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Abstract

With the aid of a modified Planck’s law for massive photons, it is shown that the ratio of the mean value
of the photon mass equivalent to its rest (invariant) mass tends to be one with a decrease in temperature.
A modified Stefan - Boltzmann law is obtained at different temperature regimes, as well as the Wien’s
displacement law. At high temperatures the modified Planck’ s law approaches the standard Planck’ s law.
It is also shown that the cross-section of the Thomson scattering slightly increases opacity of the scattering
medium. The Compton shift in frequency for a massive photon appears to be frequency-dependent and
slightly less than its value for a massless photon, except in the case of forward scattering when no change
in frequency takes place. Astrophysical aspects of the massive photon hypothesis are discussed with regard
to standard stellar models, early stages of the Universe, and the Breit-Weeler process, as well as active
galactic nuclei. Estimates of the spreading time of the wave packet of the massive photon show that for
frequencies ν ≥ 4.052× 109Hz(λ ≤ 7.4 cm) it exceeds the age of the Universe.

Keywords: masive photon, optical dispersion in vacuum; modified Planck’s law, Thomson scattering,
Compton scattering, spreading time of the wave packet

1. Introduction

The hypothesis that the photon has a nonzero rest mass has been the matter of numerous discussions
over the past decades. Though this topic falls out of the traditional field of physical studies, it is of interest
because of its fundamental impact on many aspects of physics and astrophysics. The mathematical basis for
discussing the idea of photons with nonzero mass is the Proca equation (Poenaru, 2006, Tu et al., 2005) for
massive vector bosons with spin 1. In the covariant form, it is a generalization of Maxwell’s equations in the
case of a massive electromagnetic field. The presence of a term with the mass of the photon in the Proca
equation violates the condition of gauge invariance in electrodynamics and leads to a series of consequences,
of which we note the effect of optical dispersion in vacuum - the hypothesis of an intrinsic dispersion of
light, associated with the presumable dependence of its speed on the frequency of radiation. The effect
of dispersion in vacuum is typical for de Broglie waves, which formally makes them akin to a massive
electromagnetic field. Unlike the latter, de Broglie waves do not carry any physical interaction but are only
a form of describing the behavior of particles within the framework of wave-particle duality. However, de
Broglie wavelength of a photon coincides with the wavelength of an electromagnetic radiation associated
with the photon (Blokhintsev, 1976). This gives a reason to at least formally consider it as a concentrated
electromagnetic wave packet consisting of quasi-monochromatic waves. Bass & Schredinger (1955), who
brought attention to the possibility of existence of ”weighted” photons, noted that the presence of the non-
zero mass of the photon leads to the third, longitudinal, polarization of radiation instead of two transverse
polarizations in the normal, massless one. De Brogle & Vigier (1972) pointed out to a physical experiment
with laser beams, resulted in the assumption on the possibility of existence of massive photons with the
rest mass not exceeding 10−48)g. Measurements of the relative variation in the speed of lightδc/c (the ratio
of the velocity variation (δc) to its invariant value c = 2.99792458 × 108m/s, which used in the Lorentz
transformations), produced by different authors at different radio frequencies under terrestrial conditions
(see Tu et al., 2005, and references therein), confirmed the constancy of the speed of light with an accuracy
of ∼ 10−7 − 10−4 and its fractional uncertainty ∼ 10−9 (Evenson & et al., 1972, Sullivan, 2009). Studies
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of active processes in distant astrophysical objects Shaefer (1999) show a relative variation in the speed of
light, starting from orders of magnitude ∼ 10−21 − 10−12, resulting from the estimate of the difference in
the time of arrival of signals at different frequencies (time dispersion effect). The existence of the nonzero
rest mass of the photon is assumed in some models of quantum gravity Biller & et al. (1999). Obviously,
in this case we are dealing with a very weak physical effect, the direct detection of which is currently still
below the experimental threshold as decades ago (Goldhaber & Nieto, 1976). This circumstance, which has
no effect on physics in everyday reality, may be more significant in extreme astrophysical conditions. If the
hypothesis about nonzero mass of the photon has a right to exist, then one of the questions that naturally
arises from it is how it may affect the nature of blackbody radiation. This problem was first considered by
Torres-Hernandez (1985)by making use of a partition function Feynman (2018). He referred to the remark in
the work of Bass & Schredinger (1955) that the contribution of longitudinally polarized photons in achieving
of thermodynamic equilibrium in the black-body cavity can be neglected (the probability of the transition of
”transverse” photons into ”longitudinal” photons is extremely small, as shown by Kobzarev & Okun (1968).
In this paper we are going to uncover some mathematical details just briefly mentioned by Torres-Hernandez
(1985), but seem to be important for completeness of theoretical consideration of the topic. We show that
at low temperatures the rest mass of the photon approaches the mean mass equivalent (Saiyan, 2023)of
the Planck’ photons.In addition to this we derive Stefan-Boltzmann law for high and low temperatures in
connection with the radiation pressure. We derive Wien’s displacement law regarding massive photons and
discuss the effect of nonzero mass of the photons on Thomson and Compton scattering. Some astrophysical
aspects, related to the results presented here, are discussed in Section 3 alongside with spreading time of
wave packets of photons of different frequencies.

