear in the algebra of symmetry generators. Such an algebra involving commutators
and anticommutators is called a Lie algebra (GLA):

H = {Q†, Q} ≥ 0; [H, Q] = [H, Q†] = 0. (37)

This is a sum of Hamiltonian of bosonic and fermionic noninteracting oscillators, which decouples, for Q = q,
into

Hq = q20 (b
†b+ f †f) = q20 (b

†b+ 1
2) + q20 (f

†f − 1
2) ≡ Hb +Hf , (38)

or, for Q = q, into

Hq = q20 (b
†b+ f †f) = q20 (b

†b+ 1
2) + q20 (f

†f − 1
2) ≡ Hb +Hf , (39)

with the corresponding energies:

Eq = q20 (nb +
1
2) + q20 (nf − 1

2), Eq = q20 (nb +
1
2) + q20 (nf − 1

2). (40)

The proposed algebra (37) becomes more clear in a normalization q0 =
√
m:

{Q†, Q} = 2m; {Q, Q} = {Q†, Q†} = 0. (41)

The latter has underlying algebraic structure of the superalgebra for massive one-particle states in the rest
frame of N = 1 SUSY theory without central charges. This is rather technical topic, and it requires care to
do correctly. In what follows we only give a brief sketch. The extension of the MSp-SUSY superalgebra (41)

in general case when p⃗ = i∂⃗ ̸= 0 in M4 or p⃗1 = i∂⃗1 ̸= 0 in M 2, and assuming that the resulting motion of
a particle in M4 is governed by the Lorentz symmetries, the MSp-SUSY algebra can then be summarized
as a non-trivial extension of the Poincaré group algebra those of the commutation relations of the bosonic
generators of four momenta and six Lorentz generators referred to M4. Moreover, if there are several spinor
generators Q i

α with i = 1, ..., N - theory with N−extended supersymmetry, can be written as a GLA of
SUSY field theories, with commuting and anticommuting generators:

{Q i
α , Q̄

j
α̇} = 2δij σm̂αα̇ pm̂;

{Q i
α , Q

j
β } = {Q̄i

α̇, Q̄
j

β̇
} = 0;

[pm̂, Q
i

α ] = [pm̂, Q̄
j
α̇] = 0, [pm̂, pn̂] = 0.

(42)

The odd part of the supersymmetry algebra is composed entirely of the spin-1/2 operators Q i
α , Q

j
β . In

order to trace a maximal resemblance in outward appearance to the standard SUSY theories, here we set
one notation m̂ = (m if Q = q, or m if Q = q), and as before the indices α and α̇ run over 1 and 2.

The supersymmetry charges, Q i
α , can be obtained as usual Noether charges associated with a conserved

fermionic Noether current, J i m̂
α = (j im

α or j im
α

),

q i
α =

∫
d3x j i 0

α , or q i
α
=

∫
dη j i 0

α
. (43)

The supercurrent J i m̂
α is an anticommuting six-vector, which also carries a spinor index, as befits the

current associated with a symmetry with fermionic generators, where the supercurrent and its hermitian
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conjugate are separately conserved (∂m j
im

α = 0 and ∂m j̄
im

α = 0), and (∂m j
im

α
= 0 and ∂m j̄

im

α
= 0). So

for both supercharges, q and q, we get a supersymmetric models, respectively:

{q i
α , q̄

j
α̇} = 2δij σmαα̇ pm;

{q i
α , q

j
β } = {q̄i α̇, q̄

j

β̇
} = 0;

[pm, q
i

α ] = [pm, q̄
j
α̇] = 0, [pm, pn] = 0.

(44)

and
{q i

α
, q̄j α̇} = 2δij σ

m
αα̇ pm;

{q i
α
, q j

β } = {q̄i α̇, q̄
j

β̇
} = 0;

[pm, q
i
α
] = [pm, q̄

j
α̇] = 0, [pm, pn] = 0.

(45)

Remark: In the standard theory, the Q’s operate with fields defined in the single M4 space. It is why
the result of a Lorentz transformation in M4 followed by a supersymmetry transformation is different from
that when the order of the transformations is reversed (Sohnius, 1985). But, in the MSp-SUSY theory, the
Q’s ((33), (36)) operate with fields defined on both M4 and M 2 spaces, fulfilling a transition of a particle
between these spaces (M4 ⇌M 2). The particle motion arises as a complex process of the global MSp-SUSY
double transformations, therefore we will obtain the same result if we reverse the order of the Lorentz and
supersymmetry transformations.

