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Abstract

This report aims to expose further the assertions made in a recent theory of global Master space
(MSp)-SUSY (Ter-Kazarian, 2023a, 2024a) by developing its local extension. The global MSp-SUSY
reviews the physical processes underlying the standard Lorenz code of motion and its deformation tested
in experiments for ultra-high energy cosmic ray and TeV-γ photons observed. The local extension of
MSp-SUSY yields the gauge theory of translations. This as a corollary makes room for the theory of M̃Sp-
Supergravity, subject to certain rules. The superspace is a direct sum of background semi-Riemannian
4D-space and curved Master space M̃Sp ≡ V 2 (2D semi-Riemannian space), V4 ⊕ V 2, with an inclusion
of additional fermionic coordinates Θ(θ, θ̄) and Θ̄(θ, θ̄), which are induced by the spinors θ and θ̄ referred

to M̃Sp. Being embedded in V4, the M̃Sp is the unmanifested indispensable individual companion of
a particle of interest devoid of any matter influence. While all the particles are living on V4, their
superpartners can be viewed as living on M̃Sp. In this framework supersymmetry and general coordinate

transformations are described in a unified way as certain diffeomorphisms. The action of simple M̃Sp-SG
includes the Hilbert term for a fictitious graviton (with spin 2) coexisting with a fictitious fermionic field
of, so-called, gravitino (sparticle with spin 3/2) described by the Rarita-Scwinger kinetic term. They

are the bosonic and fermionic states of a gauge particle in V4 and M̃Sp, respectively, or vice versa. A

curvature of M̃Sp arises entirely due to the inertial properties of the Lorentz-rotated frame of interest.
This refers to the particle of interest itself, without relation to other matter fields, so that this can
be globally removed by appropriate coordinate transformations. The supervielbein, being an alogue of
Cartan’s local frame, is the dynamical variable of superspace formulation, which identifies the tetrad field
and the Rarita-Schwinger fields. The spin connection is the second dynamical variable in this theory. The
tetrad field plays the role of a gauge field (graviton) associated with local transformations. The gravitino
is a gauge field associated with local supersymmetry. Within that context, we consider particle mechanics.

Keywords: Supersymmetry–Supergravity–Particle mechanics

1. Introduction

The question about the very nature of the uniform motion of a particle in free space, which is one of the
cornerstones put into physics by hand, at first glance classified as an empirical term rather than as a notion
of pure reason and, thus, it may not seem like a subject of perception. While in recent years, the violation
of CPT and Lorentz invariance at high energies has become a major concern for physicists. The discovery of
the possibility of spontaneously breaking of Lorentz symmetry in bosonic string field theory (Kostelecky &
Potting, 1991, 1996), there has been vital interest in its spontaneously breaking in the framework of quantum
field theory as introduction of a preferred frame, or its explicit breaking in non-commutative geometries, as
well as in certain supersymmetric theories. Spontaneous Lorentz break was discussed in several early papers,
e.g. (Bialynicki-Birula, 1963, Bjorken, 1963, Cho & Freund, 1975, Eguchi, 1976, Guralnik, 1964, Nambu,
1968). Although precursors go back at least to early work by Dirac (Dirac, 1951) and Heisenberg (Heisenberg,
1957) in an effort to interpret the photon as a Nambu-Goldstone boson. An important aspect of spontaneous
breaking is that both the fundamental theory and the effective low energy theory remain invariant under
observer Lorentz transformations (Colladay & Kostelecky, 1997, 1998).

Quantum gravity (QG) has now gradually become a physical theory. Indeed, astrophysical experiments
performed at the ultra-high energies (at ultra-short distances) should measure effects due to a QG regime.
This QG search attempts to assess the state of our present knowledge and understanding of the laws of
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physics on the Planck scale. Most ideas in QG about the violation of the standard Lorentz code (SLC) of
motion have been tested in recent decades in ultra-high energy cosmic ray (UHECR) and astrophysical TeV-
γ photons experiments. The UHECR- and TeV-γ threshold anomalies found in these experiments provide
a wealth of invaluable modern tests of the origin of LIV and has a strong potential in providing competitive
constraints on suggested scenarios. They reflect the expectation that the solutions to this mystery seemed
to require new physics (see e.g. (Batista & et al., 2019, 2023, Mattingly, 2005) and references therein). It
is a well-established fact that due to fundamental quantum uncertainties, the microstructure of spacetime
should be viewed as a dynamical entity fluctuating within a two or three orders of magnitude of Planck
length ℓP ≈ 1.62×10−33cm and Planck time tP /c, at which the structure of space-time and quantum effects
would become inextricably intertwined. This means that if such fluctuations are large enough to cause
non-trivial deformations of classical smooth spacetime, the latter will develop a `foamy´ structure at the
ultra-microscopic level and all sorts of geometric changes and topologically non-trivial structures will be
formed (e.g. via quantum tunnelling (Garfinkle & Strominger, 1991)), evolving, interacting and lasting only
a few Planck times. In phenomenological minimal-length models, foamy effects come from the presence of a
minimal accessible length, which modifies the Heisenberg or Poincar´e algebra to accommodate a minimal
uncertainty in position measurements at the Planck energy, EP =MP c

2 (∼ 1.22× 1019 GeV). The minimal
length appears as a kinematic feature, while the shape itself of the Hamiltonian may be deformed from the
combined action of a modified position-momentum algebra and the choice of a relativity principle.

However, even thanks to the fruitful interplay between phenomenological analysis and high energy as-
tronomical experiments, the scientific situation remains, in fact, more inconsistent to day. A systematic
analysis of these properties happens to be surprisingly difficult by conventional theoretical methods. Up
to now, there has been no conclusive evidence of violation of the laws of conventional physics, with the
results instead yielding ever more stringent upper bounds on this task, thus confirming the related aspects
with concomitant precision. This may be due to the fact that present instruments do not yet have the
necessary sensitivity to detect Planck scale effects, or that some effects have not been taken into account
in the available data. Of course, failure to find a violation of these laws in any one experiment or class of
experiments does not give us a final proof, and even as the experimental limits move more closely towards
the fundamental bounds of measurement uncertainty, new conceptual approaches to the task continue to
appear. The tremendous importance of the question and the lure of what might be revealed by attaining
the next decimal place of obtained experimental results are as strong a draw on this question as they are in
any other aspect of precise tests of physical laws.

Our primary interest in the subject is to understand the underlying reality, in which the uniform motion
would have well defined. In a recent paper Ter-Kazarian (2024a) we developed a microscopic theory of
deformed Lorentz symmetry and deformed geometry induced by `foamy´ effects near the Planck scale and
tested in ultra-high energy experiments. To this aim, we proposed a theory of MSp-SUSY and derive SLC
in a new perspective of global double MSp-SUSY transformations. To the best of our knowledge no one has
ever studied the very nature of the uniform motion and the physical processes underlying it. We just like to
mention its key points as an example of the lines on which one should seek to make advances and that other
people, we hope, will follow along those lines. A notable conceptual element is the concept of 2D MSp(≡M 2),
which is a physical structure with intrinsic geometrical properties of its own (see Appendix A). The MSp
embedded in background 4D Minkowski space, M4, is the unmanifested indispensable individual companion
to the particle of interest as the intrinsic property devoid of any external influence. A comprehensive
principle underlying the global MSp-SUSY theory hinges on the following:

the particle perseveres in its permanent state of superoscillations between the spaces M4 and M 2, unless
acted upon by some external force, i.e. the particle undergoes the SUSY - transformations at sequential
transitions from M4 to M 2 and back (M4 ⇌M 2).

We consider the spacesM4 andM 2 formally and, therefore, mathematical devoid of any sense of physical
space-time. To derive the most important relative inertial uniform motion, it is necessary to impose specific
conditions on the spinor transformation matrix M in M 2. We are of course not limited within MSp-SUSY
to consider particular constant spinor θ referred to M 2, which yields the constant velocity v⃗(θ) (Appendix
A), but can choose at will any other constant spinors θ′, θ′′, . . . yielding respectively the constant velocities
v⃗′(θ′), v⃗ ′′(θ′′), . . . of inertial observers that move uniformly forever on rectilinear timelike worldlines, whose
transformational law on the original spinor θ is known (first condition):

θ′α =M β
α θβ, θ̄α̇ = (M∗) β̇

α̇ θ̄β̇, α̇, β̇ = 1, 2, (1)

whereM ∈ SL(2, C) is the hermitian unimodular two-by-two matrix, the matrixM∗ is related by a similarity
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transformation to (M−1)†, i.e. (M †)βα = (M∗) β
α . The (1) gives the second founding property of SR that the

bilinear combinations are c := θ θ̄ = θ′ θ̄
′
= · · · = const, which yields a second postulate of SR (Einstein’s

postulate) (Appendix A). Therewith a quantity em (θ σm ξ̄) (where em is a basis vector, θ, ξ are Weyl spinors)
is a Lorentz scalar if and only if the second condition holds too:

1
2 Tr

(
σmMσnM †)σnαα̇ = (M−1)α

βσ
m

ββ̇
(M−1)†β̇ α̇, (2)

where the map from SL(2, C) to the Lorentz group is established through the σ-matrices (Appendix A).
The latter, according to the embedding map, can be written in terms of σ⃗-Pauli spin matrices. The (2)
combined with (103) give the first founding property (106) of SR.