2. Modified Planck’s law (MPL)

The formula, obtained by Torres-Hernandez (1985) for the spectral energy density of radiation, can be
written in the form

ρ(ν,mγ , T ) = ρ(ν, T )

√
1− (

mγc2

hν
)2 (1)

which we call here and thereafter the modified Planck’s law (MPL). Here ν is the radiation frequency, mγ

-the rest mass of the photon, T is the temperature of the blackbody radiation and

ρ(ν, T ) =
8πhν3

c3
1

e(
hν
kT

) − 1
(2)

is the standard Planck spectral density of radiation, h = 6.626 × 10−34Js is the Planck constant and
k = 1.38×10−23 J

K is the Boltzmann constant. This topic was also discussed by Pardy (2018) and Nyambuya
(2017), but without reference to the work of Torres-Hernandez (1985), which seems to us physically more
consistent. From expression (1) it follows that at mγ = hν

c2
= 7.362× 10−51ν(kg) Planck’s law turns to zero.

This allows us to introduce a purely formal definition of the ”rest frequency” of the photon

ν0 =
mγc

2

h
= 1.358× 1050mγ (Hz) (3)

if the mass is determined independently. The estimates of the rest mass are related to the measurement
methodology and the frequency range used for this Butto & Tikva (2022) and Saiyan (2023), although the
value of mγ must be constant by its very meaning. Entering a dimensionless variable in (1) x = hν

kT , we
write:

mγc
2

hν
=

β

x
, β =

mγc
2

kT
= 6.522× 1039

mγ

T
. (4)

At high temperatures mγc
2 ≪ kT (β ≪ 1), the MPL tends to be the standard Planck’s law. As can be

seen in (2), in this case

mγ ≪ 1.533× 10−40T (kg). (5)

At low temperatures β ≫ 1, x ≫ 1, both functions asymptotically tend to zero.
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2.1. Derivation of MPL

Here we will give a derivation of MPL that is somewhat different from the one given by Torres-Hernandez
(1985) but having more details and leading to the same result. We start with the dispersion equation which
can be obtained from the Proca equation (Tu et al., 2005):

k2 =
ω2

c2
− (

mγc

ℏ
)2 = 4

π2

c2
(ν2 − ν20), ℏ =

h

2π
, (6)

where k is the modulus of the wave vector ω is the cyclic frequency ω = 2πν and which we will rewrite in
the form

k = 2
π

c

√
ν2 − ν20 . (7)

Then the density of the number of oscillatory modes in the interval of wave numbers (k, k+dk) in volume
V of a black-body radiating cavity within which thermodynamic equilibrium has been achieved is equal to
dN(k) = k2

2π2V dk, or, in terms of frequencies, after differentiating equation (6), and taking into account two
states of polarization of the photon,

dN(ν) = 8
πV

c3
ν2

√
1− (

mγc2

hν
)
2

(8)

For the density of the number of states with radiation energy in the frequency interval (ν, ν + dν), we
have:

hν
dN(ν)

ν
=

8πhν3

c3

√
1− (

mγc2

hν
)
2

dν (9)

Because the mean occupation number of each energy state is given by the Planck distribution ⟨n⟩ =
1

e( hν
kT

)−1
(Feynman, 2018) for MPL we find

ρ(ν,mγ , T ) = (
8πhν3

c3
)

√
1− (

mγc2

hν
)
2 1

e(
hν
kT

) − 1
, (10)

which coincides with (1). In fact, MPL differs from the standard Planck’s law only in the presence of a
radical expression. The average energy of a Planck photon will then be determined by the ratio of the total
energy density in the radiation spectrum to the density of the number of photons, i.e., the expression

⟨ϵ⟩ = kT

∫∞
hν0

ρ(ν,mγ , T )dν∫∞
hν0

ρ(ν,mγ ,T )ν
d ν

ϵ = hν. (11)

Consequently, the average mass of the Planck photon (the average mass equivalent) is ⟨m⟩ = ⟨ϵ⟩
c2
. As

follows from (11), for the standard Planck’s law with (ν0 = 0) ⟨ϵ⟩ = 2.701kT . Using expression (4), it is
possible to obtain the temperature-dependent ratio of the average mass of the photon to its rest mass. To
do this, let us rewrite MPL (10) in the form:

ρ(x,mγ , T ) = (
8π

(hc)3
(kT )4

x3

ex − 1

√
1− (

β

x
)
2

, x ≥ β. (12)

The graph of the function (normalized on the constant factor) is shown on the Fig 1. below for different
values of the parameter β. The graph with β0 corresponds to the standard Planck’s law and depends only
on temperature. The graphs with β > 0 are dependent on temperature and the rest mass of the photon.
Unlike the standard Planck’s law, which turns into zero for x0, MPL turns into zero for x = β. Increase in
β is equivalent to decrease in temperature. For x ≪ 1 we get an analogue of the Rayleigh-Jeans law

ρ(x,mγ , T ) =
8π

(hc)3
(kT )4x2

√
1− (

β

x
)
2

(13)

The condition x ≫ 1 leads to Wien’s radiation law:
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ρ(x,mγ , T ) =
8π

