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Abstract

The data of modern catalogs allow us to consider in detail the issue of the spatial velocity distribution.
The stars in the solar vicinity make it possible to avoid errors and draw detailed conclusions about their
kinematics. For a corrected study, we took a sample of stars from the Gaia DR3 within 300 pc. This
area contains a number of star clusters and streams. It was found that in the circumscribed vicinity the
direction of the stars is divided into several vast concentrations, the apex of motion of which lies in the
direction of the motion of the Sun and in the direction of motion of the Ursa Major group, which in turn is
divided into two separate groups in direction in space. In addition, a group of stars is considered, which,
according to their kinematic characteristics, most likely belong to a halo or bulge. High-velocity stars are
also considered under the assumption of their nature.
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1. Introduction

The vicinity of the Sun in the region of 300 pc is a fairly close region and here observations are not
interfered with gas clouds, which makes it possible to select stars with the most reliable parameters in 6D
phase space. Investigation of the solar vicinity are an important part of studying the structure of the Galaxy.
In this region, low-luminosity stars are also available for study, the observation of which at large distances
from the Sun is extremely limited.

It is believed that representatives of all galactic subsystems are located in the vicinity of the Sun. Such
data is very important for stellar statistics. If the dependence of any parameters on the galactocentric
distance are known, it is possible to obtain a quantitative estimate of this value for the Galaxy as a whole.
An example of such a parameter is the spatial density of stars in the circumsolar environment. The calculated
distribution of the parameters of stars belonging to the solar vicinity are also quite reliable.

Gaia DR3 (2022) star data allows to select stars with the most reliable phase space determinations.
Residual velocities and chemical composition carry information about the chemical and dynamic evolution
of the Galaxy and the formation of its subsystems. An effective tool for extracting this information is
complex statistical studies of the indicated characteristics of stars in the galactic field and star clusters.

In this paper, the putative stars of the galaxy halo in the vicinity of the sun have been considered,
their percentage have been estimated, high-velocity stars have been considered, proposals have been made
about their origin, as well as large-scale kinematic structures in the selected vicinity have identified using
the AD-diagram method.

2. Data selection

The sample of stars located at a distance from the Sun up to 300 pc was taken from the Gaia DR3
(ref) catalog. The stars were selected according to the following criteria: RUWE < 1.4, o /w < 10%,
Opa/ta < 10% and 0,5/ p1s < 10%.

Stars with available G and RV values were taken. No restrictions on radial velocity error were applied
in order to obtain the most complete sample of stars. Thus, 1,412,752 stars were selected.
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The chemical and astrometric data used to obtain the characteristics of the selected stars are obtained
from APOGEE DR17(Abdurro’uf et al. (2022)), GALAH 3 (Buder et al. (2021)), LAMOST DRS8 (Wang
et al. (2023)) and Gaia DR3 (2022) catalogues, respectively.
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Figure 1. Distribution of stars in the galactic coordinate system (I, b), n=1,412,752

For all selected stars, a kinematic and spatial distribution was constructed. The position of stars in the
sky is generally uniform, although the graph shows small clumps that are star clusters (Fig. 1).

The distribution of stars in the Galactic velocity components (UV W) calculation was considered accord-
ing to the formulae and matrix equations presented in Johnson & Soderblom (1987). Here, we adopt a local
standard of rest velocity Visr = 220 km/s Tian et al. (2015), and the solar peculiar motion (U, V, W)gun =
(-8.5, 13.38, 6.49) Coskunoglu et al. (2011). We use this 6D phase space information to study the kinematics
of our sample stars in the Galaxy.
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Figure 2. Distribution of velocity components relative to the Galaxy center (GC') of the entire sample. The
supposed halo population is highlighted in an orange oval.

Figure 2 shows the distribution of velocities of stars in our sample. As you can see, it is predominantly
approximately elliptical. The isolated parts and inhomogeneities are visible on the VU and VW planes. In
Gaia Collaboration et al. (2018), this is explained by the fact that in the solar vicinity there are a number of
moving groups and dynamical streams and the existence in this region of under-density of stars, as well as
stars of other substructures of the Galaxy. If we look at the UW plane, we see that the bottom part of the
diagram differs from the central part. In the Fig. 2 this area is circled with an oval. We assume that these
are possible halo stars, the population of which also penetrates to the disk. Halo stars are characterized by
the fact that they move in highly elongated orbits. In addition, the plots show a small number of stars with
high velocities, lying far beyond the main clump. These can be high-velocity stars of various origins, such
as, for example, disintegrated close binaries stars or it can be accelerated by a massive galactic nucleus, or
those that came to us from other galaxies.

