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Abstract

The understanding of intricate, non-linear phenomena within astronomical data is pivotal for the
progression of our knowledge of the universe. This paper introduces an innovative method that merges
bispectral analysis with the Levenberg–Marquardt (LM) algorithm for processing astronomical signals.
The LM algorithm is renowned for its effectiveness in non-linear parameter estimation and model fitting.
At the same time, bispectral analysis is adept at identifying and measuring non-linear interactions and
phase coupling within signals. By integrating these two techniques, our approach facilitates a comprehen-
sive analysis of astronomical signals, encompassing both modeled and unmodeled non-linearities. This
integrated methodology is particularly advantageous in fields such as the exploration of pulsars, binary
star systems, exoplanet detection, and active galactic nuclei, where non-linear dynamics exert signifi-
cant influence. The findings illustrate that this collaborative approach amplifies the identification and
delineation of non-linear processes, leading to more precise models and profound insights into complex
astronomical phenomena.
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1. Introduction

Astronomical signal processing frequently involves the analysis of complex, non-linear phenomena that
arise from the intricate interactions between celestial objects and their environments. Signals originating
from sources such as pulsars, black holes, and stellar oscillations often contain subtle modulations and
harmonics intricately embedded within background noise. To effectively uncover the hidden dynamics of
these signals, the application of advanced processing techniques is crucial.

Bispectral analysis, recognized as a higher-order spectral method, has emerged as a powerful tool for
identifying non-linearities and phase coupling in signals. Unlike traditional Fourier-based methods, bispec-
tral analysis emphasizes the interrelationships between frequency components, thereby revealing interactions
that linear techniques might overlook. However, extracting precise information from bispectral data requires
robust optimization techniques to address the inherent complexity associated with astronomical signals.

The Levenberg–Marquardt (LM) algorithm is a hybrid optimization method that adeptly combines
elements of gradient descent and least-squares approaches. Its efficacy in solving non-linear least-squares
problems renders it particularly suitable for refining parameter estimates within non-linear signal models.
By integrating bispectral analysis with the LM algorithm, researchers can attain enhanced accuracy in
characterizing non-linear phenomena in the field of astronomy.

This paper presents an integrated approach that capitalizes on the strengths of both bispectral analysis
and the Levenberg–Marquardt algorithm to improve the processing of non-linear astronomical signals. The
proposed framework enhances the detection of phase-coupled frequencies and optimizes model parameters,
thereby providing fresh insights into complex astrophysical processes [Randall et al. (2016), Smith & Randall
(2016), Wang et al. (2019), Sivolenko et al. (2019a), Medvedev et al. (2022)].
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2. The Micro-Doppler Effect: A Deep Technical Overview

The micro-Doppler effect is a refined aspect of the Doppler effect, focusing on frequency changes due to
small-scale motions within a system. Unlike the classical Doppler effect, which looks at overall motion, the
micro-Doppler effect results from oscillatory movements of substructures like rotating surfaces or vibrating
components. It plays a significant role in astronomy, helping to analyze the dynamics of stars, planetary
systems, and compact objects.

For a source moving with velocity v along the observer’s line of sight, the observed frequency shift ∆f
is given by:

fobs = f0 ×
(
1 +

v

c

)
. (1)

Here f0 – frequency of the emitted wave, v – radial velocity of the source, c – speed of light.
This relationship captures the bulk motion but does not account for internal dynamics, such as rotation

or oscillations. For a rotating star, the surface exhibits differential velocities due to rotation. The radial
velocity of a point on the star’s surface relative to the observer is:

vm (t) = R× ω × sin(θ)× cos(φ+ ω × t). (2)

Where R – radius of the star, ω – angular velocity, θ – inclination angle of the rotation axis, φ – the
initial phase of rotation. The resulting micro-Doppler shift is:

∆fmicro(t) = f0 ×
2R× ω × sin(θ)× cos(φ+ ω × t)

c
. (3)

This produces a periodic modulation in the observed frequency, which can be used to infer the star’s
rotational parameters and surface features (e.g., star spots).

In pulsating stars, such as Cepheids or RR Lyrae, radial oscillations of the stellar surface generate
periodic velocity components:

vm (t) = A× sin(2π × fp × t). (4)

Here A – amplitude of oscillation, fp – frequency of the pulsation. The micro-Doppler shift is:

∆fmicro(t) = f0 ×
2A× sin(2π × fp × t)

c
. (5)

This oscillatory modulation is key to asteroseismology, providing detailed information about the star’s
interior structure and dynamics.

In compact binaries, orbital motion introduces time-dependent micro-Doppler effects. If a binary com-
panion induces oscillations in the primary star’s radial velocity, the total velocity becomes:

v (t) = v0 + vbinary (t) + voscillation(t). (6)

Here, vbinary (t) is the periodic velocity from orbital motion, and voscillation(t) arises from internal stellar
pulsations. The observed frequency shift is:

fobs (t) = f0 ×
(
1 +

v0 + vbinary (t) + voscillation(t)

c

)
. (7)

The combined micro-Doppler signature provides a powerful diagnostic of orbital and intrinsic stellar prop-
erties.