The `superspace´ is a direct sum extension of background double spaces M4 ⊕M 2, with an inclusion
of additional fermionic coordinates induced by the spinors (θ, θ̄) referred to M 2. Thanks to the embedding
of M 2 in M4, the spinors (θ, θ̄), in turn, induce the spinors θ(θ, θ̄) and θ̄(θ, θ̄) (see (73)), as to M4. Then
the net result of sequential atomic double transitions induce the inhomogeneous Lorentz group, or Poincaré
group, and that the unitary linear transformation |x, t >→ U(L, a)|x, t > on vectors in the physical Hilbert
space. Thus, we achieve the desired goal to derive the SLC in terms of spinors (θ, θ̄) and period (τ) of
superoscillations referred to the master space M 2 (Appendix A). This calls for a complete reconsideration
of our standard ideas of Lorentz motion code, to be now referred to as the individual code of a particle,
defined as its intrinsic property. This reveals the nature of the most important concept of physical space-
time, which turns out to be a direct consequence of the processes of particle motion. That is, we derive
the relative temporal (x0 = ct) and spatial (|x⃗|) coordinates of physical space-time as a function of constant
spinors (θ, θ̄) and a period τ of superoscillations as follows:

x0 = ct = (θ θ̄) kτ/
√
2, k = 1, 2, 3, ...

|x⃗| = (θ1 θ̄1 − θ2 θ̄2) kτ/
√
2.

(3)

While all the particles are living on M4, their superpartners can be viewed as living on MSp. Par-
ticular emphasis is given that the ground state of MSp-SUSY model has a vanishing energy value and is
nondegenerate (SUSY unbroken). The particles in M4 themselves can be considered as excited states above
the underlying quantum vacuum of background double spaces M4 ⊕M 2, where the zero point cancellation
occurs at ground-state energy, provided that the natural frequencies are set equal (q20 ≡ νb = νf ), because
the fermion field has a negative zero point energy while the boson field has a positive zero point energy.

This theory, among other things, actually explores the first part of the phenomenon of inertia, which
refers to inertial uniform motion along rectilinear timelike world lines. This developments are in many ways
exciting, yet mysteries remain, and some of deeper issues are still unresolved, such as those which relate
the inertial effects, which comprises a second half of phenomenon of inertia. Perhaps the most striking
phenomenon of inertia is a deep mystery in physics, representing the most incomprehensible problem in
need of resolution. Governing the motions of planets both fundamental phenomena of nature the gravity
and inertia reside at the very beginning of physics, so that understanding in depth mystery of the origin of
the whole phenomenon of inertia consisting of two parts represents a tremendous opportunity for present-
day theoretical physics. General Relativity (GR) was a great success in explaining the gravity, and it
showed how, by departing from ideas suggested by classical mechanics, you could make an advance in a
new direction. Despite the advocated success of GR, which was a significant landmark in the development
of the field, the phenomenon of inertia stood one of the major unattained goals since the time traced back
to the works developed by Galileo (Drake, 1978) and Newton (Newton, 1687). More than four centuries
passed since the famous far-reaching discovery by Galileo (in 1602-1604) of Weak Principle of Equivalence
(WPE) that all bodies fall at the same rate Drake (1978), which establishes the independence of free-fall
trajectories of the internal composition and structure of bodies. This led to an early empirical version of the
suggestion that gravitation and inertia may somehow result from a single mechanism. Besides describing
these early gravitational experiments, Newton in Principia Mathematica Newton (1687) has proposed a
comprehensive approach to studying the relation between the gravitational and inertial masses of a body.
The principle of inertia they developed is one of the fundamental principles of classical mechanics. This
governs the uniform motion of a body and describes how it is affected by applied forces. Ever since, there
is an ongoing quest to understand the reason for the universality of the inertia, attributing to the WPE.
In other words, WPE states that all bodies at the same spacetime point in a given gravitational field will
undergo the same acceleration. However, the nature of the relationship of gravity and inertia continues to
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elude us and, beyond the WPE, there has been little progress in discovering their true relation. Today there
is no known feasible way to account for credible explanation of this problem.

With this perspective in sight, the necessity of local theory of MSp-SUSY is twofold. First, the general
idea behind the success of any global theory was the need to promote the symmetries to local symmetries.
Second, these features deserve careful study, because the theory of global MSp-SUSY provides valuable
theoretical clue for a complete revision of our standard ideas about the Lorentz code of motion to be now
referred to as the intrinsic property of a particle. This is a result of the first importance for a really
comprehensive theory of inertia. In this respect, it is important to recall once more that GR was designed
to incorporate Mach’s principle of relativity of inertia, i.e. this is the gravitational influence of the entire
Universe which creates inertia. Of course, GR enters with its own multifacets, and pretty well it over
about many years has been on these lines, and physicists have gone a long way in its development. Viewed
from the perspective of GR theory, the fictitious forces (i.e. pseudo-forces) - the forces that result from the
acceleration of the reference frame itself and not from any physical force acting on the body, are attributed
to geodesic motion in spacetime. But nothing is reliable and such efforts do not make sense. The fact that
the theory conforms GR does not prove that it is correct. Indeed, as Einstein emphasized later Bondi (1952),
Sciama (1953), GR is failed to account for the inertial properties of matter, so that an adequate theory of
inertia is still lacking.

A local extension of the MSp-SUSY algebra leads to the gauge theory of translations. The overall purpose

of the present article, therefore, is to conceive a local MSp-SUSY as the theory of M̃Sp-SG, an early version
of which is given in (Ter-Kazarian, 2023b). As this solution is in use throughout the subsequent papers,
much more will be done to make the early results and formulations complete, clear and rigorous. The action
of simple M̃Sp-SG includes the Hilbert term for a fictitious graviton coexisting with a fictitious fermionic
field of gravitino described by the Rarita-Scwinger kinetic term. Whereas a coupling of supergravity with
matter superfields no longer holds. Instead, a deformation of MSp is the origin of these fields. Finally, we
consider a particle mechanics.

We proceed according to the following structure. To start with, in Section 2 we discuss the idea of
what is a local M̃Sp-SUSY. Section 3 is devoted to the non-trivial linear representation of the M̃Sp-SUSY

algebra. In Section 4 we turn to a simple (N = 1) M̃Sp - SG without auxiliary fields. On these premises, in
Section 5 we derive particle mechanics and discuss the velocity and acceleration inM4. The ideas underlying
our theoretical framework and concluding remarks are described in section 6. Whereas we highlight a few
points and discuss issues to be studied further. Such approach is more transparent at any step but needs
some technical details, definitions and algebraic operations. In Appendix A, therefore, we briefly revisit the
global `double space´- or MSp-SUSY without going into the subtleties as a guiding principle to make the
rest of paper understandable. For brevity, whenever possible undotted and dotted spinor indices often can
be ruthlessly suppressed without ambiguity. Unless indicated otherwise, the natural units, h = c = 1 are
used throughout.

2. The local M̃Sp-SUSY

One might guess that the condition for the parameter ∂µ̂ϵ = 0 of a global MSp-SUSY theory (Ter-
Kazarian, 2024a) should be relaxed for the accelerated particle motion, so that a global SUSY will be
promoted to a local SUSY in which the parameter ϵ = ϵ(X µ̂) depends explicitly on X µ̂ = (x̃µ, x̃µ) ∈ V4⊕V 2,
where x̃µ ∈ V4 and x̃

µ ∈ V 2, with V4 and V 2 are the 4D and 2D semi-Riemannian spaces. This extension will
address the accelerated motion and inertia effects. To trace a maximal resemblance in outward appearance
to the theory of MSp-SUSY, we here accept all its conventions and notations unless otherwise noted. A

smooth embedding map, generalized for curved spaces, becomes f̃ : V 2 −→ V4 defined to be an immersion
(the embedding which is a function that is a homeomorphism onto its image):

ẽ0 = ẽ0, x̃0 = x̃0, ẽ1 =
⃗̃n, x̃1 = |⃗̃x|, (4)

where ⃗̃x = ẽix̃
i = ⃗̃n|⃗̃x| (i = 1, 2, 3) (the middle letters of the Latin alphabet (i, j, ...) will be reserved for

space indices). On the premises of (Ter-Kazarian, 2024a), we review the accelerated motion of a particle in

a new perspective of local M̃Sp-SUSY transformations (see Fig. 1) that a creation of a particle in V 2 means
its transition from initial state defined on V4 into intermediate state defined on V 2, while an annihilation of
a particle in V 2 means vice versa. The same interpretation holds for the creation and annihilation processes
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Figure 1. The extended Schwinger transformation function geometry. The net result of each atomic double
transition of a particle V4 ⇌ V2 is as if we had operated with a local space-time translation with acceleration,
a⃗, on the original space V4. In the same way the acceleration, a⃗, refers to V 2 at V 2 ⇌ V4. The atomic
displacement, ∆x̃(a), is caused in V2 by double transition of a particle, V2 ⇌ V4. All the particles are living
on V4, while their superpartners can be viewed as living on unmanifested Master space, V2.

in V4. The net result of each atomic double transition of a particle V4 ⇌ V 2 to V 2 and back is as if we had
operated with a local space-time translation with acceleration, a⃗, on the original space V4. Accordingly, the
acceleration, a⃗, holds in V 2 at V 2 ⇌ V4. So, the accelerated motion of boson A(x̃) in V4 is a chain of its
sequential transformations to the Weyl fermion χ(x̃) defined on V 2 (accompanied with the auxiliary fields

F̃ ) and back,

→ A(x̃) → χ(F )(x̃) → A(x̃) → χ(F )(x̃) →, (5)

and the same interpretation holds for fermion χ(x̃). A useful guide in the construction of local superspace
is that it should admit rigid superspace as a limit. The reverse is also expected, since if one starts with
a constant parameter ϵ and performs a local Lorentz transformation, then this parameter will in general
become space-time dependent as a result of this Lorentz transformation.