(hc)3
(kT )4x2

√
1− (

β

x
)
2

. (14)

Figure 1. Modified Planck’s laws (MPL)

The ratio of the average equivalent mass of a photon to its rest mass ⟨m⟩
mγ

can be written simply as ⟨ϵ⟩
βkT ,

from which it can be seen that for β ≪ 1 (in the case of high temperatures) it tends to infinity (and the law
of blackbody radiation tends to the standard Planck’s law), which can formally be interpreted as a decrease
in the photon’s rest mass or an increase in the average mass equivalent of the photon while maintaining the
rest mass. More detailed behavior of this function at small and large values of the parameter β is discussed
in the Appendix. Correspondingly, it also determines the difference between the modified Stefan-Boltzmann
law in these extreme cases and its standard analogue. At small values of the parameter β ≪ 1 , the average
mass of the photon is defined by formula (60) of the Appendix, which gives:

⟨m⟩ = 6.493939− 0.822407β2

2.404112− 0.5β2(1 + β − lnβ)

kT

c2
, (15)

where the expression dependent on β is simply the ratio of integrals in (8), for which we use the notation
α(β) in Appendix. For large values of β, the mass ratio is given by the last formula (67)

⟨m⟩
mγ

=
α(β)

β
≈ 1. (16)

Hence it follows that the average photon mass equivalent is the upper bound for the photon’s rest mass
(which is to be expected), and their values approach each other at low temperatures. In Table 1 we present
the results of numerical integration of the mass ratio r =< m > /mγ for different values of β.

Table 1. Mass ratio vs. parameter β
β 0.005 0.05 0.5 5 50
r 540.2 54.12 5.622 1.361 1.039

We see how steeply the mean mass equivalent approaches the rest mass of the photon with an increase
in β. Even for intermediate temperatures (mγc

2 ∼ kT ) these two masses are close enough to each other
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within the same order of magnitude. As we said above (and it also can be seen from equation (10)), for the
standard Planck spectrum:

⟨m⟩ = 2.701
kT

c2
= 4.141× 10−40Tkg. (17)

It is interesting to evaluate the mean mass equivalent of the photon for some temperatures that are
of physical interest. The best approximation to absolute zero, achieved experimentally, is estimated to be
equal to T = 3.8× 10( − 11 ◦K (Depner & et al., 2021). Then for the hypothetic radiation with such a low
effective temperature

⟨m⟩ = 1.574× 10−50kg. (18)

For the CMB photon with the temperature of T = 2.725 ◦K (Fixsen, 2009, Peebles, 2020), we have

⟨m⟩ = 1.128× 10−39kg. (19)

This number is expectedly different (as it follows from the equations shown above) from estimates of m,
obtained by investigation of CMB dipole anisotropy (De Bernardis et al., 1984) with a confidence level of
68% : mγ ∼ (2.9± 0.1)× 10−54kg. In the meantime, based on radio-wave interferometriv measurements of
the free-space velocity of electromagnetic waves on 72 GHz (almost twice less than the frequency of CMB
radiation, peaked at 160.2GHz),with the accuracy ∼ 10−7 (Froome, 1958). One can estimate the upper
limit of mγ < 4.3× 10−43kg (see Tu et al., 2005). These results simply point to the low value of β (β ≪ 1)
and show that CMB radiation is blackbody radiation by its nature, not noticeably affected by the massive
photon if the temperature is high. It follows from (12) that the mass equivalent of the photon tends to
infinity with unlimited increase in temperature. This is a purely formal outcome that cannot be satisfied
because of the reasons explained below in the text.

The mass equivalent of the photon, used in this paper and earlier in Saiyan (2023), is defined in free space
and does not have to be confused with the effective mass of the photon defined in quantum electrodynamics
instead of the term relativistic mass. It comes into play due to the interaction of photons with a medium
(such as plasma triggered by a strong laser pulse in the gas) (Emelyanov, 2017, Mendonca, 2001, Yee,
1984) and is determined through the frequency of plasma oscillations. These two concepts are the same
only if the rest mass of the photon equals zero. The only similarity is that the effective mass at high
temperatures (if the energy of radiation is much greater than the rest energy of an electron) is proportional
to the temperature Emelyanov (2017), as we have stated above for the mass equivalent and the rest mass in
formulas (14) and (15) for high and low temperatures. As we can conclude from (15), our calculations show
that the massiveness of the photon seems to be more significant factor at low temperatures (kT ≪ mγc

2)
and is negligible for high temperatures when the MPL approaches the standard Planck law (low and high
temperatures are linked to the independently estimated rest mass of the photon). This conclusion agrees
with the statement of Primak & Sher (1980) according to which the photon would acquire a non-zero mass
mγ below some low temperature ”. This idea is in tune with the physical model of Resca (2023) for dark
energy as a Bose-Einstein condensate of cosmologically massive photons. The process which is taking place
for bosons under some critical temperature, but impossible for massless photons in free space. The Bose-
Einstein condensate was achieved in 2010 in a microscopic optical cavity for photons with effective mass
(Klaers et al., 2010).