We cut short further description of the unitary supersymmetry representations that give rise to the
concept of supermultiplets, since they are so well known.

5. Non-trivial linear representation of the MSp-SUSY algebra

With these guidelines to follow, we start by considering the simplest example of a supersymmetric
theory in six dimensional background space M4 ⊕M 2 as the MSp-generalization of free Wess-Zumino toy
model (Wess & Zumino, 1974) of standard theory. To obtain a feeling for this model we may consider
first example of non-trivial linear representation (ψ,A,F), of the MSp-SUSY algebra. This has N = 1 and
s0 = 0, and contains two Weyl spinor states of a massive Majorana spinor ψ(χ, χ), two complex scalar
fields A(A, A), and two more real scalar degrees of freedom in the complex auxiliary fields F(F, F ), which
provide in supersymmetry theory the fermionic and bosonic degrees of freedom to be equal off-shell as well
as on-shell, and are eliminated when one goes on-shell. The component multiplets, (ψ,A,F), are called
the chiral or scalar multiplets. This model is instructive because it contains the essential elements of the
MSp-induced SUSY and, therefore, intended to be rather complementary to the superfield derivations given
in next section.

The anticommuting (Grassmann) parameters ϵα(ξα, ξα) and ϵ̄α(ξ̄α, ξ̄
α
):

{ϵα, ϵβ} = {ϵ̄α, ϵ̄β} = {ϵα, ϵ̄β} = 0,
{ϵα, Qβ} = · · · = [pm̂, ϵ

α] = 0,
(46)

allow us to write the algebra (42) for (N = 1) entirely in terms of commutators:

[ϵQ, Q̄ϵ̄] = 2ϵσm̂ϵ̄pm̂,
[ϵQ, ϵQ] = [Q̄ϵ̄, Q̄ϵ̄] = [pm̂, ϵQ] = [pm̂, Q̄ϵ̄] = 0.

(47)

For brevity, here the indices ϵQ = ϵαQα and ϵ̄Q̄ = ϵ̄α̇Q̄
α̇ will be suppressed unless indicated otherwise. This

supersymmetry transformation maps tensor fields A(A, A) into spinor fields ψ(χ, χ) and vice versa. From
the algebra (47) we see that Q has mass dimension 1/2. Therefore, as usual, fields of dimension ℓ transform
into fields of dimension ℓ+ 1/2 or into derivatives of fields of lower dimension.

Starting with the scalar field A(η) = A(x) (17), in the view of chain transformations (34), we should
define the spinor χ as the field into which A(η) transforms:

δξA = (ξq + ξ̄q̄)×A =
√
2ξχ. (48)

The field χ transforms into a tensor field of higher dimension and into the derivative of A itself:

δξχ = (ξq + ξ̄q̄)× χ = i
√
2σmξ̄(δ0m ∂0 +

1
|x⃗|x

iδim ∂1)A+
√
2ξF, (49)
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where i = 1, 2, 3. The coefficient of (δ0m ∂0 +
1
|x⃗|x

iδim ∂1)A is chosen to guarantee that the commutator of

δξ1δξ2A = i2ξ1σ
mξ̄2(δ

0
m ∂0 +

1
|x⃗|x

iδim ∂1)A+ 2ξ1ξ̄2F (50)

closes in the sense of

(δξ1δξ2 − δξ2δξ1)A = −2i(ξ1σ
mξ̄2 − ξ2σ

mξ̄1)× (δ0m∂0 +
1
|x⃗|x

iδim∂1)A. (51)

The same commutator acting on the field χ: (δξ1δξ2 − δξ2δξ1)χ, closes if

δξF = (ξq + ξ̄q̄)× F = i
√
2ξ̄σ̄m∂mχ. (52)

In the same way, we should define the spinor χ as the field into which A(x) transforms. In this case, the
infinitesimal supersymmetry transformations for Q = q, by virtue of (35), read

δ ξA = (ξ q + ξ̄ q̄)×A =
√
2 ξ χ,

δ ξ χ = (ξ q + ξ̄ q̄)× χ = i
√
2σm ξ̄ (δ

0
m ∂0 +

|x⃗|
xi δ

1
m ∂i)A+

√
2ξ F ,

δ ξ F = (ξ q + ξ̄ q̄)× F = i
√
2 ξ̄ σ̄m ∂m χ.