The mathematical structure of a local theory of M̃Sp-SUSY has much in common with those used in
the geometrical framework of standard supergravity theories. Such a local SUSY can already be read off
from the algebra of a global MSp-SUSY (Ter-Kazarian, 2024a) in the form

[ϵ(X)Q, Q̄ϵ̄(X)] = 2ϵ(X)σµ̂ϵ̄(X)p̃µ̂, (6)

which says that the product of two supersymmetry transformations corresponds to a translation in 6D
X-space of which the momentum

p̃µ̂ = i∂̃µ̂ =
∂

∂X µ̂
= (

∂

∂x̃µ
,
∂

∂x̃µ
)

is the generator. We expect the notion of a general coordinate transformation should be

[δϵ1(X), δϵ2(X)]V = 1
2 ϵ̄2(X)σµ̂ϵ1(X) ∂̃µ̂V. (7)

Then for the local M̃Sp-SUSY to exist it requires the background spaces (V4, V 2) to be curved. In this case,
in order to become on the same footing with V 2, the V4 refers to the accelerated proper reference frame of
a particle without relation to other matter fields. This leads us to extend the concept of differential forms
to superspace. Points in curved superspace are then identified by the generalized coordinates

zM = (X µ̂, Θα̂, Θ̄ ˆ̇α) = z(V4) ⊕ z(V 2)

= (x̃µ, θα, θ̄α̇)⊕ (x̃µ, θα, θ̄α̇),
(8)

and differential elements
dzM = (dX µ̂, dΘα̂, dΘ̄ ˆ̇α) = dz(V4) ⊕ dz(V 2)

= (dx̃µ, dθα, dθ̄α̇)⊕ (dx̃µ, dθα, dθ̄α̇),
(9)

where M ≡ (µ̂, α, α̇). Throughout we will use the ’two-in-one’ notation of a theory MSp-SUSY ((Appendix
A), implying that any tensor (W ) or spinor (Θ) with indices marked by ’hat’ denote

W µ̂1···µ̂m

ν̂1···ν̂n := Wµ1···µm
ν1···νn ⊕W

µ
1
···µ

m
ν1···νn ,

Θα̂ := θα ⊕ θα, Θ̄ ˆ̇α := θ̄α̇ ⊕ θ̄α̇.
(10)
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This corresponds to the action of supercharge operators Q ≡ (either q or q) (see (88), (89) ), which is due to

the fact that the framework of M̃Sp-SG combines bosonic and fermionic states in V4 and V 2 on the same
base rotating them into each other under the action of operators (q, q). The α are all upper indices, while α̇

is a lower index. Elements of superspace obey the following multiplication law: zMzN = (−1)i(N)j(M)zNzM .
Here i(N) is a function of N and j(M) is a function of M . These functions take the values zero or one,
depending on whether N and M are vector or spinor indices. Exterior products in superspace are defined
in complete analogy to ordinary space:

dzM ∧ dzN = −(−1)i(N)j(M)dzN ∧ dzM ,
dzMzN = (−1)i(N)j(M)zN ∧ dzM . (11)

With this definition, differential forms have a standard extension to superspace. We shall drop the symbol
∧ for exterior multiplication (unless indicated otherwise) and forbear to write the details out of a standard
theory. They can be seen in, e.g. (Wess & Bagger, 1983, West, 1987, van Nieuwenhuizen, 1981). The
multiplication of two local sequential supersymmetric transformations induces the motion

g(0, ϵ(X), ϵ̄(X)) Ω(X µ̂, Θα̂, Θ̄ ˆ̇α −→
(X µ̂ + iΘα̂ σµ̂ ϵ̄(X)− i ϵ(X)σµ̂ Θ̄ ˆ̇α, Θ+ ϵ(X), Θ̄ + ϵ̄(X)),

(12)

which gives
gq(0, ξ(x̃), ξ̄(x̃)) Ωq(x̃, θ, θ̄) →
(x̃m + i θ σm ξ̄(x̃)− i ξ(x̃)σm θ̄, θ + ξ(x̃), θ̄ + ξ̄(x̃)),
gq(0, ξ(x̃), ξ̄(x̃)) Ωq(x̃, θ, θ̄) →
(x̃m + i θ σm ξ̄(x̃)− i ξ(x̃)σm θ̄, θ + ξ(x̃), θ̄ + ξ̄(x̃)).

(13)

In its simplest version, supergravity was conceived as a quantum field theory whose action included the
gravitation field term, where the graviton coexists with a fermionic field called gravitino, described by the
Rarita-Scwinger kinetic term. The two fields differ in their spin: 2 for the graviton, 3/2 for the gravitino.
The different 4D N = 1 supergravity multiplets all contain the graviton and the gravitino, but differ by
their systems of auxiliary fields. These fields would transform into each other under local supersymmetry.
In this framework supersymmetry and general coordinate transformations are described in a unified way as
certain diffeomorphisms. The motion (12) generates certain coordinate transformations:

zM −→ z′M = zM − ζM (z), (14)

where ζM (z) arbitrary functions of z. The dynamical variables of superspace formulation are the frame field
EA(z) and connection Ω. Using the analogue of Cartan’s local frame, the superspace (zM , Θ, Θ̄) has at
each point a tangent superspace spanned by the frame field defined as a 1-form over superspace

EA(z) = dzME A
M (z), (15)

with coefficient superfields, generalizing the usual frame, namely supervierbien E A
M (z). Here, we use the first

half of capital Latin alphabet A,B, . . . to denote the anholonomic indices related to the tangent superspace
structure group, which is taken to be just the Lorentz group. The inverse vielbein E M

A (z) is defined by the
relations

E A
M (z)E N

A (z) = δ N
M , E M

A (z)E B
M (z) = δ B

A , (16)

where

δ N
M =

 δ n̂
m̂ 0 0
0 δ ν̂

µ̂ 0

0 0 δ
ˆ̇ν

ˆ̇µ

 , (17)

The formulation of supergravity in superspace provides a unified description of the vierbein and the
Rarita-Schwinger fields, which are identified in a common geometric object, the local frame EA(z) of super-
space. They are manifestly coordinate independent. The upper index A is reserved for the structure group,
for which we take the Lorentz group. This is because we would like to recover supersymmetric flat space as
a solution to our dynamical theory. With this choice, the reference frame defined by the vielbein is locally
Lorentz covariant.

δEA = EBL A
B (z), δE A

M = E B
M L A

B (z). (18)
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The indices transforming under the structure group will be called Lorentz indices. The Lorentz generators

L A
B (z) have three irreducible components: L â

b̂
, L α

β and Lβ̇
α̇. The vielbein forms Eâ = dzME â

M , Eα̂ =

dzME α̂
M , and E ˆ̇α = dzMEM ˆ̇α are coordinate-independent irreducible Lorentz tensors.

To formulate covariant derivatives one must introduce a connection form

ϕ = dzMϕM , ϕM = ϕ B
MA, (19)

transforming as follows under the structure group:

δϕ = ϕL− Lϕ− dL. (20)

Connections are Lie algebra valued one-forms

ϕ = dzMϕ r
M (z)iT r, (21)

with the following transformation law:

ϕ′ = X−1ϕX −X−1dX, (22)

where r runs over the dimension of the algebra. The connection is the second dynamical variable in this
theory. The ϕ B

MA is Lie algebra valued in its two Lorentz indices:

ϕMAB = −(−1)abϕMBA. (23)

Covariant derivatives with respect to local Lorentz transformations are constructed by means of the spin
connection (or Lorentz connection), which is 1-form assuming values in the Lie algebra of the Lorentz group:

ωM (z) = 1
2ω

AB
M (z)SAB, (24)

with Lorentz generators SAB of a given representation Y . The covariant derivative of the vielbein is called
torsion:

TA = dEA + EBϕ A
B . (25)

In flat space it is possible to transform the vielbein into the global reference frame: EA = eA. It is defined
up to rigid Lorentz transformations. In this frame the connection vanishes: ϕ = 0. The torsion, however, is
non-zero because of the following non-zero components:

T ĉ

α̂
ˆ̇
β
= T ĉ

ˆ̇
βα̂

= 2iσ ĉ

α̂
ˆ̇
β
. (26)

The curvature tensor is defined in terms of the connection:

R = dϕ+ ϕϕ. (27)

It is a Lie algebra valued two-form:
R B

A = 1
2dz

MdzNR B
NMA . (28)

Covariant derivatives with respect to local Lorentz transformations are constructed by means of the spin
connection Ω, which is a 1-form in superspace. Supergauge transformations are constructed from the general
coordinate and structure group transformations of superspace:

L A
B = −ζCϕ A

CB . (29)

They amount to a convenient reparametrization of these transformations. Supergauge transformations
map Lorentz tensors into Lorentz tensors and reduce to supersymmetry transformations in the limit of
flat space. The parameter ζ characterizes infinitesimal changes in coordinates. Whereas, either ζA or
ζM may be chosen as the field-independent transformation parameter. Its companion then depends on
the fields through the vielbein. Since we would like Lorentz tensors to transform into Lorentz tensors,
we shall choose ζA to be field-independent. Supergauge transformations consist of a general coordinate
transformation with field-independent parameter ζA followed by a structure group Lorentz transformation
with field-dependent parameter (39). It is among this restricted class of transformations that we shall find
the gauged supersymmetry transformations.
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The super-vielbein E A
M and spin-connection Ω contain many degrees of freedom. Although some of

these are removed by the tangent space and supergeneral coordinate transformations, there still remain
many degrees of freedom. There is no general prescription for deducing necessary covariant constraints
which if imposed upon the superfields of super-vielbein and spin-connection will eliminate the component
fields. However, some usual constraints can be found using tangent space and supergeneral coordinate
transformations of the torsion and curvature covariant tensors, given in appropriate super-gauge. The
transformation parameters ζA and Lâb̂ are functions of superspace. Their lowest components characterize
general coordinate transformations in six-dimensional X-space [ζ â(Xm̂)], gauged supersymmetry transfor-
mations [ζα̂(X)], ζ ˆ̇α(X)], and local Lorentz transformations Lâb̂(X). We will use their higher components
to transform away certain Θ = Θ̄ = 0 components of the vielbein and the connection.

