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Abstract

In the framework of the theory of Master space-Teleparallel Supergravity (M̃Sp-TSG) (Ter-Kazarian,
2024b), having the gauge translation group in tangent bundle, in present article we address the theory of a
general deformation of the flat MSp induced by external force exerted on a particle, subject to certain rules.
Our idea is that the universality of gravitation and inertia attribute to the single mechanism of origin from
geometry but having a different nature. We have ascribed, therefore, the inertia effects to the geometry
itself but as having a nature other than 4D Riemannian space. We consider a general smooth deformation
map Ω(ϱ) : M2 → M2 in terms of the world - deformation tensor Ω, the flat MSp, and a general
smooth differential 2D-manifold, M2. The Ω is a function of local rate, ϱ(x), of instantaneously change
of the velocity of massive test particle under the unbalanced external net force. A general deformation

is composed of the two subsequent deformations
◦
Ω: M2 → V 2 and Ω̆ : V 2 → M2, where V 2 is the 2D

semi-Riemannian space,
◦
Ω and Ω̆ are the corresponding world deformation tensors. In the simple case of

Ω =
◦
Ω, Ω̆µ

ν ≡ δµν , we have to write the rate, ϱ, in terms of the Lorentz spinors (θ, θ̄) referred to M2, and
period of superoscillations (τ). The latter can be defined as a function of proper time (s) induced by the
world-deformation tensor Ω(s). In this way we show that the occurrence of the, so-called, absolute and
inertial accelerations, and that the inertial force as well, are obviously caused by a general deformation
of the flat MSp. Therewith the relative acceleration in 4D Minkowski space, M4, (both magnitude and
direction, in Newton’s terminology), to the contrary, has nothing to do with a deformation of M 2 and,
thus, it cannot produce the inertia effects. We calculate the relativistic inertial force in Minkowski,
semi-Riemannian and post Riemannian spaces. This furnishes a justification for the introduction of the
Weak Principle of Equivalence (WPE). We discuss the inertia effects beyond the hypothesis of locality

with special emphasis on deformation M2 −→ V
(ϱ)
2 , which essentially improves the standard framework.

Whereas we derive the tetrad fields as a function of ϱ, describing corresponding fictitious graviton. The
fictitious gravitino will be arisen under infinitesimal transformations of local supersymmetry.

Keywords: Teleparallel Supergravity–Spacetime Deformation–Inertia Effects

1. Introduction

Using Palatini’s formalism extended in a plausible fashion to the M̃Sp-Supergravity (Ter-Kazarian,

2023c, 2024c), in a recent papers (Ter-Kazarian, 2024b) we reinterpret a flat M̃Sp-SG theory withWeitzenböck

torsion as the quantum field theory of M̃Sp-TSG, having the gauge translation group in tangent bundle.
For a benefit of the reader as a guiding principle to make the rest of paper understandable, we necessarily
recount succinctly some of the highlights behind of M̃Sp-SG and M̃Sp-TSG in the Appendix.

A quantum field theory of M̃Sp-Supergravity is a local extension of the theory of global Master space
(MSp)-SUSY (Ter-Kazarian, 2023a, 2024a). The latter, in turn, is the microscopic theory of: 1) standard
Lorentz code of motion (SLC), 2) deformed Lorentz symmetry and 3) deformed geometry induced by foamy
effects at the Planck scale, and tested in ultra-high energy experiments. Therewith we derive the SLC in a
new perspective of global double MSp-SUSY transformations. The MSp-SUSY provides valuable theoretical
clue for a complete revision of our standard ideas about the Lorentz code of motion to be now referred to as
the intrinsic property of a particle. This is a result of the first importance for a really comprehensive theory
of inertia. The MSp-SUSY theory, among other things, actually explores the first part of the phenomenon of
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inertia, which refers to inertial uniform motion along rectilinear timelike world lines. This developments are
in many ways exciting, yet mysteries remain, and some of deeper issues are still unresolved, such as those
which relate the inertial effects. This comprises a second half of phenomenon of inertia, which stood one of
the major unattained goals since the time traced back to the works developed by Galileo and Newton. The
principle of inertia they developed is one of the fundamental principles of classical mechanics. This governs
the uniform motion of a body and describes how it is affected by applied forces. Ever since, there is an
ongoing quest to understand the reason for the universality of the gravitation and inertia, attributing to the
WPE, which establishes the independence of free-fall trajectories of the internal composition and structure
of bodies. However, the nature of the relationship of gravity and inertia continues to elude us and, beyond
the WPE, there has been little progress in discovering their true relation. Viewed from the perspective
of GR theory, the fictitious forces are attributed to geodesic motion in spacetime. Physicists have gone a
long way in developing this theory. But nothing is reliable and such efforts do not make sense. Indeed, as
Einstein emphasized later (Bondi, 1952, Sciama, 1953), GR is failed to account for the inertial properties of
matter, so that an adequate theory of inertia is still lacking.

We reinterpret the flat M̃Sp-SG theory with Weitzenböck torsion as the theory of M̃Sp-TSG having
the gauge translation group in tangent bundle. An important property of Teleparallel Gravity is that its
spin connection is related only to the inertial properties of the frame, not to gravitation. Whereas the
Hilbert action vanishes and the gravitino action loses its spin connections, so we find that the accelerated
reference frame has Weitzenböck torsion induced by gravitinos. The action of M̃Sp-TSG is invariant under
local translations, under local super symmetry transformations and by construction is invariant under local
Lorentz rotations and under diffeomorphisms. So that this action is invariant under the Poincaré supergroup
and under diffeomorphisms. The Weitzenböck connection defines the acceleration through force equation,
with torsion (or contortion) playing the role of force. Thus, the results obtained clearly show that the
frames expressing linear and rotational acceleration can be interpreted via torsion as an invariant property
of spacetime.

In the present article, our idea is that the universality of gravitation and inertia attribute to the single
mechanism of origin from geometry but having a different nature. We have ascribed, therefore, the inertia
effects to the geometry itself but as having a nature other than 4D Riemannian space (for earlier version

see (Ter-Kazarian, 2012)). We show that in the M̃Sp-TSG theory the occurrence of the absolute and inertial
accelerations, and the inertial force are obviously caused by a general deformation of the flat MSp. While
the relative acceleration (both magnitude and direction, in Newton’s terminology) in 4D Minkowski space,
M4 , to the contrary, has nothing to do with a deformation of M 2 and, thus, it cannot produce the inertia
effects. We calculate the relativistic inertial force in Minkowski, semi-Riemannian and post Riemannian
spaces. Despite of totally different and independent sources of gravitation and inertia, this establishes
the independence of free-fall trajectories of the mass, internal composition and structure of bodies. This
furnishes a justification for the introduction of the Weak Principle of Equivalence (WPE). We discuss the

inertia effects by going beyond the hypothesis of locality with special emphasis on deformationM2 −→ V
(ϱ)
2 ,

which essentially improves the standard framework.
With this perspective in sight, we will proceed according to the following structure. To start with, in

Section 2 we briefly review a general deformation of the flat MSp. Section 3 is devoted to the model building
in background M4. In Section 4 we discuss the inertia effects beyond the hypothesis of locality with special

emphasis on deformation M2 −→ V
(ϱ)
2 , which essentially improves the standard framework. Whereas we

derive the tetrad fields describing fictitious graviton. In Section 5 we calculate the inertial force in the
semi-Riemannian space V4. In Section 6 we discuss the inertial effects in the background post Riemannian
geometry. We bring the concluding remarks in section 7. In Appendix, we will briefly review the theories
of M̃Sp-SG and M̃Sp-TSG. For brevity, whenever possible undotted and dotted spinor indices often can be
ruthlessly suppressed without ambiguity. Unless indicated otherwise, the natural units, h = c = 1 are used
throughout.