To separate the populations of the disk and other parts of the galaxy, the Toomre diagram (Fig. 3) was
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used, which is often used to distinguish stars by their kinematic properties. The abscissa axis shows the
galactocentric velocity Vigg, that is, the velocity of the object in the direction of rotation of the Galaxy.

The orthogonal components of velocity \/Ugs rT Wgs R are plotted along the ordinate axis.
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Figure 3. Toomre diagram of stars in the solar neighborhood. The blue semicircle line divide disk/non-disk
Galaxy star population components. Green line divide retrograde and prograde stars.

Velocities that is, the velocity of the object in the direction of rotation of the Galaxy are plotted along
the abscissa axis.

A semicircle in Fig. 3 separates the components of the disk and other populations, where the stars of
the disk are chosen so that |V —Viggr| < 220 km/s where Vi sr = 220 km/s. Here we use the definition of a
halo, following Bonaca et al. (2017). It can be seen that many sources are concentrated precisely in the disk
region. In addition, a more dispersed population with a greater spread of speeds is clearly visible. Thus,
3818 stars were selected, which will be further discussed in this paper.

3. Non-disk stars

The stars selected above were analyzed using metallicity from APOGEE DR17, GALAH3, LAMOST
DRS8 catalogs. For our sample, 170 stars were found in APOGEE, 67 stars in GALAH, and 58 stars
in LAMOST. The distribution of stars by metallicity based on these catalogs is shown in Fig. 4. We also
matched star in catalogs: GALAX and APOGEE - 3 matches, LAMOST and APOGEE - 9 matches, GALAX
and LAMOST - 1 match. Metallicity value are mostly consistent with each other, however, the values for
metallicity in LAMOST are slightly biased towards lower estimates regarding GALAX and APOGEE.
Various authors give different estimates of what metallicity value “halo stars” start at, but on average it
is -1 or -1.2 dex. As you can see (Fig. 4, left panel), there are quite a lot of such stars here, at least half.
Previously, Carollo et al. (2007), based on SDSS data, revived the idea that the halo could be represented
by two widely overlapping components. The inner halo peaks at [Fe/H] ~ -1.6 dex, while the outer halo
peaks around [Fe/H| ~ -2.2dex. In that idea our sample, for the most part, there are stars of the inner
halo with [Fe/H] = -1.2 £ 0.7 and very small traces of the outer halo around [Fe/H] ~ -2.2, Fig. .

It is noticeable (Fig. 1) that our sample also contains a sufficient number of stars with disk metallicity
([Fe/H] <-1.2). Some metal-rich stars are in retrograde orbits, some of them also have high velocities, not
all stars with disk metallicity are in the disk region. Bonaca et al. (2017) obtained a similar result in their
study. The existence of metal-rich stars in kinematically defined halo stars means that metallicity is not the
best marker for separating galaxy populations. In other case the region is contaminated by stars from an
extragalactic streams that has similar metallicity to that of the disk.
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Figure 4. Left panel: distribution stars of our sample by metallicity on GALAX (green), LAMOST (red)
and APOGEE (yellow) data. Black dashed line divide metallicity of disk and halo population. Right panel:
Toomre diagram for non-disk population with metallicity grade. Violet line divided prograde and retrograde
stars.

4. High-velocity stars
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Figure 5. Total velocity in the Galactic rest-frame Vg, as a function of the Galactocentric distance, R, for
286 hight-velocity stars with retrograde motion (dark-green dots) and prograde motion (light-green dots).
Stars wit [F'e/H] <-1.2 marked by asterisk. Red dashed curve is escape velocity for Galaxy potential from
galpy (Bovy, 2022)

According to Du et al. (2019), stars whose spatial speed relative to the Galactic center is more than 400
km/s called high-velocity. There are 286 such stars in our sample. The place of their birth can be located
both in the disk and in the bulge, and some originated from dwarf galaxies. Such stars in the Galaxy is
associated with various mechanisms. The of origin of high-velocity stars may be due to the decay of close
binary system as a result of supernova explosions, dynamic collisions between stars in dense star systems
such as young star clusters, collisions between a single star and a double massive black hole in a GC. Halo
stars can also reach high speeds when they are part of the debris of satellite galaxies destroyed by tidal
interaction. Some stars formed in the disk and were then ejected into the halo.
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Marchetti et al. (2019). However, this work not provide an analysis of these mechanisms for all selected
stars. Fig. 5 shows our sample of high-velocity stars plotted with respect the velocity of escape from the
Galaxy and position relative to the center of the galaxy. As can be seen, some of these stars are located
beyond the curve indicating the escape velocity at a given radius. It means that some of the stars in the
sample have a potential to leave the Galaxy.