2.2. Modified Stefan-Boltzmann Law

The modified Stefan - Boltzmann law can be obtained by defining the upper integral in (10) after
substituting expression (9) into it and integrating over all frequencies. This gives the total radiation energy
density across the spectrum:

u(T ) =
8π

(hc)3
(kT )4

∫ ∞

β

x3

ex − 1

√
1− (

β

x
)
2

dx. (20)

Following the integration method for β ≪ 1, presented in the Appendix, it is possible to write the mod-
ified Stefan-Boltzmann law, which, unlike the standard one, contains a temperature-dependent correction
factor (see also Nyambuya, 2017, Pardy, 2018, Torres-Hernandez, 1985).
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u(T ) = σT 4[1− 5

4(π)2
(
mγc

2

kT
)2], (21)

in which the Stefan-Boltzmann constant is given by the expression σ = 8
15

(π)5

(hc)3
k4. At high β values (that

is, at low temperatures kT ≪ mγc
2) the dependence of the total radiation density on temperature already

changes. Returning to the first formula in (A.16) in Appendix we find:

u(T ) =
8π

(hc)3

√
π

2
(mγc

2)4(β)
5
2 e−β. (22)

That is, the radiation density at low temperatures is characterized by the presence of a rapidly decreasing
exponential term and with a decrease in temperature tends to zero much faster than in the case of the
standard Stefan-Boltzmann law. This is due to the fact that the condition β ≫ 1 automatically entails
x ≫ 1, which means a transition to the Wien’s radiation law. In the case of the Raleigh-Jeans law, the
condition x ≪ 1 automatically entails the condition βll1, but the converse is no longer true: x ≪ 1 does
not follow β ≪ 1. As we can see, a massive photon gas has a more complex temperature behavior than
a massless one. This circumstance also affects the behavior of radiation pressure in different temperature
regimes.

2.3. Modified Wien’s Displacement Law

This aspect of the theory of massive photon radiation has not been discussed in the literature, as far as
we know, but it is an important component of the theory of blackbody radiation. If we take the derivative
of function (11) with respect to the dimensionless variable x, we arrive at the equation (3x2 − β2)(ex − 1) =
x(ex)(x2 − β2), which can be conveniently transformed to the form:

ex[x2(3− x) + β2(x− 2)] = 3x2 − 2β2. (23)

This coincides with the standard equation for finding the maximum frequency of the standard Planck’s
law for $beta = 0

ex(3− x) = 3, (24)

that has two solutions: the trivial x = 0, which defines the minimum of radiation at ν = 0 and xm = 2.821,
which defines the maximum. The frequency of radiation maximum for β > 0 can be found from the following
relation:

νm = xm × kT

h
= 2.08366× 1010T

Hz

K
xm, (25)

where values of xm can be computed numerically for arbitrary β. Some examples are shown in Table 2.

Table 2. Parameters of MPL
0 2.82144 5.87892
1 2.96720 6.18264
2 3.40845 7.10205
3 4.09228 8.52692
4 4.91805 10.22670
5 5.81583 12.09740
6 6.75108 14.06700
10 10.63470 22.15760
15 15.58460 32.46840
20 20.56150 42.84320
25 25.54840 53.23420
30 30.53980 63.63460
50 50.52330 105.2730

Hence it follows that the maximum of the radiation of massive photons with decreasing temperature
(increasing β) has a greater shift to the high-frequency part of the spectrum compared to the standard
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Planck’s law. One can easily see that for large values of β (low temperatures) xm ≈ β (more precisely
xm ≈ β + 0.5), which gives us the equation

xm = 4.8× 10−11 νm
T

K

Hz
≈ β =

mνc
2

kT
. (26)

From the last relation, we have

mγ ≈ 4.8× 10( − 11)
k

c2
νm = 8.668× 10−51νm

kg

Hz
(27)

This relation shows that the ratio
mγ

νm
remains constant at low temperatures and equal to 8.668 ×

10−51 kg
Hz . The lowest frequencies of electromagnetic radiation, discussed in publications, are around 10−3Hz

(estimated for the Earth’s magnetic field) and known as micro-pulsations (Troitskaya & Gul’elmi, 1967).
Bass & Schredinger (1955)consider the micro-pulsations as Gaussian fluctuations of the permanent magnetic
field. If we substitute this number into the last relation instead of νm we obtain mγ 8.668× 10−54kg, which
is almost the same number as the one accepted by Physical Data Group (PDG) (Navas & and Particle
Data Group, 2024) and considered to be the most reliable upper experimental limit for the rest mass of the
photon.

2.4. Radiation pressure of amassive photon gas

The radiation pressure is determined by the formula p=u/3. In the explicit form

p =
1

3
σT 4[1− 5

4π2

mγc
2

(kT )2
], (28)

if the high temperature condition is satisfied (mγc
2 ≪ kT ). At low temperatures

p =
1

3

8π

(hc)3

√
π

2
(mγc

2)
4
β)

5
2 e−β. (29)

For high temperatures we have the following inequality:

T ≫ 6.523× 1039mγ (K/kg). (30)

The rest mass estimates, obtained from observations of different astrophysical sources in different wave-
length ranges and under different conditions of the space environment vary within (10( − 63)− 10( − 31))kg
(Navas & and Particle Data Group, 2024, Shaefer, 1999, Tu et al., 2005). If we accept the upper limit for
the rest mass of the photon suggested by PDG, then the temperature can be considered high if