2. A general deformation of the flat MSp

In this section we will briefly discuss a general deformation of the flat MSp induced by external force

exerted on a particle, to show that in the M̃Sp-SG theory the occurrence of the so-called absolute and
inertial accelerations, as well as inertial effects (fictitious gravity) are obviously caused by this. For brevity
reason, we shall forbear here to review the mathematical aspects of the spacetime deformation technique.
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We invite the interested reader to consult (Ter-Kazarian, 2011, 2012) for a more rigorous formulation with
various applications. We now extend, for the self-contained arguments, just necessary geometrical ideas
of this framework without going into the subtleties, as applied to the 2D deformation M2 → M2. In the
framework of spacetime deformation theory (Ter-Kazarian, 2011), we consider a smooth deformation map

Ω(ϱ) :M2 → M2, (1)

written in terms of the world - deformation tensor Ω, the flat MSp, and a general smooth differential 2D-
manifold, M2. The world-deformation tensor, Ω(ϱ), is a function of local rate, ϱ(x), of instantaneously
change of the velocity (v(±)) of massive test particle under the unbalanced external net force. The tensor,
Ω(ϱ), can be written in the form

Ω(ϱ) = D(ϱ)Y(ϱ) (Ω
m
n(ϱ) = D

m
µ (ϱ)Yµ

n(ϱ)), (2)

provided with the invertible distortion matrix D (D
m
µ ) and the tensor Y (Yµ

n = ∂ x̃µ/∂ xn). The principle
foundation of a world-deformation tensor comprises the following two steps. 1) The basis vectors e (m), at
any point p ∈M2 is undergone the deformation transformations by means of the matrix D(ϱ):

eµ(ϱ) = D
m
µ (ϱ)em. (3)

2) A diffeomorphism
x̃µ(x) :M2 → M2 (4)

is constructed by seeking a new holonomic coordinates x̃µ(x) as the solutions of the first-order partial
differential equations:

eµ Y
µ
m = Ω

n
m en, (5)

where the conditions of integrability,

∂m Yµ
n = ∂n Y

µ
m, (6)

and non-degeneracy,

det|Yµ
m| ≠ 0, (7)

necessarily hold (Pontryagin, 1984, et al., 1986). Therefore, the ϑ ≡ dxm is undergone the following defor-
mation transformations:

ϑµ = Yµ
m ϑ

m = Ω
n

m < eµ, en > ϑm. (8)

The deformation (1) is composed of the two subsequent deformations

◦
Ω:M2 → V 2

(9)

and

Ω̆ : V 2 → M2, (10)

where V 2 is the 2D semi-Riemannian space,
◦
Ω and Ω̆ are the corresponding world deformation tensors. In

what follows, we consider the simple spacetime deformation map,

Ω(ϱ) :M2 → V 2 (Ω =
◦
Ω, Ω̆µ

ν ≡ δµν ). (11)

The quantities denoted by wiggles here refer to V 2, but the quantities referring to flat M2 space are left,
as before, without wiggles. In this case the norm of the infinitesimal displacement on the general smooth
differential 2D-manifold V 2 can be written in terms of the anholonomic spacetime structures:

id̃(ϱ) = Ω a
b (ϱ) e ae

b ≡ π c̃
b (ϱ)π a

c̃ (ϱ) e ae
b ∈ V 2. (12)

The matrices, π(x̃)(ϱ) := (π a
c̃ )(ϱ), yield local tetrad deformations

ec̃(ϱ) = π a
c̃ (ϱ) ea, ande

c̃(ϱ) = πc̃b(ϱ) e
b. (13)

They are referred to as the first deformation matrices, while the matrices

γc̃d̃(x̃) =
∗oab π

a
c̃ (x̃)π b

d̃
(x̃), (14)
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are second deformation matrices. The matrices,

πac̃(x̃) ∈ GL(2, R)∀ x̃, (15)

in general, give rise to right cosets of the Lorentz group, i.e. they are the elements of the quotient group

GL(2, R)/SO(1, 1), (16)

because the Lorentz matrices, Lr
s, (r, s = 1, 0) leave the Minkowski metric invariant. A right-multiplication

of π a
c̃ (x̃) by a Lorentz matrix gives an other deformation matrix.
The invertible distortion matrix D(ϱ) is given by a constitutive ansätz:

D(ϱ) =

(
1 −ϱv(−)

ϱv(+) 1

)
, (17)

where µ = ˜(±), m = (±). These transformations imply a violation (e2˜(±)
(ϱ) ̸= 0) of the condition (e 2

(±) = 0)

of null vectors. The components of metric tensor in V 2, by virtue of (17), read

g0̃0̃ = (1 + ϱv1√
2
)2 − ϱ2

2 , g1̃1̃ = −(1− ϱv1√
2
)2 + ϱ2

2 ,

g1̃0̃ = g0̃1̃ = −
√
2ϱ.

(18)

In general, we parameterize the world-deformation tensor with parameters ν1 and ν2 as follows:

Ω
(+)

(+) = Ω
(−)

(−) = ν1(1 + ν2 ϱ
2),

Ω
(−)

(+) = −ν1(1− ν2)ϱv
(−),

Ω
(+)

(−) = ν1(1− ν2)ϱv
(+),

(19)

where ϱ2 = v2ϱ2, v2 = v(+)v(−) = 1/2γ21 , and γ1 = (1− (v1)2)−1/2. The relation (8) can then be recast in an
alternative form

ϑ = ν1

(
1 −ν2ϱ v(+)

ν2ϱ v
(−) 1

)
ϑ. (20)

The transformation equation for the coordinates, according to (20), becomes

ϑ(±̃) = ν1 (ϑ
(±) ∓ ν2 ϱv

(±)ϑ(∓)) = ν1 (v
(±) ∓ ν2 ϱv

2)dx0, (21)

which in turn yields the general transformation equations for spatial and temporal coordinates. The latter
give a reasonable change at low velocities v1 ≃ 0, as

dx̃0 = ν1 dx
0, dx̃1 ≃ ν1 (dx

1 − ν2ϱ√
2
dx0). (22)

In high velocity limit

v1 ≃ 1, ϱ ≃ 0, dx(−) = v(−)dx0 ≃ 0, v(+) ≃ v ≃
√
2, (23)

we have

dx̃0 = ν1 dx
0 ≃ ν1 dx

1 ≃ dx̃1. (24)

To this end, the inertial effects become zero.
Our idea here is this. Suppose a second observer, who makes measurements using a frame of reference

S̃(2) which is held stationary in V 2, uses for the test particle the spacetime coordinates x̃r(x̃0, x̃1). Then the
norm of the infinitesimal displacement on V 2 can be rewritten as

id̃ ≡ ds̃ = ẽ0dx̃
0 + ẽ1dx̃

1, (25)

where ẽ0 and ẽ1 are, respectively, the temporal and spatial basis vectors. The difference of the line elements
ds ∈M2 and ds̃ ∈ V 2 can be interpreted in naive way by the second observer that he is subject to gravity,
so that he thinks he is in the curved space which is due to the deformation of flat space M2. However,
this difference with equal justice can be reinterpreted by him as a definite criterion for the character of his
own state of being in the absolute accelerated local non-inertial frame in M2, rather than to any quality
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of a deformation of M2. That is, the (22) becomes conventional transformation equations to accelerated
(anet ̸= 0) axes if we assume

d(ν2ϱ)√
2dx0 = anet and ν1(v1 ≃ 0) = 1, (26)

where anet is the magnitude of proper net acceleration. We may calculate a magnitude anet from the
embedding relations (104), by considering a test particle accelerated in M4, under an unbalanced net force
other than gravitational. The a⃗net will be a local net 3-acceleration of an arbitrary observer with proper
linear 3 - acceleration a⃗ and proper 3-angular velocity ω⃗ in M4 measured in the rest frame

a⃗net =
du⃗
ds = a⃗ ∧ u⃗+ ω⃗ × u⃗, (27)

where u is the 4-velocity. A magnitude of a⃗net can be computed as the simple invariant of the absolute value
|duds | as measured in rest frame:

|a| = |duds | =
(
dul

ds ,
dul
ds

)1/2
. (28)

The dynamical aspects of particle mechanics involve derivatives with respect to proper time along the particle
worldline, which is the line element written in frame (139). Then the very concept of the local absolute
acceleration (in Newton’s terminology) can be introduced using the Fermi-Walker transported frames

a⃗abs := e⃗1
dϱ√
2ds

= e⃗1 a = n⃗ |a|, (29)

where the axis e⃗1 of the system S(2), according to embedding map (88), lies along the net 3-acceleration,

e⃗1 = n⃗ = a⃗net
|⃗anet| . (30)

The (21), in general, gives
d2x̃(±)

d(x0)2
= ∓ 1

2γ2
1

√
2dx0. (31)