(53)

If A has dimension 1, then ψ has dimension 3/2, while F has dimension 2 and must assume the role of
auxiliary field. We see that the latter transforms into a space derivative under δξ or δξ. This will always
be the case for the component of highest dimension in any given multiplet. The first relation in (47) means
that there should be a particular way of going from one subspace (bosonic/fermionic) to the other and back,
such that the net result is as if we had operator of translation pm̂ on the original subspace. Actually, in
general, the supersymmetry transformations close supersymmetry algebra for A, ψ and F .

To construct an invariant action it is sufficient to find combinations of fields which transform into space
derivatives. The supersymmetric kinetic energy defined in terms of superfields, ϕ(z(M2), constructed in the

superspace z(M2) = (ηm, θ, θ̄), is ∫
d2η d4θ ϕ† ϕ, (54)

where the superspace Lagrangian is written

ϕ† ϕ = A∗A+ · · ·+ θ θ θ̄ θ̄
[
1
4A

∗ A+ 1
4 A∗A− 1

2∂mA
∗ ∂mA

+F ∗ F + i
2∂m χ̄ σ̄

m χ− i
2 χ̄σ̄

m ∂m χ
]
.

(55)

In (54), as usual, we imply the measures in terms of four Grassmannian variables θ1, θ2 and θ̄
1
, θ̄

2
as follows:

d4θ = d2θ d2θ̄, d2θ = −1
4εαβ θ

α θβ,

d2θ̄ = −1
4ε

α̇β̇ θ̄α̇ θ̄β̇,
(56)

where involving Berezin’s integration in the superspace, we have∫
θ2 d2θ =

∫
θ̄2 d2θ̄ = 1,

∫
θ2θ̄2 d4θ = 1. (57)

All other integrations give zero. Similarly, consider the superspace z(M4) = (xm, θ(θ, θ̄)), θ̄(θ, θ̄)), which is
an extension of M4 by the inclusion of additional spinors, induced by the spinors θ and θ̄ (see (93)). The
supervolume integrals of products of superfields, ϕ(z(M4)), constructed in the superspace z(M4) will lead to
the supersymmetric kinetic energy for the MSp-Wess-Zumino model∫

d4x d4θ ϕ†ϕ, (58)

where the superspace Lagrangian reads

ϕ†ϕ = A∗A+ · · ·+ θθθ̄θ̄
[
1
4A

∗ A+ 1
4 A∗A− 1

2∂mA
∗ ∂mA

+F ∗F + i
2∂mχ̄σ̄

mχ− i
2 χ̄σ̄

m∂mχ
]
,

(59)

and A = A, ∂mA
∗ ∂mA = ∂mA

∗ ∂mA.
Thus, the equations of motion for non-trivial linear representation model can be derived from the fol-

lowing Lagrangians:
LQ=q = L0 +mLm, LQ=q = L0 +mLm, (60)
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provided,
L0 = i∂mχ̄σ̄

mχ+A∗ A+ F ∗F, Lm = AF +A∗ F ∗ − 1
2χχ− 1

2 χ̄χ̄,
L0 = i∂m χ̄σ̄

mχ+A∗ A+ F ∗F , Lm = AF +A∗ F ∗ − 1
2χχ− 1

2 χ̄ χ̄,
(61)

and = , A ≡ A. Whereupon, the equations for the Weyl spinor ψ and complex scalar A of the same
mass m, are

iσ̄m ∂m χ+mχ̄ = 0, iσ̄m ∂m χ+mχ̄ = 0,

F +mA∗ = 0, and F +mA∗ = 0,
A+mF ∗ = 0, A+mF ∗ = 0.

(a) (b)

(62)

In accord to (34) and (35), respectively, (a) stands for Q = q (referring to the motion of a fermion, χ, in
M4) and (b) stands for Q = q (so, of a boson, A, in M4). Finally, the algebraic auxiliary field F can be
eliminated to find

LQ=q = i∂mχ̄σ̄
mχ− 1

2(χχ+ χ̄χ̄) +A∗ A−m2A∗A,
LQ=q = i∂m χ̄σ̄

mχ− 1
2(χχ+ χ̄ χ̄) +A∗ A−m2A∗A.