Let us consider the vielbein. Its transformation law may be written as a super-gauge transformation
together with an additional Lorentz transformation L A

B :

δζE
A

M = −DMζ
A − ζBT A

BM + E B
M L A

B . (30)

The lowest component of this equation gives the transformation property of E A
M |Θ=Θ̄=0. The Θ = Θ̄ = 0

components of ζα and ζ̄α̇ parametrize gauged supersymmetry transformations:

ζ â(z)|Θ=Θ̄=0 = 0, ζα(z)|Θ=Θ̄=0 = ζα(X),
ζ̄α̇(z)|Θ=Θ̄=0 = ζ̄α̇(X), LAB(z) = |Θ=Θ̄=0 = 0.

(31)

Higher components of ζA enter δE A
M | through the covariant derivatives Dαζ

A and D̄α̇ζA. One may use these
higher components to transform super-vielbein to the final form, where the minimum number of independent
component fields are the graviton, e â

µ̂ (X), and the gravitino, Ψ α
µ̂ (X), Ψ̄µ̂α̇(X). Since, by virtue of (10),

E M
A (z)

∣∣
Θ=Θ̄=0

= E µ
a (z(V4))

∣∣
θ=θ̄=0

,⊕ E
µ

a (zV 2)
∣∣∣
θ=θ̄=0

(32)

accordingly, we find

E µ
a (z(V4))

∣∣
θ=θ̄=0

=


e a
µ (x) 1

2ψ
α

µ (x) 1
2 ψ̄µα̇(x)

0 δαγ 0

0 0 δγ̇α̇

 , (33)

and

E
µ

a (zV 2)
∣∣∣
θ=θ̄=0

=


e

a
µ (x̃) 1

2ψ
α

µ
(x̃) 1

2 ψ̄µ α̇
(x̃)

0 δαγ 0

0 0 δγ̇α̇

 . (34)

The fields of graviton and gravitino cannot be gauged away. Provided, we have

e µ̂
â e b̂

µ̂ = δb̂â, Ψ γ
â = e µ̂

â Ψ α
µ̂ δγα,

Ψ̄âγ̇ = e µ̂
â Ψ̄µ̂α̇δγ̇α̇.

(35)

The tetrad field e â
µ̂ (X) (= e a

µ (x)⊕ e
a

µ (x̃)) plays the role of a gauge field associated with local transforma-
tions. The Majorana type field Ψ α

µ̂ (X) (= ψ α
µ (x)⊕ψ α

µ (x̃)) is the gauge field related to local supersymmetry.

These two fields belong to the same supergravity multiplet which also accommodates auxiliary fields so that
the local supersymmetry algebra closes. Under infinitesimal transformations of local supersymmetry, they
transformed as

δe â
µ̂ = i(Ψµ̂σ

âζ − ζσâΨ̄µ̂),

δΨµ̂ = −2Dµ̂ζ
α + ie ĉ

µ̂ {1
3M(εσĉζ̄)

α + bĉζ
α + 1

3b
d̂(ζσd̂σ̄ĉ)},

(36)

etc., where M(X) = −6R(z)|Θ=Θ̄=0 and bâ(X) = −3G(z)|Θ=Θ̄=0 are the auxiliary fields, and

ζα(z) = ζα(X), ζ̄α(z) = ζ̄α(X),
ζ ā(z) = 2i[Θσâζ̄(X)− ζ(X)σâΘ̄].

(37)

These auxiliary fields are not restricted by any differential equations in X-space. We cut short further
description of the unitary supersymmetry representations that give rise to the concept of supermultiplets,
since they are so well known.
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3. Non-trivial linear representation of the M̃Sp-SUSY algebra

With these guidelines to follow, we start by considering a simplest example of a supersymmetric theory
in six dimensional background curved spaces V4 ⊕ V 2 as a M̃Sp-generalization of flat space MSp-SUSY
model. We consider the chiral superfield, which is instructive because it contains the essential elements of
the M̃Sp-SUSY. The chiral superfields are defined as D̄ ˆ̇αΦ = 0, which reduces to D̄ ˆ̇αΦ = 0 in flat space. To
obtain a feeling for this model we may consider first example of non-trivial linear representation (χ̂,A,F),

of the M̃Sp-SUSY algebra. This has N = 1 and s0 = 0, and contains two Weyl spinor states χ̂(χ, χ), two
complex scalar fields A(A, A), and two more real scalar degrees of freedom in the complex auxiliary fields
F(F, F ), which provide in a supersymmetry theory the fermionic and bosonic degrees of freedom to be
equal off-shell as well as on-shell, and are eliminated when one goes on-shell. The component multiplets,
(χ̂,A,F), are called the chiral or scalar multiplets. We could define the component fields as the coefficient
functions of a power series expansion in Θ and Θ̄. This decomposition, however, is coordinate-dependent.
It is, therefore, more convenient to define them as

A = Φ|Θ=Θ̄=0 , χ̂α = 1√
2
Dα Φ|Θ=Θ̄=0 , F = −1

4D
αDα Φ|Θ=Θ̄=0 , (38)

which carry Lorentz indices. They are related to the Θ and Θ̄ expansion coefficients through a transformation
which depends on the supergravity multiplet. The transformation laws of the component fields are found
from the transformation law of the superfield Φ: δΦ = −ζADAΦ, provided, the parameters ζA are specified
as (37). Under infinitesimal transformations of local supersymmetry, the transformation law of the chiral
multiplet, incorporating with embedding map V 2 ↪→ V4 (4), and the transformation law A(x̃) = A(x̃) for
spin-zero scalar field, give

δA = −
√
2ζαχα,

δχα = −
√
2ζαF − i

√
2σ a

αβ̇
ζ̄ β̇D̂aA,

δF = −
√
2
3 M

∗ζαχα + ζ̄α̇
(
1
6

√
2bαα̇χ

α − i
√
2D̂αα̇χ

α
)
,

(39)

where

D̂aA ≡ e µ
a

[(
∂x̃0

∂x̃µ

)
∂̃0A+

(
∂|˜⃗x|
∂x̃µ

)
∂̃1A− 1√

2
Ψ β

µ χβ

]
,

D̂aχα = e µ
a

(
Dµχα − 1√

2
ΨµαF − i√

2
Ψ̄ β̇

µ D̂αβ̇A
)
.

(40)

In the same way, we should define the spinor χ as the field into which A(x) transforms. In this case, the
infinitesimal supersymmetry transformations for Q = q read

δA = −
√
2ζαχ

α
,

δχ
α
= −

√
2ζ

α
F − i

√
2σ

a

α β̇
ζ̄
β̇
D̂aA,

δF = −
√
2
3 M

∗ζαχ
α
+ ζ̄

α̇
(
1
6

√
2bα α̇ χ

α − i
√
2D̂α α̇ χ

α
)
,

(41)

where
D̂aA ≡ e

µ
a

[(
∂x̃0

∂x̃µ

)
∂̃0A+

(
∂x̃i

∂x̃µ

)
∂̃iA− 1√

2
Ψ β

µ χ
β

]
,

D̂aχα = e
µ

a

(
Dµχα

− 1√
2
Ψµα F − i√

2
Ψ̄

β̇
µ D̂α β̇A

)
.

(42)

The graviton and the gravitino form thus the basic multiplet of local M̃Sp-SUSY, and one expects the
simplest locally supersymmetric model to contain just this multiplet.

4. The simple (N = 1) M̃Sp - SG without auxiliary fields

An essential difference arisen between the standard supergravity theories and some rather unusual prop-
erties of a M̃Sp-SG theory is as follows. In the framework of the standard supergravity theories, as in GR,
a curvature of the space-time acts on all the matter fields. The source of graviton is the energy-momentum
tensor of matter fields, while the source of gravitino is the spin-vector current of supergravity. The gauge
action of simple M̃Sp-SG is the sum of the Hilbert action for the tetrad field - fictitious graviton, and the
Rarita-Schwinger action for the fictitious gravitino field. Instead we argue that they refer to the particle of
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interest itself, without relation to other matter fields, so that these fields can be globally removed by appro-
priate coordinate transformations. The M̃Sp-SG theory is so constructed as to make these two particles just
as being the two bosonic and fermionic states in the curved background spaces V4 and V 2, respectively, or
vice versa. Whereas, in order to become on the same footing with V 2, the V4 refers only to the accelerated
proper reference frame of a particle. With these physical requirements, a standard coupling of supergravity
with matter superfields evidently no longer holds. We are now looking for an alternative way of implications
of M̃Sp-SG for the model of accelerated motion and inertial effects.

We will use the techniques of (van Nieuwenhuizen, 1981) extended in a plausible fashion to the M̃Sp-SG.