Then a magnitude of so-called an inertial acceleration

ain := d2x̃1

ds̃2
= Γ

1
µ̃ν̃(ϱ)

dx̃µ̃

ds̃
dx̃ν̃

ds̃ , (32)

where Γ
1
µ̃ν̃(ϱ) are the Christoffel symbols constructed by the metric (18), reads

ain = 1√
2

(
d2x̃(+)

ds̃2
− d2x̃(−)

ds̃2

)
= − 1

Ω2γ1

d(ν2ϱ)√
2ds

. (33)

In particular case of ν1 = ν2 = 1, the world-deformation tensor is simplified to

Ω
n

m = Ω(ϱ)δ
n
m, Ω(ϱ) = 1 + ϱ2. (34)

In this case a deformed line element becomes ds̃2 = Ω2(ϱ) ds2. These, combined with (33), yield a relationship
of the magnitudes of absolute and inertial accelerations

Ω2(ϱ) γ1 ain = − dϱ√
2ds

= −aabs. (35)

Thus we show that a general deformation of MSp is the origin of the local absolute (⃗aabs) and inertial (⃗ain)
accelerations, with the following key relation between them:

Ω2(ϱ) γ1 a⃗in = −a⃗abs. (36)

In Section 3, we will study the inertial effects stemming from (36). Now by means of (109) and (110), we
have to write the rate, ϱ, in terms of the Lorentz spinors (θ, θ̄), and period of superoscillations (τ):

ϱ(θ, θ̄, τ) =
√
2(ṽ −

√
2vc) = 2

√
2(θ1 θ̄1θ2 θ̄2)

1/2 dτ
ds̃ . (37)

A period of superoscillations, τ(s̃), can then be determined as a function of proper time (s̃) induced by the
world-deformation tensor Ω(s̃):

τ(s̃) = 4−1(θ1 θ̄1θ2 θ̄2)
−1

∫ s̃

0

√
Ω(s̃′)− 1 ds̃′. (38)

So that the magnitudes of the net and absolute accelerations induced by the Ω(s̃) read

anet =
√
2vc aabs =

d
ds

√
Ω(s̃)− 1. (39)
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3. Model building in background M4

The (36) provides a quantitative means for the inertial force f⃗(in):

f⃗(in) = ma⃗in = − ma⃗abs
Ω2(ϱ) γ1

= −ma⃗abs

√
2vc

(1+ϱ2)2
, (40)

where ϱ = 2v2c(dτ/ds̃) = (1/γ21)(dτ/ds̃). In case of absence of rotation, we may write the local absolute

acceleration (29) in terms of the relativistic force f l acting on a particle with coordinates xl(s):

f l(f0, f⃗) = md2xl

ds2
= Ll

k(v⃗)F
k. (41)

Here F k(0, F⃗ ) is the force defined in the rest frame of the test particle, Ll
k(v⃗) is the Lorentz transformation

matrix (i, j = 1, 2, 3):
Li
j = δij − (γ − 1)

vivj
|v⃗|2 , L0

i = γvi, (42)

where γ = (1− v⃗2)−1/2 = γ1. So

|a| = 1
m |f l| = 1

m(f lfl)
1/2 = 1

mγ |f⃗ |, (43)

and hence the (40) and (43) give

f⃗(in) = −
√
2vc

γ(1+ϱ2)2
[F⃗ + (γ − 1)n⃗(n⃗ · F⃗ )]. (44)

At low velocities |v⃗| ≃ 0 and tiny accelerations dτ
ds → 0 we usually experience, one has vc(θ, θ̄, τ ≃ const) ≃ 0,

and that Ω(ϱ) ≃ 1, the (44) is reduced to the conventional non-relativistic law of inertia

f⃗(in) = −ma⃗abs = −F⃗ . (45)

At high velocities |v⃗| ≃ 1, if (n⃗ · F⃗ ) ̸= 0, the inertial force (44) becomes

f⃗(in) ≃ − 1
(1+ϱ2)2 γ

n⃗(n⃗ · F⃗ ), (46)

and it vanishes in the limit of the photon (|v⃗| = 1, ϱ2 = γ−4(dτ/ds̃) → 0, m = 0). Thus, a deformation
of M 2 is the cause of arising the absolute and inertial accelerations, and the inertial force. Whereas the
relative acceleration in 4D Minkowski space, M4, (both magnitude and direction, in Newton’s terminology),
to the contrary, has nothing to do with a deformation ofM 2 and, thus, it cannot produce the inertia effects.

4. Beyond the hypothesis of locality

In standard framework of SR, an assumption is required for the construction of reference frame of an
accelerated observer to relate the ideal inertial observers to actual observers that are all noninertial, i.e.,
accelerated. Therefore, it is a long-established practice in physics to use the hypothesis of locality, see
e.g. (Maluf & Faria, 2008, Maluf et al., 2007, Marzlin, 1996, Mashhoon, 2002, 2011, Misner et al., 1973)
and references therein, for extension of the Lorentz invariance to accelerated observers in Minkowski space-
time. The geometrical structures, referred to a noninertial coordinate frame of accelerating and rotating
observer in Minkowski space-time, were computed on the base of the assumption that an accelerated observer
is pointwise inertial, which in effect replaces an accelerated observer at each instant with a momentarily
comoving inertial observer along its wordline. This assumption is known to be an approximation limited
to motions with sufficiently low accelerations, which works out because all relevant length scales in feasible
experiments are very small in relation to the huge acceleration lengths of the tiny accelerations we usually
experience, therefore, the curvature of the wordline could be ignored and that the differences between
observations by accelerated and comoving inertial observers will also be very small. However, it seems quite
clear that such an approach is a work in progress, which reminds us of a puzzling underlying reality of
inertia, and that it will have to be extended to describe physics for arbitrary accelerated observers. Ever
since this question has become a major preoccupation of physicists. The hypothesis of locality represents
strict restrictions, because it approximately replaces a noninertial frame of reference S̃(2), which is held

stationary in the deformed space M2 ≡ V
(ϱ)
2 (ϱ ̸= 0), where V 2 is the 2D semi-Riemannian space, with
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a continuous infinity set of the inertial frames {S(2), S′
(2), S

′′
(2), ...} given in the flat M2 (ϱ = 0). In this

situation the use of the hypothesis of locality is physically unjustifiable. Therefore, it is worthwhile to go

beyond the hypothesis of locality with special emphasis on deformationM2 −→ V
(ϱ)
2 , which we might expect

will essentially improve the standard framework.
Following (Mashhoon, 2002, Misner et al., 1973), let us to introduce a geodesic coordinate system -

the coordinates relative to the accelerated observer (the laboratory coordinates), in the neighborhood of
the accelerated path. We choose the zeroth leg of the frame, e0̃, as before, to be the unit vector u that is
tangent to the worldline at a given event xµ(s), where (s) is a proper time measured along the accelerated
path by the standard (static inertial) observers in the underlying global inertial frame. In analogy with the
Faraday tensor (Maluf & Faria, 2008, Maluf et al., 2007, Marzlin, 1996, Mashhoon, 2002, 2011), one can
identify the antisymmetric acceleration tensor

Φab −→ (−a, ω), (47)

with a(s) as the translational acceleration
Φ0i = −ai, (48)

and ω(s) as the frequency of rotation of the local spatial frame with respect to a nonrotating (Fermi- Walker
transported) frame

Φij = −εijk ωk. (49)

The invariants constructed out of Φab establish the acceleration scales and lengths. The hypothesis of locality
holds for huge proper acceleration lengths. Suppose the displacement vector zµ(s) represents the position
of the accelerated observer. According to the hypothesis of locality, at any time (s) along the accelerated
worldline the hypersurface orthogonal to the worldline is Euclidean space and we usually describe some
event on this hypersurface (”local coordinate system”) at xµ to be at x̃µ, where xµ and x̃µ are connected
via x̃ 0 = s and

xµ = zµ(s) + x̃ i eµ
î
(s). (50)

The standard metric of semi-Riemannian 4D background space V
(0)
4 in noninertial system of the accelerating

and rotating observer, computed on this base.