Our sample was also compared with other catalogs based on Gaia data. Unfortunately, most studies of
high-velocity stars are for stars at large distances. A recent extensive study of 591 HVS Li et al. (2021) has
only 1 such star within 300 pc - GaiaDR2 2874966759081257728. According to LAMOST, its radial velocity
RV = 233 km/s, but by Gaia DR3 used in this work, the speed is RV = -109.084+36.37km/s, which, in
correspondence with other data, excludes it from the list of high-velocity stars in our paper. Because it
is spectroscopy binary star, this could lead to errors in determining its velocity. In Du et al. (2018) also
contains high-velocity stars within 300 pc, but only HiVel 13 and HiVel 6 were included in our sample (HiVel
8 and 10 was rejected by RUWE >1.4), the rest of the stars Li et al. (2021) did not meet our velocity
criterion.

5. Large-scale structures by AD-diagram

To study of large-scale kinematics the method of AD-diagrams or the diagram of individual apexes of
stars is used. We call the individual apex of a star a point on the celestial sphere with coordinates (A, D) in
the equatorial coordinate system (A - right ascension, D - declination) that the star’s spatial velocity vector
points to when placed at the center. Below we consider not apexes, but antiapexes. On the celestial sphere,
antiapexes and apexes are located at diametrically opposite points, the coordinates of which in longitude
have a difference of 180°, and in latitude they differ in sign. A description of the method, diagramming
techniques, and formulas for determining error ellipses can be found in Chupina et al. (2001).
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Figure 6. Left panel: antiapexes of stars and antiapexes of centers of star clusters and streams in the solar
vicinity. Colorbar displays the number of stars per square pixel. On the right panel shown a sample of stars
belonging to large-scale structures in UMa direction. Saturated red and saturated green areas are stars with
probability of belonging P > 60% pale green and pale red 40% >P<60%.

In Fig. 6, the left panel shows a diagram of the density of our sample stars apexes. It is clear that
there are pronounced overdensites in some clumps. Clumps on the right side at left panel, reflects the
movement of the Sun in this region of the galactic disk with a centroid in the direction (I,b) ~ (45°, 20°)
(or (ra,dec) ~ (265°, 21°)). The scattering relative to the centroid is associated with the spread of stellar
velocities. The antiapexes of the two closest, richest clusters are clearly visible - the Pleiades (apex position
by Elsanhoury et al. (2018)) and the Hyades (apex position by Postnikova et al. (2018)).

At the left panel concentration region on Fig. 6 we see the centroid coincides with good accuracy in
the direction to the anticenter of the Galaxy. Possible that picture reflects the radial component of the
movement of the Sun relative to nearby stars towards the center of the Milky Way at a speed of about 10
km/s. Near this concentration region are the apexes of various parts of the Ursa Major flow Vereshchagin
et al. (2018), but is not part of the Ursa Major flow by their parameters. We identified concentration peaks
and selected the most likely members of this structure. Within concentration peak 1 (red region, Fig. 6,
right) contains 6051 stars with probability P > 60, and concentration peak 2 (green region) contains 5451
stars, respectively. The concentrations peaks equatorial coordinates of peak 1: (aA,aD) = (59.47+11.20° ,
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49.24+6.81° ) and of peak 2 - (aA,aD) = (90.16+5.71° , 31.61+13.83° ).

As mentioned above, it is possible that this overdensity in velocity space is a consequence of the motion
of the Sun, but it is also possible that the structure is a part of a larger galactic structure, more extensive
than a star cluster or stellar streams, but much smaller than the galaxy arms. It is possible that the presence
of such structures was described by Gaia Collaboration et al. (2018), who divides the velocity field in the
solar vicinity into several regions.

6. Results

The kinematics of the stellar population in the solar neighborhood within 300 pc has been analyzed. The
sample of stars was taken from the Gaia DR3 catalog. The sample is divided into two categories - stars
belonging to and not belonging to the galactic disk. The latter may belong to a thick disk, halo, bulge
and, possibly, other galaxies that are satellites of the Galaxy. There was insufficient data on the chemical
composition and other data to most accurately analyze the origin of stars that kinematically do not belong
to the disk. 286 high-velocity stars were discovered, including some that may eventually leave the galaxy.
In the apex diagram, it was possible to identify three areas of concentration in the direction of motion of
the stars using the apex positions: one large area on the right (associated mainly with the Hyades stream)
and two areas of concentration of points on the left (associated with the Ursa Major stream) in Fig. 6.
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