Sivolenko E. et al.
doi: https://doi.org/10.52526/25792776-24.71.2-402

403

https://doi.org/10.52526/25792776-24.71.2-402


Combining Bispectral Analysis with the Levenberg–Marquardt Algorithm

3. Levenberg–Marquardt algorithm

The Levenberg–Marquardt algorithm (LMA) serves as an optimization technique utilized for addressing
non-linear least-squares problems. It is particularly effective in fitting models to data when the models
exhibit non-linear dependencies on their parameters. The LMA integrates the gradient-descent method
with the Gauss-Newton algorithm, dynamically adjusting between these two methodologies to optimize
both convergence speed and robustness.

Mathematical foundation includes non-linear last-squares problem.

S(θ) =
n∑

i=1

(
yi − f(xi; θ)

)2
(8)

where θ = [θ1, θ2, ..., θp] is a vector of model parameters, f(xi; θ) is a non-linear model function, yi is
observed data, xi is an independent variable. The objective is to find θ that minimizes S(θ).

Using a first-order Taylor expansion, the model f(xi; θ) around an initial estimate θk is approximated
as:

f(xi; θ) = f(xi; θk) +

p∑
j=1

(Jij∆θj) (9)

where ∆θ = θ − θk, Jij =
∂f(xi;θ)

∂θj
is a Jacobian matrix of partial derivatives.

4. Higher Ordered Statistics

The utilization of Higher-Order Statistics (HOS) is essential in the detection of non-Gaussian signals in
radar, sonar, and communication systems. Traditional second-order methods, which are based on mean and
variance, are not effective in capturing non-Gaussian signals such as radar echoes from clutter and impulsive
noise. HOS is instrumental in identifying these challenging signals.

Moreover, higher-order statistics are crucial in system identification, particularly in detecting system
non-linearities. They are effective in identifying mechanical faults, such as cracks or misalignments in
structures.

Source Separation: HOS methods are employed in blind source separation techniques, facilitating the
separation of multiple signal sources in communication systems.

Bispectral and Trispectral Analysis: These analyses are utilized in target detection, non-linear system
identification, and vibration analysis, providing a more robust characterization of signals with inherent
non-linearities (see Figure 1).

Figure 1. Quadratic phase coupling between frequencies.

With consideration of the bispectrum properties for a real-valued stationary discrete process {x(m)(i)}
with finite sample number i = 1, ..., N − 1 and with a finite set of m = 1, 2, ...,M independent realizations
x(m)(i) [Grigoryan et al. (2022)]. The autocorrelation function can be written:
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Rx(k) =
〈N−1∑

i=0

[xm(i)− E][xm(i+ k)− E]
〉
∞

(10)

where k = −N + 1, ..., N − 1 is shift index,
〈
...
〉
∞

denotes ensemble averaging for infinite realization

number, i.e. for M −→ ∞; E =
〈

1
N

∑N−1
i=0 xm(i)

〉
∞

is the mean value; Rx(0) = σ2
x =

〈∑N−1
i=0 [xm(i)−E]2

〉
∞

is the variance.
The autocorrelation function is one variable function. Spectral density Px(p) is defined from the Wiener-

Khinchin theorem using direct Fourier transfer:

Px(p) =
〈 k=+∞∑

k=−∞
Rx(k)exp(−j2πkp)

〉
∞

(11)

or by

Px(p) =
〈
X((m)(p)X

(∗m)(p)
〉
∞

(12)

where p = −N + 1, ..., N − 1 is the frequency sample index; X(m)(p)
〈∑N−1

i=0 x((m)(i)exp(−j2πip)
〉
∞

is

Fourier transform for m-th realization; ∗ is complex conjugation. In equation (3) due to the multiplication
of the complex conjugated functions, the phase information is lost.

Rx(k, l) triple autocorrelation function and Ḃx(p, q) bispectrum are functions of two variables, in opposite
to autocorrelation function and spectral density. Rx(k, l) the triple autocorrelation function is set as:

Rx(k, l) =
〈N−1∑

i=0

[xm(i)− E][xm(i+ k)− E]× [xm(i+ l)− E]
〉
∞

(13)

where k = −N + 1, ..., N1 and l = −N + 1, ..., N − 1 are the independent shift indexes. Unlike spectral
density, Ḃx(p, q) the bispectrum is a complex-valued function of two independent frequencies p and q. It
can be written as a 2-D discrete Fourier transform of triple autocorrelation function:

Ḃx(p, q) =
〈 N−1∑

k=−N+1

N−1∑
l=−N+1

Rx(k, l)exp[−j2π(kp+ lq)]
〉

(14)

or as

Ḃx(p, q) =
〈
X(m)(p)X(m)(q)X∗(m)(p+ q)

〉
∞

〈
X(m)(p)X(m)(q)X∗(m)(−p− q)

〉
∞

(15)

where Ḃx(p, q) = |Ḃx(p, q)|exp[jγx(p, q)], Ḃx(p, q) and λx(p, q) are the magnitude bispectrum (bimagni-
tude) and phase bispectrum (biphase), respectively p = −N + 1, ..., N − 1 and q = −N + 1, ..., N − 1 are
the frequency indices. The power spectrum, from (3), is the ensemble averaging of the multiplication of two
complex conjugated functions of one variable.