The generalized Poincaré superalgebra for the simple (N = 1) M̃Sp-SG reads:

[Pâ, Pb̂] = 0, [Sâb̂, Pĉ] = (ηâĉPb̂ − ηb̂ĉPâ),
[Sâb̂, Sĉd̂] = i(ηâĉSb̂d̂ − ηb̂ĉSâd̂ + ηb̂d̂Sâĉ − ηâd̂Sb̂ĉ),
[Sâb̂, Q

α] = 1
2(γâb̂)

α
βQ

β,

[Pâ, Q
β] = 0, [Qα, Q̄β̇] =

1
2(γ

â)αβ̇Pâ.

(43)

with (Sâb̂)
ĉ
d̂
= i(δĉâηb̂d̂−δ

ĉ
b̂
ηâd̂) (24) a given representation of the Lorentz generators. Using (43) and a general

form for gauge transformations on BA,

δB = Dλ = dλ+ [B, λ], (44)

with

λ = ρâPâ +
1
2κ

âb̂Sâb̂ + Q̄ε, (45)

we obtain that the (eâ, ωâb̂,Ψ) transform under Poincaré translations as

δeâ = Dρâ, δωâb̂ = 0, δΨ = 0; (46)

under Lorentz rotations as

δeâ = κâ
b̂
δeb̂, δωâb̂ = −Dκâb̂, δΨ = 1

4κ
âb̂γâb̂Ψ; (47)

and under supersymmetry transformation as

δeâ = 1
2 ε̄γ

âΨ, δωâb̂ = 0, δΨ = Dε. (48)

In first-order formalism, the gauge fields (eâ, ωâb̂, Ψ), (with Ψ = (ψ,ψ) a two-component Majorana spinor)
are considered as an independent members of multiplet in the adjoint representation of the Poincaré super-
group of D = 6 ((3+1), (1+1)) simple (N = 1) M̃Sp-SG with the generators (Pâ, Sâb̂, Q

α). Unless indicated
otherwise, henceforth the world indices are kept implicit without ambiguity. The operators carry Lorentz
indices not related to coordinate transformations. The Yang-Mills connection for the Poincare´ supergroup
is given by

B = BATA = eâPâ +
1
2 iω

âb̂Sâb̂ +ΨQ̄. (49)

The field strength associated with connection B is defined as the Poincaré Lie superalgebra-valued curvature
two-form RA. Splitting the index A, and taking the Θ = Θ̄ = 0 component of RA, we obtain

R âb̂(ω) = dωâb̂ − ωâ
ĉω

ĉd̂,

T̃ â = T â − 1
2Ψ̄γ

âΨ, ρ = DΨ,
(50)

where γâ = (γa, σa), R âb̂(ω) is the Riemann curvature in terms of the spin connection ωâb̂, and the
generalized Weyl lemma (see App./(4)) requires that the, so-called, supertorsion T̃ â be inserted. The solution
ω(e) satisfies the tetrad postulate that the completely covariant derivative of the tetrad field vanishes,

therefore Râb̂(ω) = R(ω)eâeb̂.

For the bosonic part of the gauge action (graviton of spin 2) of simple M̃Sp-SG it then seems appropriate
to take the generalized Hilbert action with e = det eâµ̂(X). While the fermionic part of the standard gauge
action (garvitino of spin 3/2), which has positive energy, is the Rarita-Schwinger action. The full nonlinear
gravitino action in curved space then should be its extension to curved space, which can be achieved by

inserting the Lorentz covariant derivative DΨ = dΨ + 1
2ω

âb̂γâb̂Ψ. In both parts, the spin connection is
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considered a dependent field, otherwise in the case of an independent spin connection ω, the action will be
invariant under diffeomorphism, and under local Lorentz rotations, but it will be not invariant under the
neither the Poincaré translations nor the supersymmetry. In the case if spin connection is independent, we
should have under the local Poincaré translations

δL̂pt = δ
(
εâb̂ĉd̂e

âeb̂Rĉd̂ + 4Ψ̄γ5̂e
âγâDΨ

)
= 2εâb̂ĉd̂R

âb̂T̃ ĉρd̂ + surf. term, (51)

and under local supersymmetry transformations

δL̂SUSY = −4ε̄γ5̂γâDΨT̃ â + surf. term. (52)

The invariance of the action then requires the vanishing of the supertorsion T̃ â = 0, which means that
the connection is no longer an independent variable. So that the starting point of our approach is the
action of a simple M̃Sp-SG theory written in ’two in one’-notation (10), which is invariant under the local
supersymmetry transformation (48), where the Poincaré superalgebra closes off shell without the need for
any auxiliary fields:

LMS−SG = εâb̂ĉd̂e
âeb̂Rĉd̂(ω) + 4Ψ̄γ5̂e

âγâDΨ. (53)

This is the sum of bosonic and fermionic parts with the same spin connection, where γâ = (γa ⊕ σa),

γ5̂ = (γ5 ⊕ γ5), γ5 =

(
1 0
0 −1

)
is given in the chiral or Weyl representations, i.e. in the irreducible

2-dimensional spinor representations (12 , 0) and (0, 12), since two-component formalism works for a Weyl
fermion. This is indispensable in order to solve algebraical constraints in superspace because they can be used
as building blocks of any fermion field (van Nieuwenhuizen, 1981). In this representation, action of projection
matrices L = (1/2)(1 + γ5) and R = (1/2)(1 − γ5) on a Dirac fermion leads to zero two lower components
of the left-handed spinor and zero two upper components of the right-handed spinor, respectively. The
two-component notation described above essentially does away with the vanishing components explicitly

and deals only with the non-trivial ones. Taking into account that gµ̂ν̂ = ηâb̂e
â

µ̂ e
b̂

ν̂ and γµ̂ = e â
µ̂ γâ, with

ηâb̂ = (ηab ⊕ η
ab
) related to the tangent space, where ηab = diag(+1,−1,−1,−1) and η

ab
= diag(+1,−1),

we can recast the generalized bosonic and fermionic actions given in (53), respectively, in the forms

L(2) = −1
4

√
gR(g,Γ) = −1

4eR(e, ω), (54)

and

L(3/2) = 4εµ̂ν̂ρ̂σ̂Ψ̄µ̂γ5̂γν̂Dρ̂Ψσ̂. (55)

Here we taken into account that Dρ̂Ψσ̂ is the curl due to the ε-symbol, and as far as εµ̂ν̂ρ̂σ̂ is the density
(which always equals 0,±1), so there is no need to put the density e in front of fermionic part. The variation

of action (53) with respect to (eâ, ωâb̂, Ψ̄) leads to the following equations for M̃Sp - SG:

εâb̂ĉd̂e
b̂Rĉd̂ + 2Ψ̄γ5̂γâDΨ = 0;

εâb̂ĉd̂e
ĉT̃ d̂ = 0; γ5̂e

âγâDΨ = 0,
(56)

which can be rewritten as well in the form

Rτ̂ µ̂ − 1
2g

τ̂ µ̂R+ 2ελ̂µ̂ν̂ρ̂Ψ̄λ̂γ5̂γ
τ̂Dν̂Ψρ̂ = 0;

T̃ λ̂
µ̂ν̂ = T λ̂

µ̂ν̂ −
1
2Ψ̄µ̂γ

λ̂Ψν̂ ;

εµ̂ν̂ρ̂σ̂γ5̂γν̂Dρ̂Ψσ̂ = 0.

(57)

This, according to (10), gives the following equations for the Rarita-Schwinger fields ψ(x) and ψ(x) defined,
respectively, on the x ∈ V4 and x ∈ V 2:

εµνρσγ5γνDρψσ = 0, εµνρσγ5σνDρψσ
= 0. (58)
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5. Particle mechanics in the 4D Minkowski space-time: Velocity and ac-
celeration

From embedding map (4), we obtain the components of velocity of a particle

ṽ(±) = dx(±)

dx̃0 = 1√
2
(ṽ0 ± ṽ1),

ṽ1 = dx̃1

dx̃0 = |⃗ṽ| = | d⃗̃x
dx̃0 |,

(59)

so that
ũ = ẽmṽ

m = (⃗ṽ 0,
⃗̃v 1),

⃗̃v 0 = ẽ0ṽ
0, ⃗̃v 1 = ẽ1ṽ

1 = ⃗̃n|⃗ṽ| = ⃗̃v,
(60)

therefore, ũ = (⃗ṽ 0,
⃗̃v 1) = ũ = (ẽ0, ⃗̃v). Thence, the components of the acceleration vector, ȧρ̂ = (aρ, aρ),

satisfy the following embedding relations

a0 = a0, a1 = |⃗a|. (61)

The accelerated motion of a particle is described by the parameter ϵ = ϵ(X µ̂) in (12) of local SUSY, which
depends explicitly on X µ̂ = (x̃µ, x̃µ), where x̃µ ∈ V4 and x̃µ ∈ V 2. To be specific, let us focus for the
motion (37) on the simple case of a peculiar anticommuting spinors (ξ(x̃), ξ̄(x̃)) and (ξ(x̃), ξ̄(x̃)) defined as

ξα(x̃) = i τ(x̃)
2 θα, ξ̄

α̇
(x̃) = −i τ∗(x̃)

2 θ̄α̇,

ξα(x̃) = i τ(x̃)2 θα, ξ̄α̇(x̃) = −i τ
∗(x̃)
2 θ̄α̇.