Then the hypothesis of locality leads to the 2D semi-Riemannian space, V
(0)
2 , with the incomplete metric

g̃(ϱ = 0):
g̃ =

[
(1 + x̃ 1φ̃0)

2 − (x̃ 1φ̃1)
2
]
dx̃ 0 ⊗ dx̃ 0 − 2 (x̃ 1φ̃1) dx̃

1 ⊗ dx̃ 0 − dx̃ 1 ⊗ dx̃ 1, (51)

provided,

x̃ 1φ̃0 = x̃ iΦ0
i , x̃ 1φ̃1 = x̃ iΦj

i ẽ
−1
j . (52)

Therefore, our strategy now is to deform the metric (51) by carrying out an additional deformation of
semi-Riemannian 4D background space

V
(0)
4 −→ V

(ϱ)
4 , (53)

in order it becomes on the same footing with the complete metric g̃ (ϱ ̸= 0) (18) of the distorted space

V
(ϱ)
2 . Let the Latin letters r̂, ŝ, ... = 0, 1 be the anholonomic indices referred to the anholonomic frame

er̂ = es̃ r̂ ∂s̃, defined on the V
(ϱ)
2 , with ∂s̃ = ∂/∂ x̃s as the vectors tangent to the coordinate lines. So, a

smooth differential 2D-manifold V
(ϱ)
2 has at each point x̃s a tangent space T̃x̃V

(ϱ)
2 , spanned by the frame,

{er̂}, and the coframe members ϑr̂ = e r̂
s dx̃s, which constitute a basis of the covector space T̃ ⋆

x̃V
(ϱ)
2 . All this

nomenclature can be given for V
(0)
2 too. Then, we may compute corresponding vierbein fields ẽ ŝ

r and e ŝ
r

from the equations

gr̃s̃ = ẽ r̂′
r̃ ẽ ŝ′

s̃ or̂′ŝ′ , gr̃s̃(ϱ) = e r̂′
r̃ (ϱ) e ŝ′

s̃ (ϱ) or̂′ŝ′ , (54)

with g̃rs (51) and gr̃s̃(ϱ) (18). Hence

ẽ 0̂
0̃

= 1 + a⃗ · ⃗̃x, ẽ 1̂
0̃

= ω⃗ ∧ ⃗̃x, ẽ 0̂
1̃

= 0, ẽ 1̂
1̃

= 1,

e 0̂
0̃
(ϱ) = 1 +

ϱv1√
2
, e 1̂

0̃
(ϱ) = ϱ√

2
, e 0̂

1̃
(ϱ) = − ϱ√

2
, e 1̂

1̃
(ϱ) = 1− ϱv1√

2
.

(55)

A deformation (53) is equivalent to a straightforward generalization of (50) as

xµ −→ xµ(ϱ) = zµ(ϱ)(s) + x̃ i eµ
î
(s), (56)
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provided, as before, x̃µ denotes the coordinates relative to the accelerated observer in 4D background space

V
(ϱ)
4 . A displacement vector from the origin is then

dzµϱ (s) = eµ
0̂
(ϱ) dx̃0. (57)

Inverting e ŝ
r (ϱ) (55), we obtain

eµâ(ϱ) = π b̂
â (ϱ) eµ

b̂
, (58)

where
π0̂
0̂
(ϱ) ≡ (1 + ϱ2

2γ2
1
)−1(1− ϱv1√

2
) (1 + a⃗ · ⃗̃x), πî

0̂
(ϱ) ≡ −(1 + ϱ2

2γ2
1
)−1 ϱ√

2
ẽi (1 + a⃗ · ⃗̃x),

π0̂
î
(ϱ) ≡ (1 + ϱ2

2γ2
1
)−1

[
(ω⃗ ∧ ⃗̃x)(1− ϱv1√

2
)− ϱ√

2

]
ẽ−1
i , πĵ

î
(ϱ) = δji π(ϱ),

π(ϱ) ≡ (1 + ϱ2

2γ2
1
)−1

[
(ω⃗ ∧ ⃗̃x) ϱ√

2
+ 1 +

ϱv1√
2

]
.

(59)

Thus,

dxµϱ = dzµϱ (s) + dx̃ i eµ
î
+ x̃ i deµ

î
(s) = (τ b̂ dx̃0 + πb̂

î
dx̃ i) eµ

b̂
, (60)

where

τ b̂ ≡ πb̂
0̂
+ x̃ i

(
πâ
î
Φb
a +

dπb̂
î

ds

)
. (61)

Hence, in general, the metric in noninertial frame of arbitrary accelerating and rotating observer in Minkowski
space-time is

g̃(ϱ) = ηµν dx
µ
ϱ ⊗ dxνϱ =Wµν(ϱ) dx̃

µ ⊗ dx̃ν , (62)

which can be conveniently decomposed according to

W00(ϱ) = π2
[
(1 + a⃗ · ⃗̃x)2 + (ω⃗ · ⃗̃x)2 − (ω⃗ · ω⃗)(⃗̃x · ⃗̃x)

]
+ γ00(ϱ),

W0i(ϱ) = −π2 (ω⃗ ∧ ⃗̃x)i + γ0i(ϱ), Wij(ϱ) = −π2 δij + γij(ϱ),
(63)

provided,

γ00(ϱ) = π
[
(1 + a⃗ · ⃗̃x)ζ0 − (ω⃗ ∧ ⃗̃x) · ζ⃗

]
+ (ζ0)2 − (ζ⃗)2, γ0i(ϱ) = −π ζi + τ 0̂ π0̂

î
,

γij(ϱ) = π0̂
î
π0̂
ĵ
, ζ0 = π

(
τ 0̂ − 1− a⃗ · ⃗̃x

)
, ζ⃗ = π

(
τ⃗ − ω⃗ ∧ ⃗̃x

)
.

(64)

As we expected, according to (62)- (64), the matric g̃(ϱ) is decomposed in the following form:

g(ϱ) = π2(ϱ) g̃ + γ(ϱ), (65)

where
γ(ϱ) = γµν(ϱ) dx̃

µ ⊗ dx̃ν , and Υ(ϱ) = πââ(ϱ) = π(ϱ). (66)

In general, the geodesic coordinates are admissible as long as(
1 + a⃗ · ⃗̃x+ ζ0

π

)2
>

(
ω⃗ ∧ ⃗̃x+ ζ⃗

π

)2
. (67)

The equations (51) and (62) say that the vierbein fields, with entries

ηµν e
µ
â e

ν
b̂
= oâb̂ and ηµν e

µ
â e

ν
b̂
= γâb̂, (68)

lead to the relations

g̃ = oâb̂ ϑ̃
â ⊗ ϑ̃b̂, and g = oâb̂ ϑ

â ⊗ ϑb̂ = γâb̂ ϑ̃
â ⊗ ϑ̃b̂, (69)

which readily leads to the coframe fields:

ϑ̃b̂ = e b̂
µ dx

µ = ẽb̂µ dx̃
µ, ẽb̂0 = N b

0 , ẽb̂ i = N b
i ,

ϑb̂ = e b̂
µ dx

µ
ϱ = eb̂µ dx̃

µ = πb̂â ϑ̃
â, eb̂0 = τ b̂, eb̂ i = πb̂

î
.

(70)

Here

N0
0 = N ≡

(
1 + a⃗ · ⃗̃x

)
, N0

i = 0, N i
0 = N i ≡

(
ω⃗ · ⃗̃x

)i
, N j

i = δji . (71)
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In the standard (3+1)-decomposition of space-time, N and N i are known as lapse function and shift vector,
respectively (Gronwald & Hehl, 1996). Hence, we may easily recover the frame field

eâ = eµâ ẽµ = π b̂
â ẽb̂, (72)

by inverting (70):

e0̂(ϱ) =
π(ϱ)

π(ϱ) τ 0̂(ϱ)−π0̂
k̂
(ϱ) τ k̂(ϱ)

ẽ0 − τ î(ϱ)

π(ϱ) τ 0̂(ϱ)−π0̂
k̂
(ϱ) τ k̂(ϱ)

ẽi,

eî(ϱ) = −
π0̂
î
(ϱ)

π(ϱ) τ 0̂(ϱ)−π0̂
k̂
(ϱ) τ k̂(ϱ)

ẽ0 + π−1(ϱ)

[
δji +

τ j(ϱ)π0̂
î
(ϱ)

π(ϱ) τ 0̂(ϱ)−π0̂
k̂
(ϱ) τ k̂(ϱ)

]
ẽj .

