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Abstract

We present the deep learning approach for the determination of morphological types of galaxies.
We demonstrate the method’s performance with the redshift-limited (z < 0.1) training sample of
6 163 galaxies from the SDSS DR9. We exploited the deep convolutional neural network classifiers
such as InceptionV3, DenseNet121, and MobileNetV2 to process images of SDSS-galaxies (100x100
pixels, 25 arcsec in each axis in size) using g, r, i filters as R − G − B channels to create images.
We provided the data augmentation (horizontal and vertical flips, random shifts on ±10 pixels,
and rotations) randomly applied to the set of images during learning, which helped increase the
classifier’s generalization ability. Also, two different loss functions, MAE and Lovasz-Softmax, were
applied to each classifier. The target sample galaxies were classified into two morphological types
(late and early) trained on the images of galaxies from the sample. It turned out that the deep
convolutional neural networks InceptionV3 and DenseNet121 with MAE-loss function show the
best result attaining 93.3% accuracy.
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1. Introduction

The morphological classification of galaxies is one of the critical elements in studying the evolution
of the Universe for astrophysics and observational cosmology. The most accurate method of classifying
galaxies used so far by astronomers is visual classification. In 1654, Giovanni Battista Hodierna
published the work “On the taxonomy of the world of comets and magnificent objects in the sky”, in
which one of the parts was devoted to the classification of nebulae into three classes: “Luminosae”,
“Nebulosae” and “Occultae” (Fodera-Serio et al. (1985)). A century later, Charles Messier compiled
a larger list of nebulae, star clusters, and galaxies without classifying them. After confirming that
some nebulae are “outer” galaxies, Edwin Hubble proposed his famous morphological classification of
galaxies into three classes: elliptical, spiral, and irregular (Hubble (1926)). This classification is still
used with many refinements made by Gerard Henri de Vaucouleurs and other scientists. However, a
main drawback of visual classification (human labeling) is an involvement of many labor from highly
qualified specialists or, in some cases, amateur astronomers (for example, the Galaxy Zoo project1).
Current or future galaxy surveys such as SDSS (Blanton et al., 2017, Eisenstein et al., 2011), LSST
(Ivezić et al., 2017), DES (Dark Energy Survey Collaboration et al., 2016), KiDS (de Jong et al., 2017),
etc. can detect hundreds of millions of galaxies that cannot be manually classified. This increases
interest in the alternative approach in artificial intelligence, such as various recently developed machine
learning methods for automated morphological classification of galaxies in optical, radio, and other
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spectral ranges. There is probably not a day without an article about machine learning techniques for
different astrophysical tasks.

In previous our research with traditional machine learning methods, we have discovered relation-
ships between the photometric parameters of galaxies and their morphological types, which give the
opportunity to classify galaxies without preliminary visual inspection (Dobrycheva & Melnyk, 2012,
Dobrycheva et al., 2015, Melnyk et al., 2012). As a result, we conducted ternary and binary morpho-
logical classification of the low-redshift SDSS galaxies. We demonstrated (Dobrycheva et al., 2017,
2018, Vasylenko et al., 2019, Vavilova et al., 2020) that the Random Forest (RF) and Support Vector
Machine (SVM) with Scikit-learn machine learning in Python provide the highest accuracy for the
binary galaxy morphological classification: 96.4% correctly classified (96.1% early E and 96.9% late L
types) and 95.5% correctly classified (96.7% early E and 92.8% late L types), respectively. We had a
good experience with such methods as the decision-tree-based classifiers likely CatBoost for searching
new gravitationally lensed quasars (Khramtsov et al., 2019b), generative adversarial networks (GAN)
for restoring the Zone of Avoidance (Vavilova et al., 2018), machine-learning regression techniques (lin-
ear, polynomial, k-nearest neighbors, gradient boosting, and artificial neural network regression) for
inference of moduli distances to galaxies (Elyiv et al., 2020), Xception Convolutional Neural Network
(CNN) model to classify morphological galaxy inner features (?).