(62)

Here the real parameter τ(x̃) = τ∗(x̃) = τ(x̃) = τ∗(x̃) can physically be interpreted as the atomic duration
time of double transition of a particle V4 ⇌ V 2 (Fig. 1), i.e. the period of superoscillations. In this case,
the atomic displacement caused by double transition, according to (60), reads

∆x̃(a) = ẽm∆x̃
m
(a) = ũτ(x̃), (63)

where, according to the motion (100), the components ∆x̃
m
(a) are written

∆x̃
m
(a) = ṽm τ(x̃) = iθ σm ξ̄(x̃)− iξ(x̃)σm θ̄. (64)

The corresponding acceleration reads

a(±) = iθ σ(±) d2ξ̄

ds̃2
− i

d2ξ

ds̃2
σ(±) θ̄, (65)

where σ(±) = 1√
2
(σ0 ± σ1) = 1√

2
(σ0 ± σ3) and ds̃2 = dx̃(+)dx̃(−). By virtue of (62), the (65) is reduced to

a(±) = v
(±)
c

d2τ
ds̃2
, (66)

where v
(±)
c ≡ (θ σ(±)θ̄).

In Van der Warden notations for the Weyl two-component formalism (θ̄α̇)
∗ = θα and θ̄α̇ = (θα)

∗, the (66)
gives

ã =
√
2(a(+)a(−))1/2 =

√
2vc

d2τ
ds̃2
,

vc = (v
(+)
c v

(−)
c )1/2 =

√
2(θ1 θ̄1θ2 θ̄2)

1/2,
(67)

with v
(+)
c =

√
2(θ1 θ̄1) and v

(−)
c =

√
2(θ2 θ̄2). The acceleration will generally remain a measure of the velocity

variation over proper time (s̃). The (66) and (67) yield

v(±) = v
(±)
c

(
dτ
ds̃ + 1

)
,

ṽ =
√
2(v(+)v(−))1/2 =

√
2vc

(
dτ
ds̃ + 1

)
.

(68)

The spinors θ(θ, θ̄) and θ̄(θ, θ̄) satisfy the embedding map (4), namely ∆x̃0 = ∆x̃0 and (∆x̃1)2 = (∆⃗̃x)2, so
from (100) we obtain

θ σ0 ξ̄ − ξ σ0 θ̄ = θ σ0 ξ̄ − ξ σ0 θ̄,

(θ σ3 ξ̄ − ξ σ3 θ̄)2 = (θ σ⃗ ξ̄ − ξ σ⃗ θ̄)2.
(69)
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Denote
v
0
(c) =

1√
2

(
v
(+)
c + v

(−)
c

)
= (θ θ̄),

v
1
(c) =

1√
2

(
v
(+)
c − v

(−)
c

)
= (θ1 θ̄1 − θ2 θ̄2),

(70)

then both relations in map (69) are reduced to

θθ̄ = v
0
(c), θθθ̄θ̄ = −2

3(v
1
(c))

2. (71)

Here we have used the following spinor algebra relations (Wess & Bagger, 1983):

(θσm θ̄)(θσn θ̄) = 1
2 θθθ̄θ̄ g

mn. (72)

By virtue of relations θαθβ = 1
2εαβθθ and θ̄α̇θ̄β̇ = −1

2εα̇β̇ θ̄θ̄, where the antisymmetric tensors εαβ and εαβ

(ε21 = ε12 = 1, ε12 = ε21 = −1, ε11 = ε22 = 0), and that of the inner product of two spinors θθ = θαθα
and θ̄θ̄ = θ̄α̇θ̄

α̇, are invariant under Lorentz transformations because of unimodular matrix M (Lahanas &
Nanopoulos, 1987, Wess & Bagger, 1983), we obtain from (71): θ21 + θ22 = v

0
(c), and θ1θ2 = 1√

6
v
1
(c), which

yield

θ1(θ, θ̄) =
1
2

[(
v
0
(c) +

√
2
3v

1
(c)

)1/2

+
(
v
0
(c) −

√
2
3v

1
(c)

)1/2
]
,

θ2(θ, θ̄) =
1
2

[(
v
0
(c) +

√
2
3v

1
(c)

)1/2

−
(
v
0
(c) −

√
2
3v

1
(c)

)1/2
]
.

(73)

The dynamical aspects of particle mechanics involve derivatives with respect to proper time along the
particle worldline. A worldline C of a particle, parametrized by proper time as C(s) = X µ̂(s), will have as
six-velocity the vector of components uµ̂ = dX µ̂/ds and uâ = ėâµ̂u

µ̂, which are the particle velocity along
this curve respectively in the holonomic and anholonomic bases in the X-space.

6. Concluding remarks

In this section we highlight a few points and discuss issues to be studied further. To innovate the solution
to the problems involved, in this paper we develop on the theory of M̃Sp-SG, which is a local extension of
a global MSp-SUSY theory (Ter-Kazarian, 2024a).

(I) We emphasize that the MSp-SUSY (which is about the inertial motion, first part of inertia), together

with the M̃Sp-SG (which is about the acceleration and inertia effects, second part of inertia), provide
valuable theoretical clue for a complete revision of our ideas about the Lorentz code of motion, as well as
the acceleration and inertia effects, to be now referred to as the intrinsic property of a particle of interest
devoid of any matter influence. This is a result of the first importance for a really comprehensive entire
theory of inertia, which radically contradicts Mach’s principle of relativity of inertia.

(II) We consider the accelerated motion of a particle in a new perspective of local M̃Sp-SUSY trans-
formations, whereas a creation of a particle in V 2 means its transition from initial state defined on V4 into
intermediate state defined on V 2, while an annihilation of a particle in V 2 means vice versa (Fig. 1). The
same interpretation holds for the creation and annihilation processes in V4.

(III) The local-SUSY is conceived as a theory of M̃Sp-SG, which can only be implemented if V 2 and V4
are curved (deformed). The M̃Sp, being embedded in the V4, is the unmanifested indispensable individual
companion of a particle of interest devoid of any matter influence. The superspace (zM , Θ, Θ̄) is a direct
sum extension of background double spaces V4 ⊕ V 2, with an inclusion of additional fermionic coordinates
(Θ(θ, θ), Θ̄(θ̄, θ̄)) induced by the spinors (θ, θ̄), which refer to V 2. Thanks to the embedding V 2 ↪→ V4,
the spinors (θ, θ̄), in turn, induce the spinors θ(θ, θ̄) and θ̄(θ, θ̄), as to V4. While all the particles are living

on V4, their superpartners can be viewed as living on M̃Sp. In this framework supersymmetry and general
coordinate transformations are described in a unified way as certain diffeomorphisms. The action of simple
M̃Sp-SG includes the Hilbert term for a fictitious graviton coexisting with a fictitious fermionic field of
gravitino described by the Rarita-Scwinger kinetic term. A coupling of supergravity with matter superfields
no longer holds. The different 4D N = 1 supergravity multiplets all contain the graviton and the gravitino,
but differ by their systems of auxiliary fields.

(IV) The accelerated motion of a particle is described by the parameter ϵ = ϵ(X µ̂) of local SUSY, which
depends explicitly on X µ̂ = (x̃µ, x̃µ), where x̃µ ∈ V4 and x̃µ ∈ V 2. Here the real parameter τ(x) = τ(x) is
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interpreted as the atomic duration time, i.e. period of superoscillations, of double transition of a particle
V4 ⇌ V 2.

(VI) Further studies on the M̃Sp-SG are warranted with special emphasis on Palatini’s formalism, the

flat M̃Sp-SG theory with Weitzenböck torsion as a M̃Sp-Teleparallel SG theory, a general deformation of
MSp induced by external force exerted on a particle and inertial effects, the hypothesis of locality, which
will essentially improve the framework of present paper. Actually,

a) using Palatini’s formalism extended in a plausible fashion to the M̃Sp - SG, one will reinterpret a flat

M̃Sp-SG theory with Weitzenböck torsion as a M̃Sp-Teleparallel SG theory, having the gauge translation
group in tangent bundle. Whereas the Hilbert action vanishes and the gravitino action loses its spin connec-
tions, so one finds torsion induced by gravitinos. The accelerated reference frame has Weitzenböck torsion.
The spin connection represents only inertial effects, but not gravitation at all. The action of a M̃Sp-TSG
theory will be invariant under the Poincaré supergroup and under diffeomorphisms.

b) The Weitzenböck connection (Γ̇), which defines the Fock-Ivanenko derivative (Ḋµ̂) written in terms of
covariant derivative (▽̇µ̂), defines the acceleration too. By means of it, one will derive a force equation, with
torsion (or contortion) playing the role of force. The connection (Γ̇) will be considered a kind of dual of the
Levi-Civita connection (Γ), which is a connection with vanishing torsion (T ), and non-vanishing fictitious
curvature (R).

c) This allows one to complement a theory of M̃Sp-TSG with implications for special cases. In particular,
one will discuss the Newtonian limit, and describe the homogeneous acceleration field.

d) As we emphasized already essential difference arisen between the standard supergravity theories and

some rather unusual properties of a M̃Sp-SG theory is as follows. In the framework of the standard su-
pergravity theories, as in GR, a curvature of the space-time acts on all the matter fields. The source of
graviton is the energy-momentum tensor of matter fields, while the source of gravitino is the spin-vector
current of supergravity. The gauge action of simple M̃Sp-SG is the sum of the Hilbert action for the tetrad
field - fictitious graviton, and the Rarita-Schwinger action for the fictitious gravitino field. Instead we argue
that a deformation of MSp is the origin of these fields. They refer to the particle of interest itself, without
relation to other matter fields, so that these fields can be globally removed by appropriate coordinate trans-
formations. With these physical requirements, a standard coupling of supergravity with matter superfields
evidently no longer holds. We, therefore, would work out the theory of a general deformation of MSp induced

by external force exerted on a particle, in order to show that in the M̃Sp-TSG theory the occurrence of the
absolute and inertial accelerations, and the inertial force are obviously caused by this. In the same time,
the relative acceleration (in Newton’s terminology) (both magnitude and direction), to the contrary, has
nothing to do with a deformation of M 2 and, thus, it cannot produce the inertia effects. One will determine
the most important period of superoscillations as a function of proper time for given deformed MSp.

e) In standard framework of the construction of reference frame of an accelerated observer, the hypothesis
of locality holds for huge proper acceleration lengths and that represents strict restrictions, because it
approximately replaces a noninertial frame of reference S̃(2), which is held stationary in the deformed space

M2 ≡ V
(ϱ)
2 (ϱ ̸= 0), where V 2 is the 2D semi-Riemannian space, with a continuous infinity set of the

inertial frames {S(2), S′
(2), S

′′
(2), ...} given in the flat M2 (ϱ = 0). In this situation the use of the hypothesis

of locality is physically unjustifiable. In this study, therefore, it is worthwhile to take into account a

deformation M2 −→ V
(ϱ)
2 , which will essentially improve the standard framework.