T ≫ 1.163× 10−14 ◦K. (31)

This condition is met in the Universe with great excess. That is, virtually MPL does not differ noticeably
from the standard Planck law as we stated above. But if the estimate of the photon rest mass is refined to a
higher order of magnitude, then this conclusion must be revised. For example, if we accept mγ ≈ 10−31kg
(based on studies of Mark 421 galaxy (see Shaefer, 1999, and references therein) as the upper limit of all
estimates of the rest mass, then we must infer that the temperature is high if the following condition holds:

T ≫ (108 − 109) ◦K (32)

From the perspective of application of MPL it may affect some conclusions regarding stellar models. But
is this upper limit of mγ acceptable from a physical point of view?

3. Applications in astrophysics

3.1. Stellar models

As we know, the internal structure of stars is described by polytropic models, the stability of which is
defined by the balance of gravitational forces and the net force of gas and radiant pressure, which depends on
temperature. For stars such as the Sun, the Eddington model with a polytropic index of n=3 is considered
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the most acceptable (Eddington, 1926). In the model, the ratio of gas pressure to net gas and radiation
pressure is assumed to be constant throughout the volume. It is obvious that due to properties of the massive
photon gas set above, that criterion no longer holds. Estimates of the temperature in the nuclear region of
the Sun lead to the values at which thermonuclear reactions begin, and the condition of high temperatures
is excessively fulfilled even for values of mγ of higher orders of magnitude. This allows to neglect the
correction term in the expressions for the Stefan-Boltzmann law and radiant pressure. Therefore, in general,
it can be assumed that conclusions, derived within the framework of conventional stellar models, remain
valid and the massiveness of photons, by and large, does not play a significant role here. Note that the
radiation pressure is much more significant in massive stars, where temperatures in nuclear regions can
reach T ∼ 1.5× (108 − 109) ◦K, and the main source of opacity of the medium is the Thomson scattering
(Maeder et al., 2012). If the upper limit of mγ , discussed above is accepted, then for temperatures just
mentioned, β ≈ 1, and correction factor to the Stefan-Boltzmann law and radiant pressure should be taken
into consideration.

3.2. Radiation scattering

We will briefly discuss the effect of the ”massiveness” of radiation on two types of scattering Thomson and
Compton. Massive radiation is a solution of the Proca equation, in which the wave vector is represented
in the form (5) or (6), reflecting the effect of optical dispersion in vacuum. We will limit ourselves to
considering the classical case of the Thomson scattering at the qualitative level. Despite quantum theories
are also available in publications (Crowley & Gregori, 2014), the massiveness of the photon is not considered
there. Describing the scattering of a monochromatic electromagnetic wave on a non-relativistic electron,
we consider the dependence of its phase velocity on the frequency, using it instead of the standard speed
of light. As a rule, the dependence of the electric field strength on coordinates and the influence of the
magnetic field strength vector on the expression for the Lorentz force are neglected due to the smallness of
the electron’s velocity compared to the speed of light. Taking into consideration the radiation reaction, the
total cross section of Thomson scattering (in terms of the cyclic frequency of the electromagnetic wave ω
takes the form Terletsky & Ribakov (1980):

σT (ω) =
σ0

1 + 4(r0)2(ω2)
9c2

, (33)

where σ0 is the cross-section of the classic Thomson scattering. In the absence of radiation reaction, it is
independent of frequency ω: σ0 =

8π
3 r20. The phase velocity can be found from (5):

σvph =
ω

k
= c

ω√
ω2 − ω0

2
. (34)

Substituting this formula in the expression instead of the usual speed of light, we get:

σT (ω) =
σ0

1 + (4(r0)
2

9c2
)(ω2 − (ω0)2)

. (35)

It follows that the cross-section of the Thomson scattering of a massive electromagnetic wave on an
electron is greater than the same cross-section in scattering of a massless wave. The cross-section increases
with increase of the rest mass and energy of the photon. This increases the optical thickness of the medium,
making it less permeable to massive radiation. In this case, the standard Thomson cross-section is reached
not at ω = 0, but at ω = ω0. It is natural to expect that the same conclusion about the cross-section is true
for Compton scattering as well, which transforms into Thomson scattering at low photon energy. It is well
known that Compton scattering is incoherent, unlike Thomson scattering, and is characterized by a shift in
the frequency of the scattered photon depending on the scattering angle towards lower values compared to
its frequency before scattering due to the transfer of energy to the electron. This (Compton) shift is usually
written in terms of wavelengths in the form:

∆λ = λ′ − λ =
h

mec
(1− cos θ), (36)

where λe, λ′ are the wavelengths of the photon before and after scattering respectively, θ is the scattering
angle, and λe = h

mec
h) is the electron’s Compton wavelength. It can be shown that in the case of massive

photons, this shift is slightly less than the one expected for zero-mass photons. This can be verified by
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writing down the laws of conservation of energy and linear momentum for this case of Compton scattering
in the electron’s rest system:

Eγ + Ee = E′γ + E′=E′γ +
√
(p′ec)2 + (mec)2), (37)

pγ + pe = p′γ + p′e, (38)

In the equations shown above Eγ , pγ are the energy and linear momentum of the photon before scattering,
Ee - electron rest energy. Energies and momenta of the photon and electron after scattering are provided
with an apostrophe sign. Now we can find the difference in wavelengths of the incident and scattered photon
(from the system of equations (36, 37) by substituting into it the expressions for specified quantities in the
form:

∆λ = λ′ − λ, λ =
c

ν
, λ′ = c

ν′
, (39)

Eγ = hν,Ee = mec
2, E′′γ = hν′, (40)

pe = 0, pγ = ℏk, p′γ = ℏk′ (41)

The magnitudes of wave vectors of incident k and scattered k’photon in (40) are defined by formula (5)
for the optical dispersion in vacuum.