(63)

To complete the model, we also need superspace expressions for the masses and couplings, which can be easily
found in analogy of the standard theory, namely: 1) fermion masses and Yukawa couplings, (∂2P/∂A2)ψψ;
and 2) the scalar potential, V(A, A∗) = |∂P/∂A|2; where P = (1/2)mΦ2 + (1/3)λΦ3 is the most general
renormalizable interaction for a single chiral superfield. Thereby, the auxiliary field equation of motion reads
F∗ + (∂P/∂A) = 0. Similarly, we can treat the vector superfields, etc. Here we shall forbear to write them
out as the standard theory is so well known. Divergences in SUSY field theories are greatly reduced. Indeed
all the quadratic divergences disappear in the renormalized supersymmetric Lagrangian and the number of
independent renormalization constants is kept to a minimum.

6. Rigid superspace geometry, superfields

In the framework of standard generalization of the coset construction (Callan et al., 1969, Coleman et al.,
1969, Salam & Strathdee, 1974, Weinberg, 1968), we will take G = Gq ×Gq to be the supergroup generated
by the MSp-SUSY algebra (42). Let the stability group H = Hq ×Hq be the Lorentz group (referred to M4

and M 2), and we choose to keep all of G unbroken. Given G and H, we can construct the coset, G/H, by
an equivalence relation on the elements of G: Ω ∼ Ωh, where Ω = Ωq × Ωq ∈ G and h = hq × hq ∈ H,
so that the coset can be pictured as a section of a fiber bundle with total space, G, and fiber, H. So, the
Maurer-Cartan form, Ω−1dΩ, is valued in the Lie algebra of G, and transforms as follows under a global G
transformation,

Ω −→ gΩh−1,
Ω−1dΩ −→ h(Ω−1dΩ)h−1 − dhh−1,

(64)

with g ∈ G. We also consider a superspace which is a 14D-extension of a direct sum of background spaces
M4 ⊕ M 2 (spanned by the 6D-coordinates Xm̂ = (xm, ηm) by the inclusion of additional 8D-fermionic
coordinates Θα = (θα, θα) and Θ̄α̇ = (θ̄α̇, θ̄ α̇), as to (q, q), respectively. These spinors satisfy the following
relations:

{Θα, Θβ} = {Θ̄α̇, Θ̄β̇} = {Θα, Θ̄β̇} = 0,

[xm, θα] = [xm, θ̄α̇] = 0,
[ηm, θα] = [ηm, θ̄α̇] = 0.

(65)

and Θα∗ = Θ̄α̇. Points in superspace are identified by the generalized coordinates

z(M) = (Xm̂, Θα, Θ̄α̇) = (xm, θα, θ̄α̇)⊕ (ηm, θα, θ̄α̇).

We have then the one most commonly used `real´ or `symmetric´ superspace parametrized by

Ω(X, Θ, Θ̄) = ei(−Xm̂pm̂+ΘαQα+Θ̄α̇Q̄
α̇) = Ωq(x, θ, θ̄)× Ωq(η, θ, θ̄), (66)

where we now imply a summation over m̂, etc., such that

Ωq(x, θ, θ̄) = ei(−xmpm+θαqα+θ̄α̇q̄
α̇), Ωq(η, θ, θ̄) = ei(−ηmpm+θαq

α
+θ̄ α̇q̄

α̇). (67)

Supersymmetry transformation will be defined as a translation in superspace, specified by the group element

g(0, ϵ, ϵ̄) = ei(ϵ
αQα+ϵ̄α̇Q̄

α̇) = gq(0, ξ, ξ̄)× gq(0, ξ, ξ̄) = ei(ξ
αqα+ξ̄α̇q̄

α̇) × ei(ξ
αq

α
+ξ̄

α̇
q̄α̇), (68)
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with corresponding anticommuting parameters ϵ = (ξ or ξ). To study the effect of supersymmetry transfor-
mations (64) and h = 1, we consider

g(0, ϵ, ϵ̄) Ω(X, Θ, Θ̄) = ei(ϵ
αQα+ϵ̄α̇Q̄

α̇) ei(−Xm̂pm̂+ΘαQα+Θ̄α̇Q̄
α̇). (69)