It allowed us to reveal problem points of methods, to build the prediction model, and to surely
apply the supervised learning technique as deep convolutional neural networks for the automated
morphological galaxy classification, which will be described in this article.

2. Sample

Target sample. We emphasize that, unlike most other authors, we paid attention to the visual
cleaning of the dataset (see details (Dobrycheva, 2013)). Our target dataset contains of N = 316 0312

SDSS-galaxies from DR9 (Ahn et al., 2012) with unknown morphological types at redshift z < 0.1 with
the absolute stellar magnitudes −24m < Mr < −13m limits mr < 17.7 by visual stellar magnitude in
r-band to avoid typical statistical errors in spectroscopic flux.

Training sample. Any supervised machine learning method (SMLM) needs a representative
training sample because SMLM is searching for a relationship between input and output data. The
accuracy of SMLM strictly depends on the training sample’s quality. Our first step before applying
the machine learning methods was to compose a training sample (Fig.1)

With this aim, we made visual binary morphological classification of 6 163 galaxies (∼ 2 % of the
target sample), which were randomly selected at different redshifts and with different luminosity: early
type galaxies E – from ellipticals to lenticulars (N = 4 147); late type galaxies L – from S0a − Sdm
to irregular Im/BCG galaxies (N = 2 016) in slightly modified de Vaucouleurs classification.

Parameters for Deep Learning (DL) methods. We processed the SDSS-galaxy’s images that
are 100x100 pixels, or 25 arcsec in each axis in size. We used g, r, i filters with SDSS as R −G− B
channels to create images.

3. Methods and Results

We analyzed the classification quality of different Deep Convolutional Neural Networks models for
the binary morphological classification of galaxies (spiral and elliptical) to reveal their problems. The
non-triviality and relevance of this task is that for the training of models, we use a relatively small
sample of images (6 163 images of SDSS-galaxies), which imposes restrictions on the assessment of
the quality of models and their further operation. This challenge provoked us to use several well-
known techniques: image augmentation (horizontal and vertical flips, random shifts on ±10 pixels,
and rotations within 180 degrees), splitting training data into training and test samples. As the
neural network models, we used InceptionV3, DenseNet121, and MobileNetV2. To train the models,
we divided the input sample of 6 163 objects into two parts: ∼ 90 % (5 545 images) as a training and

2http://leda.univ-lyon1.fr/fG.cgi?n=hlstatistics&a=htab&z=d&sql= iref=52204
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Figure 1. (Top figure) Representative galaxy sample with rival probabilities; top row: Ellipticals
with DL, Spirals with SVM; bottom row: Ellipticals with SVM, Spirals with DL. (Bottom figure)
Representative galaxy sample with reliable DL classification; top row: Ellipticals; bottom row: Spirals
(Khramtsov et al., 2019a)

∼ 10 % (618 images) as a validation. However, to better control the models’ generalizing capabilities,
we conducted a 5-fold cross-validation, in which a sample of 5 545 images were divided into 5 parts.
We drove five exercises of each of the models on 4/5 of all 5 545 images (4 436 images) and tested on
1/5 of all 5 545 images (1 109 images), where different test samples were used during each training.
As a result, we obtained five implementations trained on different subsets of 5 545 images for each of
the models. The resulting classification algorithm for each model is the averaged one of the predicted
classes by all five implementations.

We showed that the highest accuracy in the validation sample was attained with InceptionV3
(> 92.0 %) and DenseNet model (> 93.0 %), where the accuracy depends on the loss function. Table
1 shows that Mean Absolute Error (MAE) is the best for the InceptionV3 and DenseNet models
as a loss function. One can see that, in this case, the accuracy of the test and training samples is
practically coincided, and we can say that our models are not overfitted. We also tried to develop
an unsupervised learning neural network representing each image as only a few dozen numbers. We
hoped that galaxies of different types would be in different areas of the created space, but this method
was not implemented with such high classification accuracy as the conventional Deep Convolutional
Neural Networks.