∆λ = λ′ − λ = λe[1−

√
(1− λ′2

λ2
0

)(1− λ2

λ2
0

) cos θ − λλ′
λ2
0

]. (42)

Here, λ0 =
h

mγc
is the photon ’ s Compton wavelength. λ0 is the limiting value of the photon wavelength,

infinite if mγ = 0. Obviously, in this case (41) follows the ordinary Compton formula. By substituting,
λ′ = λ+∆λ,(41) can be reduced to a form that determines the irreducible dependence of the Compton shift
on the wavelength of the incoming photon, an effect that is missing from the ordinary Compton effect. The
expression on the right side of 41) can be simplified considering that λ′, λ ≪ λ0. Neglecting terms of order
of smallness higher than two, we obtain:

∆λ = λe1− [1− 1

2λ2
0

(λ′2 + λ2) cos θ − λλ′
λ0

2 . (43)

For θ = 0 the equation (42) in terms of ∆λ takes the form of a quadratic equation

∆λ[1− λe

2λ2
0

∆λ] = 0, (44)

which has one physically acceptable solution ∆λ = 0, the same as in the case of the ordinary Compton effect,
which means that there is no change in the frequency of the photon as it is scattered forward. Further, in
vertical scattering θ = π

2 we have a linear equation the solution of which is

∆λ = λe

1− λ2

λ2
0

1 + λeλ
λ2
0

. (45)

That is, the Compton shift is less than in the case of massless photons when it simply equals λe. At
θ = π (backscattering) (42) is reduced to a quadratic equation with one physically acceptable solution:

∆λ ≈ λe(1−
λ2

λ2
0

) ≤ 2λe. (46)

This leads to the same conclusion as for vertical scattering: the Compton shift for massive photons is
smaller than for massless photons. The solution (45) slightly differs from backscattering case in the standard
Compton-effect when ∆λ = 2λe.
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3.3. Early stages of the Universe

We have already mentioned above that as the radiation temperature increases, the average mass equiv-
alent of the Planck photon grows boundlessly. This result is formal for two reasons. The first one is that
with an increase in temperature and, correspondingly, radiation density, the probability of two-photon and
multiphoton collisions increases, leading to the production of electron-positron pairs at energies above 1.022
MeV, which limits the further growth of the photon’s mass equivalent. The reaction of particle-antiparticle
pair production, resulting from massless photons collision, is known as the Breit-Weeler process (Breit &
Wheeler, 1934) (hereafter the BW-process) and is the opposite of the annihilation process. Experiments
show very low probability of the phenomenon (∼ (10−7 − 10−5) (Ribeyre & et al., 2016), depending on
the energies of the photons), which has not been confirmed over almost eight more decades (Adam & et
al., Adam & et al.). Collisions between photons lead to the ”viscosity” of the photon gas and deviation
from the condition of ideality. Speaking in general, the radiation of colliding photons cannot be described
by Planck’s standard law. The cross-section of BW-process is ∼ r0

2 (where r0 ≈ 2.8179 × 10−15m is the
classical electron radius) with an accuracy of up to a coefficient of the order of unity (Ribeyre & et al.,
2016). At these distances, quantum electrodynamic effects become significant. The Compton wavelength of
a massive photon reaches the value of r0 at energies with the equivalent temperature T ∼ 1012 ◦K, which
is typical for the transition from the quark epoch to the hadron epoch in the early universe.

The second reason is that it makes sense to talk about photons as independent particles and carriers
of electromagnetic interaction up to temperatures not higher than ∼ 1015 ◦K. In this case, a spontaneous
violation of the symmetry of electroweak interaction, associated with a drop in temperature as the Universe
expands, takes place, after which the electromagnetic interaction separates from the weak one, and becomes
a distinct physical force. This happens at the times of ∼ 10−12 seconds after the Big Bang and is interpreted
as an electroweak phase transition due to the Higgs mechanism (Higgs 1964). In the case of photons with
non-zero mass, as in Thomson scattering, it is natural to expect an increase in the scattering cross-section
for the BW-process compared to massless photons, and, therefore, an increase in its probability. As a result,
it will increase the production of electron-positron pairs. The last circumstance as it said above limits
growth of the photon mass equivalent and contributes to an increase in the opacity of the cosmic medium
for high-frequency radiation in the range of energy values that exceeds the excitation threshold of the BW
process. It results in limitation of the spectral range of high energy photons in cosmological medium. But
we must make the following remarks as well. With the exponentially growing volume of the Universe in the
early inflation epoch (Guth, 1981, Linde, 1984, Tsujikawa, 2003) and the rapid increase in the rate of cooling
because of the expansion, the annihilation process won’t be able to compensate for the loss of photons due
to BW-process which cannot be long lasting. Collisions between massive photons seem to have more chances
to produce particle - antiparticle pairs compared with massless photons. This production will increase the
role of Thomson scattering in the formation of opacity of the cosmological medium. In the meantime, the
existence of more electrons caused by more frequent collisions of the photons increases the probability of
the formation of neutral atoms and decreases the opacity. It is difficult to say to what extent this process
in the presence of a massive photon field affects the estimate of duration of the pre-recombination period
in the evolution of the Universe. We do not know any estimates regarding this matter. However, from the
above said, one can assume that the onset of the post-recombination epoch could have occurred somewhat
earlier than is generally believed.