The multiplication of two successive transformations can be computed with the help of the Baker-Campbell-
Hausdorf formula eAeB = eA+B+(1/2)[A,B]+···. Hence the transformation (69) induces the motion as is
evident from the first relation of (47):

g(0, ϵ, ϵ̄) Ω(Xm̂, Θ, Θ̄) → (Xm̂ + iΘσm̂ ϵ̄− i ϵ σm̂ Θ̄, Θ+ ϵ, Θ̄ + ϵ̄), (70)

namely,
gq(0, ξ, ξ̄) Ωq(x, θ, θ̄) → (xm + i θ σm ξ̄ − i ξ σm θ̄, θ + ξ, θ̄ + ξ̄),
gq(0, ξ, ξ̄) Ωq(η, θ, θ̄) → (ηm + i θ σm ξ̄ − i ξ σm θ̄, θ + ξ, θ̄ + ξ̄).

(71)

The spinors θ(θ, θ̄) and θ̄(θ, θ̄) satisfy the embedding map (10), namely ∆x0 = ∆x0 and ∆x2 = (∆x⃗)2, so
from (71) we obtain

θ σ0 ξ̄ − ξ σ0 θ̄ = θ σ0 ξ̄ − ξ σ0 θ̄,

(θ σ3 ξ̄ − ξ σ3 θ̄)2 = (θ σ⃗ ξ̄ − ξ σ⃗ θ̄)2.
(72)

The superfield Φ(z(M)) = ϕ(z(M4) or ϕ(z(M2)), which has a finite number of terms in its expansion in
terms of Θ and Θ̄ owing to their anticommuting property, can be considered as the generator of the various
components of the supermultiplets. We will consider only a scalar superfield Φ′(z′(M)) = Φ(z(M)), an
infinitesimal supersymmetry transformation of which is given as

δϵΦ(z
(M)) = (ϵαQα + ϵ̄α̇Q̄

α̇)× Φ(z(M)). (73)

Acting on this space of functions, the Q and Q̄ can be represented as differential operators:

Qα = ∂
∂Θα − iσm̂αα̇Θ̄

α̇∂m̂, Q̄α̇ = ∂
∂Θ̄α̇

− iΘασm̂
αβ̇
εβ̇α̇∂m̂, (74)

where, as usual, the undotted/dotted spinor indices can be raised and lowered with a two dimensional
undotted/dotted ε−tensors, and the anticommuting derivatives obey the relations

∂
∂Θα Θβ = δβα,

∂
∂Θα ΘβΘγ = δβαΘγ − δγαΘβ, (75)

and similarly for Θ̄. In order to write the exterior product in terms of differential operators, one induces a
new basis in rigid superspace of supervielbein 1-form

eA(z) = dzM e A
M (z), (76)

and that
DA = e N

A (z) ∂
∂zN

, (77)

where to be brief we left implicit the symbol ∧ in writing of exterior product. The inverse vielbein E M
A (z)

is defined by the relations E A
M (z)E N

A (z) = δ N
M , and E M

A (z)E B
M (z) = δ B

A . The covariant derivative
operators

Dm̂ = ∂m̂, Dα = ∂
∂Θα + iσm̂αα̇Θ̄

α̇∂m̂,

D̄α̇ = ∂
∂Θ̄α̇

+ iΘασm̂
αβ̇
εβ̇α̇∂m̂,

(78)

anticommute with the Q and Q̄

{Qα, Dβ} = {Q̄α̇, D̄β̇} = {Qα, D̄β̇} = {Q̄α̇, Dβ} = 0, (79)

and satisfy the following structure relations:

{Dα, Dα̇} = −2iσm̂αα̇∂m̂,
{Dα, Dβ} = {D̄α̇, D̄β̇} = 0.

(80)
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From (78), we obtain

e M
A =

 e m̂
â = δm̂â e µ

â = 0 eâ µ̇ = 0
e m̂
α = iσm̂αα̇Θ̄

α̇ e µ
α = δµα eα µ̇ = 0

eα̇ m̂ = iΘασm̂
αβ̇
εβ̇α̇ eα̇ µ = 0 eα̇µ̇ = δα̇µ̇

 , (81)

where â = (a or a), a = 0, 1, 2, 3; a = (+), (−). The supersymmetry transformations of the component
fields can be found using the differential operators (78).