DenseNet121. This neural network’s feature is that each layer is connected to each subsequent
layer, which allows to learn deeper and more accurate models. Before transmission, the features are not
summed but combined into one tensor (channel-wise concatenation). Also, the number of parameters
of this network is much smaller than that of networks with the same accuracy, which increases the
classifier’s accuracy on small data sets relative to other networks (Huang et al. (2017)).

InceptionV3. The fundamental difference from other networks lies in several features. Neighbor-
ing pixels are often correlated so you can reduce the dimension before the convolution without losing
information, so the 5x5 convolution is replaced by two consecutive non-linearly connected 3x3, which
in turn are collapsed into a vector 1xn. Besides, a hybrid scheme is used, namely, the pool operation
is applied to half of the parameters and the convolution to the other. This operation will compress the
previous layer without reducing the number of features, some convolutions will be processed with half
the resolution but with fewer features. The network will learn to share, which requires maintaining
the resolution, and for which the pool is enough. Also, this network feature is that the last layers
become wider after reducing the dimension, which allows the network to increase the effectiveness of
training in the place where training is the most effective (Szegedy et al. (2015)).

MobileNetV2. The peculiarity of this network is that it does not use max pooling-layers. Instead,
it uses a convolution with a coke equal to two. Hyperparameters for MobileNet are the width factor
and the depth factor. The width factor is responsible for the number of channels in each layer, and
the depth factor is responsible for the size of the tensors fed to the input. Varying these parameters,
we choose the optimal network size and image processing depth to optimize the ratio of execution
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Table 1. Accuracy of the classification depending on the type of neural network and loss function
Model Loss Accuracy on the Accuracy of 5-fold Accuracy on the

function validation sample cross-validation training sample
(618 images) on the training sample (6 163 images)

(6 163 images)

InceptionV3 MAE 93.3 % 94.2 % 94.3 %
InceptionV3 Lovasz− 92.2 % 93.9 % 94.2 %

Softmax
MobileNetV2 MAE 89.7 % 89.9 % 89.2 %
MobileNetV2 Lovasz− 89.9 % 90.4 % 90.8 %

Softmax
DenseNet121 MAE 93.3 % 94.2 % 94.3 %
DenseNet121 Lovasz− 93.0 % 94.1 % 94.0 %

Softmax

time, resources spent, and the classifier’s obtained accuracy (Howard et al. (2017)).
Loss function determines the model’s ability to predict and quantifies the difference between the

calculated and true values for a data sample. This function is used to maximize the quality of the
classifier by minimizing the value of this function. We have anticipated that our model may contain
emissions (damaged images). By this reason we chosen the mean absolute error (MAE) as one of the
variants of the loss function. We remind that MAE is the sum of the absolute differences between
our target and predicted values. It copes well with the averaging of results and is less sensitive to
emissions. Its disadvantage is that this function’s gradient remains constant even for its small values
and it does not differentiate at zero. Additionally, we used the Lovasz-Softmax loss function, which
showed good results for classifying segmented images (Berman et al. (2018)).

4. Conclusion

In this way, we determined the data classification algorithm, the model training strategy, and
the models themselves that should be used to attain the highest accuracy. Also, for other models
(DenseNet, Inception), we used several other image pre-processing methods (image shift by several
pixels, logarithm of pixel intensity, etc.), which improve the resulting accuracy. With a given dataset,
we also used the state-of-art deep neural networks such as CapsNet, InceptionResNetV2, VGG16, and
VGG19, but they don’t give a good result.

We conclude that Convolutional neural networks InceptionV3 and DenseNet121 with the MAE-
loss function show the best result providing 93.3% accuracy for the binary morphological classification
of the low-redshift SDSS-galaxies based on their images.
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