It is interesting to notice that because always mγ ≤ ⟨m >⟩ (regardless the value of parameter β and
the upper limit of the mass equivalent of the photon is defined by (16), for T = 1015 ◦ K we have mγ ≤
4.141 × 10−25kg - the mass nearly equal to the mass of the Higgs boson (125.35GeV = 2.231 × 10−25kg,
(ATLAS Collaboration, 2023) (125.11 GeV). The conclusion is that photons cannot have the rest mass
greater than this. None of the existing measurements of this quantity are close to this limit.

3.4. Active galactic nuclei

The BW-process, described in the previous section, can also be implemented using the inverse Compton
effect in the near-nuclear regions of active galaxies, such as Markarian 421 and 501, which demonstrate a
high degree of activity across the spectrum, from radio to gamma rays (Acciari et al., 2020, Aharonyaan &
et al., 1997, Carnerero et al., 2017). The activation of the BW - process in these sources is possible because
of synchro-Compton scattering, when photons of synchrotron radiation sharply increase their energy during
inverse Compton scattering on the relativistic electrons that generated them proportionally toγ2, where
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γ 1000 is the Lorentz factor (Beckmann, 2006, Sunyaev, 1986). For example, radio frequencies can ”migrate”
to the ultraviolet region, and optical photons can ”migrate” to the gamma range. The role of massive photons
in these processes can be manifested not only in the existence of time dispersion and variations in the speed of
light. These high energy photons will contribute to EBL (Extragalactic Background light, which is another
component of the total diffuse cosmic radiation in addition to CMB), and that way, to the pair-production
cutoff (Franceschini et al., 1994, Stecker & de Jager, 1997)which is comprehensively explained and discussed
by (Franceschini, 2021) who also has mentioned that the number of such energetic photons is decreasing
very sharply with energy ∝ γ−2,−3 at least).

4. Spreading time of the photon wave packet

The wave packet of a massive photon can be formally represented as a very concentrated superposition
of quasi-monochromatic waves with very close frequencies. Since (as can be seen from (5)) the dependence
of frequency on the wave vector is nonlinear, purely theoretically, there must be some spreading of the wave
packet of a massive photon in free space. For the massless photon the wave packet in vacuum is infinite, that
is, the photon does not spread out in free space. As is known (Zemtsov & Bychkov, 2005), the spreading
time of the wave packet is

τ =
(∆x)2

d2ω/dk2
(47)

where ∆x is its width. If ∆x ∼ λ = c
ν = 2πc

ω , one can estimate τ by finding ω from the equation (4):

ω =
√
(kc)2 + ω2

0ω0 = 2πν0. (48)

Performing differentiation, we obtain

d2ω

dk2
=

2πν3

ν20
, τ ∼ 2πν

ν20
=

2πνh2

mγ
2c4

(49)

Taking as above mγ < 10−18eV = 1.783× 10−54kg, we obtain

τ > 1.074× 108ν(s) (50)

If the left-hand side of the inequality is taken to be equal to the age of the Universe in seconds,

tu ∼ 4.352× 1017 s, (51)

then all photons with the frequency ν ≥ 4.052×109Hz(λ ≤ 7.4cm) have wave packets with a spreading time
greater than the age of the Universe. For CMB radiation ν = 1.602 × 1011Hz we have τ ∼ 1.721 × 1019 s
which exceeds this age by almost 40 times. Virtually, in a very wide range of frequencies, which are of
interest to astrophysics, the wave packet of a massive photon does not spread.

5. Conclusions and discussion

The paper derives Planck’s law of radiation for massive photons. The dependence of the ratio of the
mean mass equivalent of the photon to its rest (invariant) mass on different temperature regimes is studied.
It tends to infinity at high temperatures and approaches unity at low temperatures. In the first case MPL
approaches the standard Planck’s law, and the massiveness of the photon becomes a nonsignificant factor in
the radiation process. At intermediate and low temperatures, deviation of MPL from Planck’s law increases,
and the massiveness of the photon should be considered with the lowering intensity of the radiation. Stefan-
Boltzmann and Wien’s displacement laws for massive photons are derived, as well as an expression for
radiation pressure, which takes different forms at high and low temperatures. The estimate of the Thomson
cross-section of the scattering of massive photons on a free electron turned out to be slightly greater than
its value in the usual case, which increases the optical thickness of the scattering medium. In the case of
Compton scattering, the wavelength shift is less than its value in the process of massless photons, except
in the case of scattering forward, where the wavelength remains unaltered. Apparently, the existence of the
rest mass of the photon (mγ < 10−54kg) is not a significant factor for the wide range of astrophysical events.
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However, this conclusion may change with mass estimates of a higher order of magnitude. Estimates of the
spreading time of the massive photon show that they remain stable in free space at time intervals exceeding
the age of the Universe. Slight deviations of the Thomson and Compton scattering cross-sections (as well as
Compton shift) from their standard values could serve as indirect evidence in favor of the hypothesis that
the photon has a rest mass. As we know, these deviations have not been discovered so far.
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Appendices