The covariant constraint

D̄α̇Φ(z
(M)) = 0, (82)

which does not impose equations of motion on the component fields, defines the chiral superfield, Φ. Under
the supersymmetry transformation (70) the chiral field transforms as follows:

δξΦ =

{
(ξq + ξ̄q̄)× ϕ = δξ A(η) +

√
2θδξχ(x) + θθδξF (x) + · · · , atQ = q,

(ξq + ξ̄ q̄)× ϕ = δ ξ A(x) +
√
2θδ ξ χ(η) + θ θδ ξ F (η) + · · · , atQ = q.

(83)

Equation (83) show that the chiral superfield contains the same component fields as the MSp-Wess-Zumino
toy model.

7. Two postulates of SR

In this section we derive two postulates on which the theory of SR is based. Let us focus on the simple
case of a peculiar anticommuting spinors (ξ, ξ̄) and (ξ, ξ̄) defined as

ξα = i τ
2 θ

α, ξ̄
α̇
= −i τ∗

2 θ̄α̇, ξα = i τ2θ
α, ξ̄α̇ = −i τ∗2 θ̄α̇. (84)

The atomic displacement caused by double transition of a particle M4 ⇌M 2, according to (12), reads

∆η
(a)

= em∆η
m
(a) = uτ, (85)

where the components ∆η
m
(a), according to (71), are written

∆η
m
(a) = vm τ = iθ σm ξ̄ − iξ σm θ̄. (86)

Here the real parameter τ (= τ∗) can physically be interpreted as the atomic duration time of double
transition. By virtue of (84), the (86) is reduced to

∆η
m
(a) = (θ σm θ̄)τ. (87)

In Van der Warden notations for the Weyl two-component formalism θ̄α̇ = (θα)
∗ (App.A), the (85), gives

∆η2
(a)

= u2τ2 = v(+)v(−)τ2 = 2(θ1 θ̄1θ2 θ̄2)τ
2 = 2(θ21θ

2
2)τ

2 ≥ 0, (88)

provided, v(+) =
√
2 θ1 θ̄1 =

√
2 θ21 and v(−) =

√
2 θ2 θ̄2 =

√
2 θ22. The (88), combined with (10), (11)

and (19), can be recast into the form

∆η2
(a)

= 1
2

[
(∆x

0
(a))

2 − (∆x
1
(a))

2
]
, (89)

where ∆x
0
(a) = v0τ , ∆x

1
(a) = v1 τ , and v(±) = 1√

2
(v0 ± v1). Hence the velocities of light in vacuum, v0 = c,

and of a particle ,v⃗ 1 = e1v
1 = n⃗|v⃗| = v⃗ (|v⃗| ≤ c), are

v0 = θ σ0 θ̄ = (θ1 θ̄1 + θ2 θ̄2) = θ θ̄,
v1 = θ σ1 θ̄ = (θ1 θ̄1 − θ2 θ̄2).

(90)

Both map relationship in (72) are reduced by (84) to

θθ̄ = v0, θθθ̄θ̄ = 2
3(v

1)2. (91)
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Here we have used the following spinor algebra relations:

(θσm θ̄)(θσn θ̄) = 1
2 θθθ̄θ̄ g

mn. (92)

By virtue of relations θαθβ = 1
2εαβθθ and θ̄α̇θ̄β̇ = −1

2εα̇β̇ θ̄θ̄, where the antisymmetric tensors εαβ and εαβ

(ε21 = ε12 = 1, ε12 = ε21 = −1, ε11 = ε22 = 0), and that of bilinear combinations θθ and θ̄θ̄, are invariant
under Lorentz transformations, we obtain from (91): θ21 + θ22 = v0, and θ1θ2 =

1√
6
v1, which yield

θ1(θ, θ̄) =
1
2

[(
v0 +

√
2
3v

1
)1/2

+
(
v0 −

√
2
3v

1
)1/2]

,

θ2(θ, θ̄) =
1
2

[(
v0 +

√
2
3v

1
)1/2

−
(
v0 −

√
2
3v

1
)1/2]

.