(73)

A generalized transport for deformed frame eâ, which includes both the Fermi-Walker transport and defor-
mation of M 2, can be written in the form

deµ
â

ds = Φ̃ b
a eµ

b̂
, (74)

where a deformed acceleration tensor Φ̃ b
a concisely is given by

Φ̃ = d lnπ
ds + πΦπ−1. (75)

Thus, we derive the tetrad fields e ŝ
r (ϱ) (55) and eµâ(ϱ) (73) as a function of local rate ϱ of instantaneously

change of a constant velocity (both magnitude and direction) of a massive particle in M4 under the unbal-
anced net force, describing corresponding fictitious graviton. Therewith the fictitious gravitino, ψ α

m̂ (ϱ), will
be arisen under infinitesimal transformations of local supersymmetry.

5. The inertial force in the semi-Riemannian space V4

We can always choose natural coordinates Xα(T,X, Y, Z) = (T, X⃗) with respect to the axes of the local

free-fall coordinate frame S
(l)
4 in an immediate neighbourhood of any space-time point (x̃p) ∈ V4 in question

of the background semi-Riemannian space, V4, over a differential region taken small enough so that we can
neglect the spatial and temporal variations of gravity for the range involved. The values of the metric tensor
g̃µν and the affine connection Γ̃λ

µν at the point (x̃p) are necessarily sufficient information for determination
of the natural coordinates Xα(x̃µ) in the small region of the neighbourhood of the selected point. Then the

whole scheme outlined above will be held in the frame S
(l)
4 . The general inertial force then reads

˜⃗
f (in) = −

√
2vce⃗f

(1+ϱ2)2
|fα(l) −m∂Xα

∂x̃σ Γσ
µν

dx̃µ

ds
dx̃ν

ds |. (76)

As before, the two systems S2 and S
(l)
4 can be chosen in such a way as the axis e1 of S(2) lies (e1 = e⃗f ) along

the acting net force

f⃗ = f⃗(l) + f⃗g(l), (77)

while the time coordinates in the two systems are taken the same

x0 = x0 = X0 = T. (78)

Here f⃗(l) is the SR value of the unbalanced relativistic force other than gravitational and f⃗g(l) is the grav-

itational force given in the frame S
(l)
4 . Despite of totally different and independent sources of gravitation

and inertia, at fα(l) = 0, the (76) establishes the independence of free-fall trajectories of the mass, internal
composition and structure of bodies. This furnishes a justification for the introduction of the WPE.

6. The inertial effects in the background post Riemannian geometry

If the nonmetricity tensor
Nλµν = −Dλ gµν ≡ −gµν ;λ
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does not vanish, the general formula for the affine connection written in the space-time components is (Poplawski,
2009)

Γρ
µ ν =

◦
Γ

ρ
µ ν +Kρ

µν −Nρ
µν +

1
2N

ρ
(µ ν), (79)

where the metric alone determines the torsion-free Levi-Civita connection
◦
Γ

ρ
µν ,

Kρ
µν : = 2Q

ρ
(µν) +Qρ

µν

is the non-Riemann part - the affine contortion tensor. The torsion,

Qρ
µν =

1

2
T ρ

µν = Γρ
[µ ν],

given with respect to a holonomic frame, d ϑρ = 0, is a third-rank tensor, antisymmetric in the first two
indices, with 24 independent components. We now compute the relativistic inertial force for the motion
of the matter, which is distributed over a small region in the U4 space and consists of points with the
coordinates xµ, forming an extended body whose motion in the space, U4, is represented by a world tube in
space-time. Suppose the motion of the body as a whole is represented by an arbitrary timelike world line γ
inside the world tube, which consists of points with the coordinates X̃µ(τ), where τ is the proper time on
γ. Define

δxµ = xµ − X̃µ, δx0 = 0, uµ = d X̃µ

d s . (80)

The Papapetrou equation of motion for the modified momentum (Bergmann & Thompson, 1953, Møller,
1958, Papapetrou, 1974, Poplawski, 2009) is

◦
DΘν

D s = −1
2

◦
R ν

µσρ u
µ Jσρ − 1

2 NµρλK
µρλ: ν , (81)

where Kµ
νλ is the contortion tensor,

Θν = P ν + 1
u0

◦
Γ ν

µ ρ (u
µ Jρ0 +N0µρ)− 1

2u0 K
ν

µρ Nµρ0 (82)

is referred to as the modified 4-momentum,

P λ =

∫
τλ0 dΩ,

is the ordinary 4-momentum, dΩ := d x4, and the following integrals are defined:

Mµρ = u0
∫
τµρ dΩ, Mµνρ = −u0

∫
δxµ τνρ dΩ, Nµνρ = u0

∫
sµνρ dΩ,

Jµρ =
∫
(δxµ τρ0 − δxρ τµ0 + sµρ0) dΩ = 1

u0 (−Mµρ0 +Mρµ0 +Nµρ0),
(83)

where τµρ is the energy-momentum tensor for particles, sµνρ is the spin density. The quantity Jµρ is equal
to ∫

(δxµ τkl − δxρ τµλ + sµρλ) dSλ,

taken for the volume hypersurface, is a tensor called the total spin tensor. The quantity Nµνρ is also a tensor.
The relation δx0 = 0 givesM0νρ = 0. It was assumed that the dimensions of the body are small, so integrals
with two or more factors δxµ multiplying τνρ and integrals with one or more factors δxµ multiplying sνρλ

can be neglected. The Papapetrou equations of motion for the spin (Bergmann & Thompson, 1953, Møller,
1958, Papapetrou, 1974, Poplawski, 2009) is

◦
D
Ds J

λν = uν Θλ − uλΘν +Kλ
µρN

νµρ + 1
2 K

λ
µρ Nµνρ −Kν

µρN
λµρ − 1

2 K
ν

µρ Nµρλ. (84)

Computing from (81), in general, the relativistic inertial force, exerted on the extended spinning body
moving in the RC space U4, can be found to be

f⃗(in)(x) = −ma⃗abs(x)
Ω2(ϱ) γq

= −m e⃗f
Ω2(ϱ) γq

∣∣∣ 1
m fα(l) −

∂Xα

∂ xµ

[ ◦
Γ

µ
νλ u

ν uλ+

1
u0

◦
Γ

µ
ν ρ (uν Jρ0 +N0νρ)− 1

2u0 K
µ

νρ Nνρ0 + 1
2

◦
R

µ
νσρ u

ν Jσρ + 1
2 NνρλK

νρλ:µ
]∣∣∣ . (85)

G.Ter-Kazarian
doi: https://doi.org/10.52526/25792776-24.71.2-289

298

https://doi.org/10.52526/25792776-24.71.2-289


A deformation of Master-Space and inertia effects

7. Concluding remarks

In this section we briefly highlight a few key points. In the framework of M̃Sp-TSG, we address the
theory of a general deformation of MSp induced by external force exerted on a particle. A coupling of
supergravity with matter superfields no longer holds. Instead, the source of these fields is the deformation

of the flat MSp. Considering the simple spacetime deformation map, Ω(ϱ) :M2 → V 2 (Ω =
◦
Ω, Ω̆µ

ν ≡ δµν ), we
have to write the rate, ϱ, in terms of the Lorentz spinors (θ, θ̄), and period of superoscillations (τ). A period
of superoscillations, τ(s), can be defined as a function of proper time (s) induced by the world-deformation
tensor Ω(s). In this way we show that the occurrence of the absolute and inertial accelerations, and the
inertial force, in turn, are obviously caused by a general deformation of flat MSp. Whereas, the relative
acceleration in 4D Minkowski space, M4, (in Newton’s terminology) (both magnitude and direction), to
the contrary, has nothing to do with a deformation of M 2 and, thus, it cannot produce the inertia effects.
We calculate the relativistic inertial force in Minkowski, semi-Riemannian and post Riemannian spaces.
Despite of totally different and independent sources of gravitation and inertia, the general inertial force
establishes the independence of free-fall trajectories of the mass, internal composition and structure of
bodies. This furnishes a justification for the introduction of the WPE. We discuss the inertia effects beyond

the hypothesis of locality with special emphasis on deformation M2 −→ V
(ϱ)
2 , which essentially improves

the standard framework. we derive the tetrad fields as a function of ϱ, describing corresponding fictitious
graviton. Therewith the fictitious gravitino, ψ α

m̂ (ϱ), will be arisen under infinitesimal transformations of
local supersymmetry.
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Appendices

Appendix A The M̃Sp-SG and M̃Sp-TSG

Throughout we will use the ’two-in-one’ notation of a theory MSp-SUSY, implying that any tensor (W )
or spinor (Θ) with indices marked by ’hat’ denote

W µ̂1···µ̂m

ν̂1···ν̂n := Wµ1···µm
ν1···νn ⊕W

µ
1
···µ

m
ν1···νn ,

Θα̂ := θα ⊕ θα, Θ̄ ˆ̇α := θ̄α̇ ⊕ θ̄α̇.
(86)

This corresponds to the action of supercharge operators Q ≡ (either q or q), which is due to the fact that the

framework of M̃Sp-SG combines bosonic and fermionic states in V4 and V 2 on the same base rotating them
into each other under the action of operators (q, q). The α are all upper indices, while α̇ is a lower index.