Appendix A Analytical study of integrals

Integrals in (10) can analytically be evaluated in two extreme cases, low and high temperatures (i.e.,
at very large and small β). Torres-Hernandez (1985) discussed these extreme physical cases just in a few
words not presenting any detailed calculations. Although it is obvious that at β ≪ 1 MPL approaches the
standard Planck’s law, it is nevertheless interesting to clarify the expression for the mean mass equivalent
of the photon at non-zero values of this parameter. It makes theoretical analysis of the problems considered
here more complete. Omitting the constant factors in the upper and lower integrals in (10) and introducing
notations I1(β), I2(β) for them, we write it down in terms of the variable x and parameter β, introduced
earlier in the text:

I1(β) =

∫ ∞

β

x3

ex − 1

√
1− (

β

x
)2dx (52)

I(2)(β) =

∫ ∞

β

x2

ex − 1

√
1− β

x

2

dx (53)

Decomposing the first integral into the Taylor series by powers of β and applying Leibniz’s formula, we
get, limiting ourselves to the first two terms,

I(1)(β) ≈ ζ(4)Γ(4)− 1/2ζ(2)β2, (54)

where ζ(s) is the Riemann zeta function, and Γ(x) is the gamma function (Batman & Erdelyi, 1974):

ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1

ex − 1
dx (55)

Γ(x) =

∫ ∞

0
e−ttx−1dt. (56)

To estimate the second integral in (52), it is convenient to decompose the square root in the Tylor series
by powers of beta in the vicinity of the point β = 0, which leads to the difference between the two integrals:

I2(β) ≈
∫ ∞

β

x2

ex − 1
dx− 1

2
β2

∫ ∞

β

dx

ex − 1
, (57)

if we confine ourselves, as before, to the first two terms. The first integral in (57) can be written as∫ ∞

β

x2

ex − 1
dx =

∫ ∞

0

x2

ex − 1
dx−

∫ β

0

x2

ex − 1
dx ≈ ζ(3)Γ(3)− 1

2
β2, (58)

using the fact that with small β in the last integral in (58) ex − 1 ≈ x. In the last integral in (57) one can
make a substitution t = ex − 1, and making β -ln(β). Thus

I2(β) ≈ ζ(3)Γ(3)− 1

2
β2(1 + β − lnβ). (59)

Hence it follows that at high temperatures

⟨m⟩ =
ζ(4)Γ(4)− 1

2ζ(2)β
2

ζ(3)Γ(3)− 1
2β

2(1 + β − ln(β))

kT

c2
. (60)

This expression leads to (14) after substituting numerical values of the zeta and gamma functions. The
expression for I1(β) leads to (20) and (27), because

I(1)(β) =
π4

15
(1− 5β2

4π2
). (61)

To analyze integrals I1(β), I2(β) at low temperatures, note that if β ≫ 1, then x ≫ 1 as well. Therefore,
ex ≫ 1, and ex − 1 ≈ ex. Then, if we set t = x

β , the integral I1(β) can be rewritten in the form:

Saiyan G.
doi: https://doi.org/10.52526/25792776-24.71.2-307

320

https://doi.org/10.52526/25792776-24.71.2-307


Radiation and Scattering of Massive Photons

I1(β) = β4

∫ ∞

1
t2e−βt

√
t2 − 1dt, (62)

which can be expressed in terms of the Macdonald functionKν(β) using the following representation Batman
& Erdelyi (1974):

Γ(ν +
1

2
)Kν(z) =

√
π
z

2

ν
∫ ∞

1
e−βt(t2 − 1)ν−

1
2dt, ν > −1

2
, Rez > 0, (63)

where ν is the order of the Macdonald function. In our case ν = 1,Rez = β ≫ 1. It gives

K1(β)

β
=

∫ ∞

1
e−βt

√
t2 − 1dt. (64)

Since t2 = (t2 − 1) + 1, for (62) we have:

I1(β) = β2[K2(β) + βK1(β)]. (65)

With the aim of (64) the integral (62) can be expressed in the following way:

I2(β) = β3

∫ ∞

1
te−βt

√
t2 − 1dt = −β3K1(β)

β
β. (66)

For β ≫ 1 Knu(β) ∼
√

π
2β e

−β and then

I1(β) ≈
√
π2β

5
2 e( − β), I2(β) ≈

√
π2β

3
2 e−β, α(β) =

I1(β)

I2(β)
≈ β. (67)

Hence it follows the formula (15) in the text.
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