(93)

We conclude that the motion of a particle in M4 is encoded in the spinors θ and θ̄ referred to the master
space M 2, which is indispensably tied to the propagating particle of interest. The Lorentz invariance is a
fundamental symmetry and refers to measurements of ideal inertial observers that move uniformly forever
on rectilinear timelike worldlines. In view of relativity of all kinds of motion, we are of course not limited
to any particular constant spinor θ which yields the velocity v⃗(θ), but can choose at will any other constant
spinors θ′, θ′′, . . . yielding respectively the velocities v⃗′(θ′), v⃗ ′′(θ′′), . . . , whose transformational law on the
original spinor θ is known (16):

θ′α =M β
α θβ, θ̄α̇ = (M∗) β̇

α̇ θ̄β̇, α̇, β̇ = 1, 2, (94)

where M ∈ SL(2, C), the hermitian matrix M∗ is related by a similarity transformation to (M−1)†, i.e.

(M †)βα = (M∗) β
α .

Aforesaid ensures to obtain some feeling about the origin of the two postulates of SR. Certainly, by
virtue of (94) and (22), we derive the first founding property (i) that the atomic displacement ∆η

(a)
, caused

by double transition of a particle M4 ⇌M 2, is an invariant:

(i) ∆η
(a)

= ∆η′
(a)

= · · · = inv. (95)

The (94) also gives the second (ii) founding property that the bilinear combination θ θ̄ is a constant:

(ii) c = θ θ̄ = θ′ θ̄
′
= · · · = const. (96)

The latter yields a second postulate of SR (Einstein’s postulate) - the velocity of light, c, in free space
appears the same to all observers regardless the relative motion of the source of light and the observer. The
c is the maximum attainable velocity (90) for uniform motion of a particle in Minkowski background space,
M4. Equally noteworthy is the fact that (95) and (96) combined yield invariance of the element of interval
between two events ∆x = k∆η

(a)
(for given integer number k) with respect to the Lorentz transformation:

k2∆η2
(a)

= (c2 − v21)∆t
2 = (c2 − v⃗ 2)∆t2 = (∆x0)2 − (∆x⃗)2 ≡ (∆s)2 =

(∆x′0)2 − (∆x⃗)′2 ≡ (∆s′)2 = · · · = inv.,
(97)

where x0 = ct, x0
′
= ct′, . . . . We have here introduced a notion of physical relative finite time intervals

between two events ∆t = kτ/
√
2, ∆t′ = kτ ′/

√
2, ....

The motion, say, of spin-0 particle in M 2 can be described by the chiral superfield Φ(ηm, θ, θ̄), while
a similar motion of spin-1/2 particle in M4 can be described by the chiral superfield Φ(xm, θ, θ̄), etc.
Therefore, what has been said above will require a complete revision of our ideas about the Lorentz code of
motion, to be now referred to as the individual code of a particle, defined as its intrinsic property.

Having SLC to be equipped with the MSp-SUSY mechanism, the spinors θ encode all of the information
necessary for the two founding properties (95) and (96) of SR. In subsequent paper (?), we will address
the deformation of these spinors: θ → θ̃ = λ1/2 θ, etc., where λ appears as a deformation function of the
Lorentz invariance (LIDF). This yields a consistent microscopic theory of Lorentz invariance violation (LIV)
caused by the deformation of both the line element, d̃s = λds, and maximum attainable velocity, c̃ = λc, of
a particle. We will discuss the corresponding deformed geometry at LIV, and complement this conceptual
investigation with testing of various LIDFs in the UHECR- and TeV-γ threshold anomalies with in several
instructive scenarios: the Coleman and Glashow-type perturbative extension of SLC, the LID extension of
standard model, the LID in quantum gravity motivated space-time models and the LID in loop quantum
gravity models. Consequently, in the third paper of this series, we will construct the framework of local
MSp-SUSY (?), which will address the accelerated motion and inertia effects.
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8. The physical outlook and concluding remarks

Resuming the whole physical picture, in this Section 8 we expose the assertions made through a brief
physical outlook of the key points of proposed theory. As concluding remarks, we also present what we think
is the most important that distinguish this theory from phenomenological approaches of differing MAVs in
the published literature.

Underlying physical processes. We identify the physical processes underlying the inertial uniform
motion, which is probably the most fascinating challenge for physical research, and review the foundations
of SLC.