All the above mentioned problems (d,e) will become separate topics for research in subsequent pa-
pers (Ter-Kazarian, 2024c,b).
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Appendices

Appendix A A glimpse on the global MSp-SUSY

For a benefit of the reader, as a guiding principle to make the rest of paper understandable, in this section
we necessarily recount some of the highlights behind of global MSp-SUSY (Ter-Kazarian, 2023a, 2024a), on

which the local M̃Sp-SUSY is based.
The flat MSp is the 2D composite space

MSp ≡M 2 = R1
(+) ⊕R1

(−), (74)

with Lorentz metric. The ingredient 1D-space R1
m is spanned by the coordinates ηm. The following nota-

tional conventions are used throughout this paper: all quantities related to the spaceM 2 will be underlined.
In particular, the underlined lower case Latin letters m,n, ... = (±) denote the world indices related to M 2.

Suppose the position of the particle is specified by the coordinates xm(s) (x0 = t) in the basis em
(m=0,1,2,3) at given point in the background M4 space. Consider a smooth (injective and continuous)
embedding M 2 ↪→ M4. That is, a smooth map f : M2 −→ M4 is defined to be an immersion (the
embedding which is a function that is a homeomorphism onto its image):

e0 = e0, x0 = x0, e1 = n⃗, x1 = |x⃗|, (75)

where x⃗ = eix
i = n⃗|x⃗| (i = 1, 2, 3). Given the inertial frames S(4), S

′
(4), S

′′
(4), ... in unaccelerated uniform

motion in M4, we may define the corresponding inertial frames S(2), S
′
(2), S

′′
(2),... in M 2, which are used

by the non-accelerated observers for the positions xr, x′r, x′′r, ... of a free particle in flat M 2. According
to (75), the time axes of the two systems S(2) and S(4) coincide in direction, and the time coordinates are
taken the same. For the case at hand,

v(±) =
dη(±)

dx0 = 1√
2
(v0 ± v1), v1 = dx1

dx0 = |v⃗| = | dx⃗
dx0 |, (76)

and that
u = emv

m = (v⃗ 0, v⃗ 1), v⃗ 0 = e0v
0, v⃗ 1 = e1v

1 = n⃗|v⃗| = v⃗, (77)

therefore, u = u = (e0, v⃗). To explain why MSp is two dimensional, we note that only 2D real null vectors
are allowed as the basis at given point in MSp, which is embedded in M4. Literally speaking, the M 2 can
be viewed as 2D space living on the 4D world sheet.

The elementary act of particle motion at each time step (ti) through the infinitely small spatial interval
△xi = (xi+1 − xi) in M4 during the time interval △ti = (ti+1 − ti) = ε is probably the most fascinating
challenge for physical research. Since this is beyond our perception, it appears legitimate to consider
extension to the infinitesimal Schwinger transformation function, Fext(xi+1, ti+1;xi, ti), in fundamentally
different aspect. We hypothesize that

in the limit n → ∞(ε → 0), the elementary act of motion consists of an `annihilation´ of a particle at
point (xi, ti) ∈ M4, which can be thought of as the transition from initial state |xi, ti > into unmanifested
intermediate state, so-called, `motion´ state, |xi, ti >, and of subsequent `creation´ of a particle at infinitely
close final point (xi+1, ti+1) ∈M4, which means the transition from `motion´ state, |xi, ti >, into final state,
|xi+1, ti+1 >. The motion state, |xi, ti) >, should be defined on unmanifested `master´ space, M 2, which
includes the points of all the atomic elements, (xi, ti) ∈M 2 (i = 1, 2, ...).

This furnishes justification for an introduction of unmanifested master space, M 2.
The fields of spin-zero (S⃗ = K⃗ = 0) scalar field A(x) and spin-one An(x), corresponding to the (1/2, 1/2)

representation, transform under a general Lorentz transformation as follows:

A(η) ≡ A(x), (spin 0);

Am(η) = Λm
nA

n(x), (spin 1).
(78)

The map from SL(2, C) to the Lorentz group is established through the σ⃗-Pauli spin matrices, σm =
(σ0, σ1, σ2, σ3) ≡ (I2, σ⃗), σ̄

m ≡ (I2,−σ⃗), where I2 is the identity two-by-two matrix.
According to embedding map (75), the σ-matrices are

σm = σ(±) = 1√
2
(σ0 ± σ1) = 1√

2
(σ0 ± σ3). (79)
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The matrices σm form a basis for two-by-two complex matrices P :

P = (pmσ
m) = (p(±)σ

(±)) = (p0σ
0 + p1σ

1), (80)

provided p(±) = i∂η(±) , p0 = i∂x0 and p1 = i∂x1 . The real coefficients p′m and pm, like p′m and pm, are related

by a Lorentz transformation p′m = Λ
n
m pn, because the relations det(σm pm) = p20 − p21 and detM = 1 yield

p′0
2 − p′1

2 = p20 − p21. Correspondence of pm and P is uniquely: pm = 1
2Tr(σ

m P ), which combined with (82)
yields

Λ
m
n(M) = 1

2 Tr
(
σmMσnM †) . (81)

Thus, both hermitian matrices P and P ′ or P and P ′ have expansions, respectively, in σ or σ:

(σm p′m) =M(σm pm)M †, (σm p′m) =M(σm pm)M †, (82)

where M(M ∈ SL(2, C)) is unimodular two-by-two matrix.
A two-component (1/2, 0) Weyl fermion, χβ(x), therefore, transforms under Lorentz transformation to

yield χ
α
(η):

χβ(x) −→ χ
α
(η) = (MR)

β
α χβ(x), α, β = 1, 2, (83)

where the orthochronous Lorentz transformation, corresponding to a rotation by the angles ϑ3 and ϑ2 about,
respectively, the axes n3 and n2, is given by rotation matrix

MR = ei
1
2
σ2ϑ2ei

1
2
σ3ϑ3 . (84)

There with the rotation of an hermitian matrix P is

pmσ
m =MR pmσ

mM †
R, (85)

where pm and pm denote the momenta pm ≡ m(chβ, shβ sinϑ2 cosϑ3, shβ sinϑ2 sinϑ3,
shβ cosϑ2), and pm ≡ m(chβ, 0, 0, shβ).

A two-component (0, 1/2) Weyl spinor field is denoted by χ̄β̇(x), and transforms as

χ̄β̇(x) −→ χ̄α̇(η) = (M−1
R )†α̇

β̇
χ̄β̇(x), α̇, β̇ = 1, 2. (86)

The so-called `dotted´ indices have been introduced to distinguish the (0, 1/2) representation from the
(1/2, 0) representation. The `bar´ over the spinor is a convention that this is the (0, 1/2)-representation.
We used the Van der Waerden notations for the Weyl two-component formalism: (χ̄

α̇
)∗ = χ

α
and χ̄

α̇
= (χ

α
)∗.

The odd part of the supersymmetry algebra is composed entirely of the spin-1/2 operators Q i
α , Q

j
β . In

order to trace a maximal resemblance in outward appearance to the standard SUSY theories, here we set
one notation m̂ = (m if Q = q, or m if Q = q), and as before the indices α and α̇ run over 1 and 2.

If that is the case as above, a creation of a particle in M 2 means its transition from initial state defined
on M4 into intermediate state defined on M 2, while an annihilation of a particle in M 2 means vice versa.
The same interpretation holds for the creation and annihilation processes in M4. All the fermionic and
bosonic states taken together form a basis in the Hilbert space. The basis vectors in the Hilbert space
composed of HB ⊗HF is given by

{|n b > ⊗|0 >f , |n b > ⊗f † |0 >f},

or
{|nb > ⊗|0 > f , |nb > ⊗f † |0 > f},

where we consider two pairs of creation and annihilation operators (b†, b) and (f †, f) for bosons and fermions,
respectively, referred to the background space V4, as well as (b†, b) and (f †, f) for bosons and fermions,

respectively, as to background master space V 2. The boson and fermion number operators are Nb = b†b or
N b = b†b, where Nb|nb >= nb|nb > and N b|n b >= n b|n b > (= 0, 1, ...,∞), and Nf = f †f or N f = f †f ,

provided Nf |nf >= nf |nf > and N f |n f >= n f |n f > (= 0, 1). Taking into account the action of (b, b†) or

(b, b†) upon the eigenstates |nb > or |n b >, we may construct the quantum operators, (q†, q†) and (q, q) as

q = q0, b f
†, q† = q0 b

† f,

q = q0 bf
†, q† = q0 b

† f.
(87)
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which replace bosons by fermions and vice versa:

q |n b, nf >= q0
√
n b |n b − 1, nf + 1 >,

q† |n b, nf >= q0
√
n b + 1 |n b + 1, nf − 1 >,

(88)

and that
q |nb, n f >= q0

√
nb |nb − 1, n f + 1 >,

q† |nb, n f > q0
√
nb + 1 |nb + 1, n f − 1 > .