From (15), this bispectrum is a composite average of three complex-valued functions corresponding to
different frequency values. As such, spectral density only provides information about amplitude, whereas
bispectrum can provide information about phase and amplitude. For one of the main properties, joint phase
information storage [Sivolenko et al. (2019b), Peloso & Pietroni (2013), Muthuswamy et al. (1999)], we use
bispectral estimation.

5. Main Results

In various scientific disciplines, including astronomy, the complex interactions between celestial phe-
nomena frequently exhibit non-linear characteristics in observational data. Two significant methodolo-
gies—bispectral analysis and the Levenberg–Marquardt algorithm (LMA)—provide distinct approaches for
identifying and characterizing these non-linearities.

This article accentuates their comparative effectiveness, specifically highlighting scenarios where bispec-
tral analysis encounters limitations (see Fig. 2) and where LMA demonstrates superior performance in
detecting Gaussian signals (see Fig. 3).
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Table 1. Aspect comparision
Aspect Bispectral Analysis Levenberg–Marquardt Algorithm

Signal Type Periodic, harmonic signals Any signal with
a defined model structure

Gaussian Signals Ineffective (blind, as in Fig. 1) Effective (detected in Fig. 2)

Noise Sensitivity High (struggles with low SNR) Moderate (handles
noise with good models)

Model Dependence No explicit model required Requires a well-defined
parametric model

Computational Efficiency Faster (analyzes frequency relationships) Requires a well-defined
parametric model

Figure 2. Bispectral analysis of Gaussian signals.

Bispectral Strengths:

• Bispectral analysis is effective for identifying phase coupling and non-linear interactions where specific
harmonics interact

• It excels in detecting non-linearities in structured and periodic signals with clear frequency-phase
relationships.

Bispectral Blind Spots:

• In cases of Gaussian signals or non-periodic, stochastic non-linearities (as shown in fig.2), the bispec-
trum often fails because it relies on coherent phase relationships. Gaussian signals, being inherently
random, do not produce significant bispectral peaks.

• If the signal-to-noise ratio (SNR) is low, bispectral methods can struggle to extract weak non-linear
features buried in noise.
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Figure 3. LMA demonstrates superior performance in detecting Gaussian signals.

LMA Strengths:

• LMA, as an iterative optimization tool, can recover non-linear signal parameters even when the bis-
pectrum is ineffective. For instance, Gaussian signals, which appear featureless in bispectral analysis,
can still be modeled if a proper parametric model is assumed.

• The LMA can adapt to non-periodic or stochastic non-linearities by fitting a model to data, as illus-
trated in Fig.3.

• The algorithm’s dynamic damping ensures convergence even for highly non-linear problems.

LMA Limitations:

• LMA requires a good initial guess and a well-defined model structure. Without an approximate
understanding of the underlying system, the algorithm may converge to a local minimum or fail to
provide meaningful results.

• Computationally more expensive compared to the bispectrum, as it involves iterative Jacobian eval-
uations and matrix inversions. Additionally, the article presents partial code implementations to
elucidate these methodologies (see Fig.4.).

6. Conclusion

A comprehensive comparative analysis of bispectral analysis and the Levenberg–Marquardt algorithm
elucidates their respective strengths as well as their complementary capabilities in the realm of signal pro-
cessing. Bispectral analysis is particularly adept at identifying phase-coupled harmonic nonlinearities, which
are critical for understanding certain signal characteristics. However, it encounters limitations when tasked
with detecting stochastic or Gaussian signals, rendering it less effective in scenarios where such signals are
prominent.

In contrast, the Levenberg–Marquardt algorithm is renowned for its robustness and versatility, excelling
in the modeling of a wide spectrum of nonlinearities. This algorithm is particularly valuable as it can
effectively address complexities that remain undetected by bispectral analysis. By leveraging the strengths
of both methodologies, researchers and practitioners can establish a more holistic analytical framework. This
integration not only enhances the capability to process and interpret nonlinear signals but also contributes
significantly to advancements in fields such as astronomy and various scientific disciplines where nuanced
signal characteristics are pivotal.

Ultimately, the combination of bispectral analysis and the Levenberg–Marquardt algorithm presents
an enriched toolkit that empowers researchers to undertake comprehensive analyses of nonlinear signals,
thereby fostering deeper insights and facilitating progress in their respective fields.
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Figure 4. Implemented code in LabVIEW .
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