MSp. We motivate the subject by conceiving of double background spaces - 4D Minkowski space, M4, and
MSp for each particle. The geometry of MSp is a new physical entity, with degrees of freedom and a dynamics
of its own. We assume that a flat MSp is the 2D composite space M2. Then, a smooth embedding map
f : M2 −→ M4 is defined to be an immersion - an embedding which is a function that is a homeomorphism
onto its image. So that the MSp≡M 2 is viewed as 2D space living on the 4D world sheet. Given the inertial
frames S(4), S

′
(4), S

′′
(4), ... inM4, we define the corresponding inertial frames S(2), S

′
(2), S

′′
(2),... inM 2, which

used by the non-accelerated observers for the positions xr, x′r, x′′r, ... of a free particle in flat M 2. Thereby
the time axes of the two systems S(2) and S(4) coincide in direction and that the time coordinates are taken
the same.

We hypothesize that the elementary act of motion consists of an `annihilation´ of a particle at point
(x, t) ∈M4, which can be understood as the transition from initial state |x, t > to unmanifested intermediate
state (`motion´ state), |x, t >, and of subsequent `creation´ of a particle at infinitely close final point
(x′, t′) ∈ M4, which means the transition from `motion´ state, |x, t >, to final state, |x′, t′ >. The motion
state, |x, t) >, is defined on unmanifested `master´ space, M 2, which includes the points of all the atomic
elements, (x, t) ∈ M 2. This furnishes justification for an introduction of master space, M 2. The M 2 is
indispensably tied to propagating particle, without relation to the other particles.

`Double space´- or `MSp´-SUSY. The net result of each atomic double transition of a particle M4 ⇌
M 2 is as if we had operated with a space-time translation on the original space M4. Such successive
transformations will induce in M4 the inhomogeneous Lorentz group, or Poincaré group, and that the
unitary linear transformation |x, t >→ U(Λ, a)|x, t > on vectors in the physical Hilbert space. We build up
the `double space´- or `MSp´-SUSY theory, wherein the superspace is a 14D-extension of a direct sum of
background spaces M4 ⊕M 2 by the inclusion of additional 8D fermionic coordinates. The latter is induced
by the spinors θ and θ̄ referred toM 2. By virtue of embedding map (10), the spinors θ and θ̄, in turn, induce
the respective spinors θ(θ, θ̄) and θ̄(θ, θ̄) (see (93)), as to M4. Consequently, the `symmetric´ superspace
is parameterized (see (66)) by Ω = Ωq(x

m, θ(θ, θ̄), θ̄(θ, θ̄)) × Ωq(η
m, θ, θ̄). Supersymmetry transformation

is defined as a translation in superspace, specified by the group element with corresponding anticommuting
parameters. The multiplication of two successive transformations induce the motion. Obviously the ground
state of MSp-SUSY has a vanishing energy value and is nondegenerate (SUSY unbroken). All the particles
are living on M4, their superpartners can be viewed as living on M 2. We emphasize that in MSp-SUSY
theory, alike in standard exact SUSY theory, the vacuum zero point energy problem, standing before any
quantum field theory in M4, will be solved. The particles in M4 themselves can be considered as excited
states above the underlying quantum vacuum of background double space M4 ⊕M 2, where the zero point
cancellation occurs at ground-state energy, provided that the natural frequencies are set equal (q20 ≡ νb = νf ),
because the fermion field has a negative zero point energy while the boson field has a positive zero point
energy.

Two founding properties. On the premises of previous paragraph, we derive the two founding properties
that (i) the atomic displacement ∆η

(a)
, caused by double transition of a particle M4 ⇌M 2, is an invariant;

and (ii) the bilinear combination θ θ̄ is a constant. These properties underly the two postulates on which
the theory of SR is based. Thus, we show that the motion of a particle in M4 is encoded in the spinors θ
and θ̄ referred to the master space M 2. This calls for a complete reconsideration of our ideas of Lorentz
motion code, to be now referred to as the individual code of a particle, defined as its intrinsic property.
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This framework allows to introduce the physical finite relative time interval between two events as integer
number of the own atomic duration time of double transition of a particle M4 ⇌M 2.

Intrinsic code. The predictions of proposed theory require a complete revision of our ideas about the
Lorentz code, to be now referred to as the individual code of a particle, defined as its intrinsic property.
The MSp , embedded in the background 4D-space, is an unmanifested indispensable individual companion
to the particle of interest, devoid of any external influence.
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