(89)

This framework combines bosonic and fermionic states on the same footing, rotating them into each other
under the action of operators q and q. So, we may refer the action of the supercharge operators q and q† to
the background space M4, having applied in the chain transformations of fermion χ (accompanied with the
auxiliary field F as it will be seen later on) to boson A, defined on M 2:

−→ χ(F ) −→ A −→ χ(F ) −→ A −→ χ(F ) −→ . (90)

Respectively, we may refer the action of the supercharge operators q and q† to the M 2, having applied in
the chain transformations of fermion χ (accompanied with the auxiliary field F ) to boson A, defined on the
background space M4:

−→ χ(F ) −→ A −→ χ(F ) −→ A −→ χ(F ) −→ . (91)

The successive atomic double transitions of a particle M4 ⇌M 2 is investigated within MSp-SUSY, wherein
all the particles are living on M4, their superpartners can be viewed as living on MSp. The underlying
algebraic structure of MSp-SUSY generators closes with the algebra of translations on the original space M4

in a way that it can then be summarized as a non-trivial extension of the Poincaré group algebra those of the
commutation relations of the bosonic generators of four momenta and six Lorentz generators referred toM4.
Moreover, if there are several spinor generators Q i

α with i = 1, ..., N - theory with N−extended supersym-
metry, can be written as a graded Lie algebra of SUSY field theories, with commuting and anticommuting
generators:

{Q i
α , Q̄

j
α̇} = 2δij σm̂αα̇ pm̂;

{Q i
α , Q

j
β } = {Q̄i

α̇, Q̄
j

β̇
} = 0; [pm̂, Q

i
α ] = [pm̂, Q̄

j
α̇] = 0, [pm̂, pn̂] = 0.

(92)

The anticommuting (Grassmann) parameters ϵα(ξα, ξα) and ϵ̄α(ξ̄α, ξ̄
α
):

{ϵα, ϵβ} = {ϵ̄α, ϵ̄β} = {ϵα, ϵ̄β} = 0, {ϵα, Qβ} = · · · = [pm̂, ϵ
α] = 0, (93)

allow us to write the algebra (92) for (N = 1) entirely in terms of commutators:

[ϵQ, Q̄ϵ̄] = 2ϵσm̂ϵ̄pm̂, [ϵQ, ϵQ] = [Q̄ϵ̄, Q̄ϵ̄] = [pm̂, ϵQ] = [pm̂, Q̄ϵ̄] = 0. (94)

For brevity, here the indices ϵQ = ϵαQα and ϵ̄Q̄ = ϵ̄α̇Q̄
α̇ will be suppressed unless indicated otherwise. This

supersymmetry transformation maps tensor fields A(A, A) into spinor fields ψ(χ, χ) and vice versa. From
the algebra (94) we see that Q has mass dimension 1/2. Therefore, as usual, fields of dimension ℓ transform
into fields of dimension ℓ + 1/2 or into derivatives of fields of lower dimension. It can be checked that the
supersymmetry transformations close supersymmetry algebra:

(δξ1δξ2 − δξ2δξ1)A = −2i(ξ1σ
mξ̄2 − ξ2σ

mξ̄1)(δ
0
m∂0 +

1
|x⃗|x

iδim∂1)A. (95)

The guiding principle of MSp-SUSY resides in constructing the superspace which is a 14D-extension of
a direct sum of background spaces M4 ⊕ M 2 (spanned by the 6D-coordinates Xm̂ = (xm, ηm) by the
inclusion of additional 8D-fermionic coordinates Θα = (θα, θα) and Θ̄α̇ = (θ̄α̇, θ̄ α̇), as to (q, q), respectively.
Therewith thanks to the embedding M 2 ↪→ M4, the spinors (θ, θ̄), in turn, induce the spinors θ(θ, θ̄) and
θ̄(θ, θ̄), as to M4. These spinors satisfy the following relations:

{Θα, Θβ} = {Θ̄α̇, Θ̄β̇} = {Θα, Θ̄β̇} = 0,

[xm, θα] = [xm, θ̄α̇] = 0, [ηm, θα] = [ηm, θ̄α̇] = 0.
(96)

and Θα∗ = Θ̄α̇. Points in superspace are identified by the generalized coordinates

z(M) = (Xm̂, Θα, Θ̄α̇) = (xm, θα, θ̄α̇)⊕ (ηm, θα, θ̄α̇).
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We have then the one most commonly used `real´ or `symmetric´ superspace parametrized by

Ω(X, Θ, Θ̄) = ei(−Xm̂pm̂+ΘαQα+Θ̄α̇Q̄
α̇) = Ωq(x, θ, θ̄)× Ωq(η, θ, θ̄), (97)

where we now imply a summation over m̂ = (m,m). To study the effect of supersymmetry transformations,
we consider

g(0, ϵ, ϵ̄) Ω(X, Θ, Θ̄) = ei(ϵ
αQα+ϵ̄α̇Q̄

α̇) ei(−Xm̂pm̂+ΘαQα+Θ̄α̇Q̄
α̇). (98)

the transformation (98) induces the motion:

g(0, ϵ, ϵ̄) Ω(Xm̂, Θ, Θ̄) → (Xm̂ + iΘσm̂ ϵ̄− i ϵ σm̂ Θ̄, Θ+ ϵ, Θ̄ + ϵ̄), (99)

namely,
gq(0, ξ, ξ̄) Ωq(x, θ, θ̄) → (xm + i θ σm ξ̄ − i ξ σm θ̄, θ + ξ, θ̄ + ξ̄),
gq(0, ξ, ξ̄) Ωq(η, θ, θ̄) → (ηm + i θ σm ξ̄ − i ξ σm θ̄, θ + ξ, θ̄ + ξ̄).

(100)

The spinors θ(θ, θ̄) and θ̄(θ, θ̄) satisfy the embedding relations ∆x0 = ∆x0 and ∆x2 = (∆x⃗)2, so from (100)
we obtain

θ σ0 ξ̄ − ξ σ0 θ̄ = θ σ0 ξ̄ − ξ σ0 θ̄, (θ σ3 ξ̄ − ξ σ3 θ̄)2 = (θ σ⃗ ξ̄ − ξ σ⃗ θ̄)2, (101)

which gives (73). The atomic displacement caused by double transition of a particle M4 ⇌M 2 reads

∆η
(a)

= em∆η
m
(a) = uτ, (102)

where the components ∆η
m
(a) are written

∆η
m
(a) = (θ σm θ̄)τ. (103)

In Van der Warden notations for the Weyl two-component formalism θ̄α̇ = (θα)
∗, the (102) can be recast

into the form
∆η2

(a)
= 1

2

[
(∆x

0
(a)q)

2 − (∆x
1
(a))

2
]
, (104)

where ∆x
0
(a) = v0τ , ∆x

1
(a) = v1 τ , and v(±) = 1√

2
(v0 ± v1). Hence the velocities of light in vacuum, v0 = c,

and of a particle ,v⃗ 1 = e1v
1 = n⃗|v⃗| = v⃗ (|v⃗| ≤ c), are

v0 = θ σ0 θ̄ = (θ1 θ̄1 + θ2 θ̄2) = θ θ̄,
v1 = θ σ1 θ̄ = (θ1 θ̄1 − θ2 θ̄2).

(105)

Thus we derive the first founding property (i) that the atomic displacement∆η
(a)

, caused by double transition

of a particle M4 ⇌M 2, is an invariant:

(i) ∆η
(a)

= ∆η′
(a)

= · · · = inv. (106)

The (105) gives the second (ii) founding property that the bilinear combination θ θ̄ is a constant:

(ii) c = θ θ̄ = θ′ θ̄
′
= · · · = const. (107)

The latter yields a second postulate of SR (Einstein’s postulate) - the velocity of light, c, in free space appears
the same to all observers regardless the relative motion of the source of light and the observer. The c is the
maximum attainable velocity (105) for uniform motion of a particle in Minkowski background space, M4.
Equally noteworthy is the fact that (106) and (107) combined yield invariance of the element of interval
between two events ∆x = k∆η

(a)
(for given integer number k) with respect to the Lorentz transformation:

k2∆η2
(a)

= (c2 − v21)∆t
2 = (c2 − v⃗ 2)∆t2 = (∆x0)2 − (∆x⃗)2 ≡ (∆s)2 = (∆x′0)2−

(∆x⃗)′2 ≡ (∆s′)2 = · · · = inv.,
(108)

where x0 = ct, x0
′
= ct′, . . . . We have here introduced a notion of physical relative finite time intervals

between two events ∆t = kτ/
√
2, ∆t′ = kτ ′/

√
2, ....

G.Ter-Kazarian
doi: https://doi.org/10.52526/25792776-24.71.2-230

248

https://doi.org/10.52526/25792776-24.71.2-230

	Introduction
	The local MS"0365MSp-SUSY
	Non-trivial linear representation of the MS"0365MSp-SUSY algebra
	The simple (N=1) MS"0365MSp - SG without auxiliary fields
	Particle mechanics in the 4D Minkowski space-time: Velocity and acceleration
	Concluding remarks
	Appendices
	A glimpse on the global MSp-SUSY