A.1 The M̃Sp-SG

A local extension of the MSp-SUSY algebra leads to the gauge theory of translations. One might guess
that the condition for the parameter ∂µ̂ϵ = 0 of a global MSp-SUSY theory (Ter-Kazarian, 2023b, 2024a)
should be relaxed for the accelerated particle motion, so that a global SUSY will be promoted to a local
SUSY in which the parameter ϵ = ϵ(X µ̂) depends explicitly on X µ̂ = (x̃µ, x̃µ) ∈ V4⊕V 2, where x̃

µ ∈ V4 and

x̃µ ∈ M̃Sp(≡ V 2), with V4 and V 2 are the 4D and 2D semi-Riemannian spaces. This extension will address
the accelerated motion and inertia effects.

A smooth embedding map, generalized for curved spaces, becomes

f̃ : V 2 −→ V4, (87)

defined to be an immersion (the embedding which is a function that is a homeomorphism onto its image):

ẽ0 = ẽ0, x̃0 = x̃0, ẽ1 =
⃗̃n, x̃1 = |⃗̃x|, (88)

where ⃗̃x = ẽix̃
i = ⃗̃n|⃗̃x| (i = 1, 2, 3) (the middle letters of the Latin alphabet (i, j, ...) will be reserved for

space indices). On the premises of (Ter-Kazarian, 2024a), we review the accelerated motion of a particle

in a new perspective of local M̃Sp-SUSY transformations that a creation of a particle in V 2 means its
transition from initial state defined on V4 into intermediate state defined on V 2, while an annihilation of a
particle in V 2 means vice versa. The same interpretation holds for the creation and annihilation processes
in V4. The net result of each atomic double transition of a particle V4 ⇌ V 2 to V 2 and back is as if we had
operated with a local space-time translation with acceleration, a⃗, on the original space V4. Accordingly, the
acceleration, a⃗, holds in V 2 at V 2 ⇌ V4. So, the accelerated motion of boson A(x̃) in V4 is a chain of its
sequential transformations to the Weyl fermion χ(x̃) defined on V 2 (accompanied with the auxiliary fields

F̃ ) and back,

→ A(x̃) → χ(F )(x̃) → A(x̃) → χ(F )(x̃) →, (89)

and the same interpretation holds for fermion χ(x̃).

The mathematical structure of a local theory of M̃Sp-SUSY has much in common with those used in
the geometrical framework of standard supergravity theories. Such a local SUSY can already be read off
from the algebra of a global MSp-SUSY (Ter-Kazarian, 2024a) in the form

[ϵ(X)Q, Q̄ϵ̄(X)] = 2ϵ(X)σµ̂ϵ̄(X)p̃µ̂, (90)

which says that the product of two supersymmetry transformations corresponds to a translation in 6D X-
space of which the momentum p̃µ̂ = i∂̃µ̂ is the generator. In order to become on the same footing with
V 2, the V4 refers to the accelerated proper reference frame of a particle without relation to other matter
fields. This leads us to extend the concept of differential forms to superspace. Being embedded in V4, the
M̃Sp is the unmanifested indispensable individual companion of a particle of interest devoid of any matter

influence. While all the particles are living on V4, their superpartners can be viewed as living on M̃Sp. In
this framework supersymmetry and general coordinate transformations are described in a unified way as
certain diffeomorphisms. The action of simple M̃Sp-SG includes the Hilbert term for a fictitious graviton
coexisting with a fictitious fermionic field of, so-called, gravitino (sparticle) described by the Rarita-Scwinger
kinetic term. These two particles differ in their spin: 2 for the graviton, 3/2 for the gravitino. They are the

bosonic and fermionic states of a gauge particle in V4 and M̃Sp, respectively, or vice versa.
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A.2 The simple (N = 1) M̃Sp - SG without auxiliary fields, revisited

The generalized Poincaré superalgebra for the simple (N = 1) M̃Sp-SG reads:

[Pâ, Pb̂] = 0, [Sâb̂, Pĉ] = (ηâĉPb̂ − ηb̂ĉPâ),
[Sâb̂, Sĉd̂] = i(ηâĉSb̂d̂ − ηb̂ĉSâd̂ + ηb̂d̂Sâĉqq − ηâd̂Sb̂ĉ),
[Sâb̂, Q

α] = 1
2(γâb̂)

α
βQ

β,

[Pâ, Q
β] = 0, [Qα, Q̄β̇] =

1
2(γ

â)αβ̇Pâ.

(91)

with (Sâb̂)
ĉ
d̂
= i(δĉâηb̂d̂ − δĉ

b̂
ηâd̂) a given representation of the Lorentz generators. Using (91) and a general

form for gauge transformations on BA,

δB = Dλ = dλ+ [B, λ], (92)

with

λ = ρâPâ +
1
2κ

âb̂Sâb̂ + Q̄ε, (93)

we obtain that the (eâ, ωâb̂,Ψ) transform under Poincaré translations as

δeâ = Dρâ, δωâb̂ = 0, δΨ = 0; (94)

under Lorentz rotations as

δeâ = κâ
b̂
δeb̂, δωâb̂ = −Dκâb̂, δΨ = 1

4κ
âb̂γâb̂Ψ; (95)

and under supersymmetry transformation as

δeâ = 1
2 ε̄γ

âΨ, δωâb̂ = 0, δΨ = Dε. (96)

In first-order formalism, the gauge fields (eâ, ωâb̂, Ψ), (with Ψ = (ψ,ψ) a two-component Majorana spinor)
are considered as an independent members of multiplet in the adjoint representation of the Poincaré super-
group of D = 6 ((3+1), (1+1)) simple (N = 1) M̃Sp-SG with the generators (Pâ, Sâb̂, Q

α). Unless indicated
otherwise, henceforth the world indices are kept implicit without ambiguity. The operators carry Lorentz
indices not related to coordinate transformations. The Yang-Mills connection for the Poincare´ supergroup
is given by

B = BATA = eâPâ +
1
2 iω

âb̂Sâb̂ +ΨQ̄. (97)

The field strength associated with connection B is defined as the Poincaré Lie superalgebra-valued curvature
two-form RA. Splitting the index A, and taking the Θ = Θ̄ = 0 component of RA, we obtain

R âb̂(ω) = dωâb̂ − ωâ
ĉω

ĉd̂,

T̃ â = T â − 1
2Ψ̄γ

âΨ, ρ = DΨ,
(98)

where γâ = (γa, σa), R âb̂(ω) is the Riemann curvature in terms of the spin connection ωâb̂, and the
generalized Weyl lemma requires that the, so-called, supertorsion T̃ â be inserted. The solution ω(e) satisfies

the tetrad postulate that the completely covariant derivative of the tetrad field vanishes, therefore Râb̂(ω) =

R(ω)eâeb̂.

For the bosonic part of the gauge action (graviton of spin 2) of simple M̃Sp-SG it then seems appropriate
to take the generalized Hilbert action with e = det eâµ̂(X). While the fermionic part of the standard gauge
action (garvitino of spin 3/2), which has positive energy, is the Rarita-Schwinger action. The full nonlinear
gravitino action in curved space then should be its extension to curved space, which can be achieved by

inserting the Lorentz covariant derivative DΨ = dΨ + 1
2ω

âb̂γâb̂Ψ. In both parts, the spin connection is
considered a dependent field, otherwise in the case of an independent spin connection ω, the action will be
invariant under diffeomorphism, and under local Lorentz rotations, but it will be not invariant under the
neither the Poincaré translations nor the supersymmetry. In the case if spin connection is independent, we
should have under the local Poincaré translations

δL̂pt = δ
(
εâb̂ĉd̂e

âeb̂Rĉd̂ + 4Ψ̄γ5̂e
âγâDΨ

)
= 2εâb̂ĉd̂R

âb̂T̃ ĉρd̂ + surf. term,
(99)

G.Ter-Kazarian
doi: https://doi.org/10.52526/25792776-24.71.2-289

302

https://doi.org/10.52526/25792776-24.71.2-289


A deformation of Master-Space and inertia effects

and under local supersymmetry transformations

δL̂SUSY = −4ε̄γ5̂γâDΨT̃ â + surf. term. (100)

The invariance of the action then requires the vanishing of the supertorsion T̃ â = 0, which means that
the connection is no longer an independent variable. So that the starting point of our approach is the
action of a simple M̃Sp-SG theory written in ’two in one’-notation (86), which is invariant under the local
supersymmetry transformation (96), where the Poincaré superalgebra closes off shell without the need for
any auxiliary fields:

LMS−SG = εâb̂ĉd̂e
âeb̂Rĉd̂(ω) + 4Ψ̄γ5̂e

âγâDΨ. (101)

This is the sum of bosonic and fermionic parts with the same spin connection, where γâ = (γa ⊕ σa),

γ5̂ = (γ5 ⊕ γ5), γ5 =

(
1 0
0 −1

)
is given in the chiral or Weyl representations, i.e. in the irreducible

2-dimensional spinor representations (12 , 0) and (0, 12), since two-component formalism works for a Weyl
fermion. This is indispensable in order to solve algebraical constraints in superspace because they can be used

as building blocks of any fermion field (van Nieuwenhuizen, 1981). Taking into account that gµ̂ν̂ = ηâb̂e
â

µ̂ e
b̂

ν̂

and γµ̂ = e â
µ̂ γâ, with ηâb̂ = (ηab ⊕ η

ab
) related to the tangent space, where ηab = diag(+1,−1,−1,−1) and

η
ab

= diag(+1,−1), we can recast the generalized bosonic and fermionic actions given in (101), respectively,

in the forms

L(2) = −1
4

√
gR(g,Γ) = −1

4eR(e, ω), (102)

and

L(3/2) = 4εµ̂ν̂ρ̂σ̂Ψ̄µ̂γ5̂γν̂Dρ̂Ψσ̂. (103)

The components of the acceleration vector, ȧρ̂ = (aρ, aρ), satisfy the following embedding relations

a0 = a0, a1 = |⃗a|. (104)

The accelerated motion of a particle is described by the parameter ϵ = ϵ(X µ̂) of local SUSY, which depends
explicitly on X µ̂ = (x̃µ, x̃µ), where x̃µ ∈ V4 and x̃µ ∈ V 2. To be specific, let us focus for the motion on the
simple case of a peculiar anticommuting spinors (ξ(x), ξ̄(x)) and (ξ(x), ξ̄(x)) defined as

ξα(x) = i τ(x)
2 θα, ξ̄

α̇
(x) = −i τ∗(x)

2 θ̄α̇,

ξα(x) = i τ(x)2 θα, ξ̄α̇(x) = −i τ
∗(x)
2 θ̄α̇.

(105)

Here the real parameter τ(x) = τ∗(x) = τ(x) = τ∗(x) can physically be interpreted as the atomic duration
time of double transition of a particle V4 ⇌ V 2, i.e. the period of superoscillations. In this case, the atomic
displacement caused by double transition reads

∆x̃(a) = ẽm∆x̃
m
(a) = ũτ(x̃), (106)

where the components ∆x̃
m
(a) are written

∆x̃
m
(a) = ṽm τ(x̃) = iθ σm ξ̄(x̃)− iξ(x̃)σm θ̄. (107)

In Van der Warden notations for the Weyl two-component formalism, we have

v2 = 2v(+)v(−) = (v0)2 − (v1)2 = 4(θ1 θ̄1θ2 θ̄2)
dτ

dx(+)
dτ

dx(−) = 1, (108)

provided,

a(+) =
√
2v

(+)
c

d2τ
dx(+)2 ,

a(−) =
√
2v

(−)
c

d2τ
dx(−)2 ,

a =
√
2(a(+)a(−))1/2 = 2(θ1 θ̄1θ2 θ̄2)

1/2 d2τ
ds2
,

(109)

with v
(+)
c =

√
2(θ1 θ̄1) and v

(−)
c =

√
2(θ2 θ̄2). The acceleration will generally remain a measure of the velocity

variation over proper time (s). The (109) gives

v(+) = v
(+)
c

(
dτ

dx(+) + 1
)
,

v(−) = v
(−)
c

(
dτ

dx(−) + 1
)
,

v =
√
2(v(+)v(−))1/2 = 2(θ1 θ̄1θ2 θ̄2)

1/2
(
dτ
ds + 1

)
,

(110)
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where ds2 = dx(+)dx(−). The spinors θ(θ, θ̄) and θ̄(θ, θ̄) satisfy the embedding map (88), namely ∆x̃0 = ∆x̃0

and (∆x̃1)2 = (∆⃗̃x)2, so we obtain

θ σ0 ξ̄ − ξ σ0 θ̄ = θ σ0 ξ̄ − ξ σ0 θ̄,

(θ σ3 ξ̄ − ξ σ3 θ̄)2 = (θ σ⃗ ξ̄ − ξ σ⃗ θ̄)2.
(111)

Denote
v
0
(c) =

1√
2

(
v
(+)
c + v

(−)
c

)
= (θ θ̄),

v
1
(c) =

1√
2

(
v
(+)
c − v

(−)
c

)
= (θ1 θ̄1 − θ2 θ̄2),

(112)

then

θ1(θ, θ̄) =
1
2

[(
v
0
(c) +

√
2
3v

1
(c)

)1/2

+
(
v
0
(c) −

√
2
3v

1
(c)

)1/2
]
,

θ2(θ, θ̄) =
1
2

[(
v
0
(c) +

√
2
3v

1
(c)

)1/2

−
(
v
0
(c) −

√
2
3v

1
(c)

)1/2
]
.

(113)

A.3 The M̃Sp-TSG with the translation group

In Teleparallel Gravity, the spin connection represents only inertial effects, but not gravitation at all.
All quantities related to Teleparallel Gravity will be denoted with an over ’dot’. The spin connection reads

ω̇â
b̂µ̂

= Lâ
d̂
∂µ̂L

d̂
b̂
, (114)

and the energy-momentum density of the inertial or fictitious forces is

i̇ ρ̂
â = 1

k ω̇
ĉ
âσ̂Ṡ

ρ̂σ̂
ĉ , (115)

where Ṡ ρ̂σ̂
ĉ is the so called superpotential (see (130)). Teleparallel Gravity is a gauge theory for the

translation group (de Andrade & Pereira, 1997). The M̃Sp-TSG theory, therefore, has the gauge translation
group in tangent bundle. Namely, at each point p of coordinates X of the base space (V4 ⊕ V 2), there is
attached a Minkowski tangent-space (the fiber) Tp(V4⊕V 2) = TXµ̂(V4⊕V 2), on which the point dependent
gauge transformations,

X ′â = X â + εâ(X), (116)

take place. Under an infinitesimal tangent space translation, it transforms according to

δΦ(X â(X µ̂)) = −εâ∂âΦ(X â(X µ̂)). (117)

The generators of this group satisfy the Lie algebra [Pâ, Pb̂] = 0. In order to recover the covariance, it
is necessary to introduce a 1-form of the Yang–Mills connection assuming values in the Lie algebra of the
translation group:

B = eâPâ, (118)

with gauge field eâ. Introducing the covariant derivative

Ḋµ̂X
â = ∂µ̂X

â + ω̇â
b̂µ̂
X b̂, (119)

the tetrad, which is invariant under translations, becomes

ėâµ̂ = Ḋµ̂X
â + ω̇â

b̂µ̂
. (120)

In this new class of frames, the gauge field transforms according to δeâµ̂ = −Ḋµ̂ε
â. Thus the covariant

derivative, Ḋ = d+B, with Yang–Mills connection reads

Ḋµ̂ = (δâµ̂ + e â
µ̂ )∂â = (∂µ̂X

â + e â
µ̂ )∂â = ė â

µ̂ ∂â. (121)

The curvature of the Weitzenböck connection

Γ̇ρ̂
ν̂µ̂ = ė ρ̂

â Ḋµ̂ė
â
ν̂ , (122)
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vanishes identically, while for a tetrad ėâ with eâµ̂ ̸= Ḋµ̂ε
â, the torsion 2-form - the field strength (here we

re-instate the factor ∧),
Ṫ â = dėâ = 1

2 Ṫ
â
b̂ĉ
ėb̂ ∧ ėĉ = K̇ â

ĉ ∧ ėĉ, (123)

is non-vanishing:
Ṫ â

µ̂ν̂ = Ḋµ̂ė
â
ν̂ − Ḋν̂ ė

â
µ̂ = Γ̇â

[µ̂ν̂] = Ḋµ̂e
â
ν̂ − Ḋν̂e

â
µ̂ ̸= 0. (124)

Here K̇ âb̂ is the contorsion tensor, and we also taken into account the vanishing torsion,
[Ḋµ̂, Ḋν̂ ]X

â = 0, of inertial tetrad, ėâµ̂ = Ḋµ̂X
â. Hence

[ėµ̂, ėν̂ ] = Ṫµ̂ν̂ = Ṫ â
µ̂ν̂Pâ. (125)

Due to the soldered character of the tangent bundle, torsion presents also the anholonomy of the translational
covariant derivative:

[ėµ̂, ėν̂ ] = Ṫµ̂ν̂ = Ṫ ρ̂
µ̂ν̂Pρ̂. (126)

The gauge invariance of the tetrad provides torsion invariance under gauge transformations. As a gauge the-
ory for the translation group, the action of the M̃Sp-TSG theory can be recast in the form (see also (Salgado
et al., 2005))

L̇MS−TSG = 1
4 tr

(
ˆ̇T ∧ ⋆ ˆ̇T

)
− 4Ψ̄γ5̂γd̂DΨėd̂

= 1
4ηâb̂Ṫ

â ∧ ⋆Ṫ b̂ − 4Ψ̄γ5̂γd̂DΨėd̂,
(127)

where (we re-instate the factor ∧) the torsion 2-form reads

ˆ̇T = 1
2 Ṫ

â
µ̂ν̂PâdX

µ̂ ∧ dX ν̂ , (128)

and

⋆ ˆ̇T = 1
2

(
⋆Ṫ â

ρ̂σ̂

)
PâdX

ρ̂ ∧ dX σ̂. (129)

Here ⋆ denotes the Hodge dual. That is, let Ωp be the space of p-forms on an n-dimensional manifold R
with metric. Since vector spaces Ωp and Ωn−p have the same finite dimension, they are isomorphic. The
presence of a metric renders it possible to single out an unique isomorphism, called Hodge dual.

Defining the tensor of superpotential

Ṡ ρ̂σ̂
â = −Ṡ σ̂ρ̂

â := K̇ ρ̂σ̂
â − ė σ̂

â Ṫ ĉρ̂
ĉ + ė ρ̂

â Ṫ
ĉσ̂
ĉ, (130)

the dual torsion can be rewritten in the form

⋆Ṫ ρ̂
µ̂ν̂ = ė

2εµ̂ν̂λ̂σ̂Ṡ
ρ̂λ̂σ̂, (131)

with ė = det ėâµ̂(X) =
√
−g, and hence

L̇MS−TSG = ė
8 Ṫρ̂µ̂ν̂ Ṡ

ρ̂µ̂ν̂ − 4Ψ̄γ5̂γd̂DΨėd̂. (132)

Making use of the identity Ṫ µ̂
µ̂ρ̂ = K̇ µ̂

ρ̂µ̂, the action (127) becomes

L̇MS−TSG = −εâb̂ĉd̂K̇
âb̂Ṫ ĉėd̂ − 4Ψ̄γ5̂γd̂DΨėd̂ + surface term. (133)

This action is invariant under local translations, under local super symmetry transformations and by con-
struction is invariant under local Lorentz rotations and under diffeomorphisms (see Salgado et al. (2003,
2005), Stelle & West (1980)). In other words, this action is invariant under the Poincaré supergroup and
under diffeomorphisms.

It remains to see the equivalence of the Teleparallel Gravity action L̇(2) with Hilbert action L(2) in (102),
which will prove that the immediate cause of the fictitious Riemann curvature (R) for the Levi-Civita
connection (Γ) is the acceleration. The curvature (Ṙ) of Weitzenböck connection (Γ̇) vanishes identically,
but for a tetrad involving a non-trivial translational gauge potential (ė â

µ̂ ̸= Ḋµ̂ε
â), the torsion (Ṫ ) is non-

vanishing. The connection (Γ̇) can be considered a kind of dual of the Levi-Civita connection (Γ), which is a
connection with vanishing torsion (T ), and non-vanishing fictitious curvature (R). The immediate cause of
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the fictitious Riemann curvature (R) is the acceleration. Consequently this actually proves the equivalence
of the Teleparallel Gravity action L̇(2) with Hilbert action L(2):

L̇(2) = L(2) + surface term. (134)

The equation of motion in the X-space is written as

duâ

ds =
(
K̇ â

b̂ρ̂
− ω̇â

b̂ρ̂

)
ub̂uρ̂. (135)

This equation can be rewritten in a purely spacetime form

duρ̂

ds =
(
K̇ ρ̂

µ̂ν̂ − Γ̇ρ̂
µ̂ν̂

)
uµ̂uν̂ . (136)

The corresponding acceleration cannot be given a covariant meaning without a connection, while each
different connection Γρ̂

µ̂ν̂ will deffne a different acceleration. The Weitzenböck connection, which defines

the Fock-Ivanenko derivative Ḋµ̂ written in terms of covariant derivative ▽̇µ̂:

Ḋµ̂Φ
â = ėâρ̂▽̇µ̂Φ

ρ̂, (137)

will define the acceleration too

ȧρ̂ = ▽̇uρ̂

▽̇s = uν̂▽̇ν̂u
ρ̂ = duρ̂

ds + Γ̇ρ̂
µ̂ν̂u

µ̂uν̂

= K̇ ρ̂
µ̂ν̂u

µ̂uν̂ = Ṫ ρ̂
ν̂µ̂u

µ̂uν̂ .
(138)

This is a force equation, with torsion (or contortion) playing the role of force. The dynamical aspects of
particle mechanics involve derivatives with respect to proper time along the particle worldline, which is the
line element written in frame:

ds2 = ηâb̂ė
âėb̂ = ηâb̂ė

â
µ̂ė

b̂
µ̂dX

µ̂dX ν̂ ≡ ηµ̂ν̂dX
µ̂dX ν̂ . (139)

A worldline C of a particle, parametrized by proper time as C(s) = X µ̂(s), will have as six-velocity the vector
of components uµ̂ = dX µ̂/ds and uâ = ėâµ̂u

µ̂, which are the particle velocity along this curve respectively
in the holonomic and anholonomic bases in the X-space. The proper time can be written in the form
ds = uµ̂dX

µ̂ = uâė
â. To transform the tetrad field into a reference frame in X-space with an observer

attached to it, we may ”attach” ė0̂ to the observer by identifying u = ė0̂ = d
ds with components uµ̂ = ė µ̂

0̂
,

such that ė0̂ will be the observer velocity. The Weitzenböck connection, Γ̇, will attribute to the observer an
acceleration

ȧâ
( ˙f,Γ)

= ω̇â
0̂0̂

+ K̇ â
0̂0̂
, (140)

seen by that very observer. Whereas,
ω̇â

b̂ĉ
= ėâµ̂▽̇ėĉ , ė

µ̂

b̂
, (141)

which literarily means the covariant derivative of ėb̂ along ėĉ, projected along ėâ. As ȧ
ρ̂ (138) is orthogonal

to uρ̂, its vanishing means that the uρ̂ keeps parallel to itself along the worldline.
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