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Abstract

Models of static spherically-symmetric stellar configurations are
discussed within the framework of the Bimetric scalar-tensor theory
of gravity. The latter, in addition to the metric tensor and the scalar
field, contains a background metric tensor as an absolute variable of
the theory. The simplest variant of the theory with a constant coupling
parameter and with a zero cosmological function is considered. The
analysis includes both the white dwarfs and neutron stars. It is shown
that, depending on the value of the theory parameter, the correspond-
ing masses can be notably larger than those in general relativity.
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1. Introduction

The scalar-tensor theories are among the most popular alternatives of
general relativity (for reviews see Will (2018), Fujii & Maeda (2009)). The
gravitational sector in this theories, in addition to the metric tensor contains
a scalar field, usually referred as a gravitational scalar. The recent interest
to scalar-tensor theories is related to the fact that a scalar field directly inter-
acting with curvature of the spacetime appear in a number of fundamental
theories. The latter include Kaluza-Klein type theories with extra spatial di-
mensions, supergravity and superstring theories. The scalar fields also play
an important role in recent cosmology. In particular, in a large number of
inflationary models the accelerated expansion of the Universe at early stages
of the evolution is driven by the stress-energy of a scalar field (inflaton). In
a class of cosmological models, scalar fields are responsible for accelerated
expansion of the Universe at recent epoch. The scalar-tensor theories may
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also provide alternative models for dark matter and dark energy. Another
class of modified gravity theories, the so-called f(R)-gravities (for recent
reviews in various types of modified gravity theories see Will (2018), Clifton
et al. (2012), Schmidt-May & von Strauss (2016)), are presented in the form
of a scalar-tensor theory with the potential for a scalar field determined by
the f(R) function in the gravitational Lagrangian density.

The bimetric (or tensor-tensor) theories present another class of theories
alternative to general relativity. In these theories the additional field is a
second rank tensor. The latter can be either dynamical or non-dynamical
(absolute). Among the first examples for bimetric theories is the Rosen
theory. Recent activity in considering theories of gravity with two metric
tensors is partially related to non-linear extensions of Fierz-Pauli massive
gravity (for a review see Hinterbichler (2012)). In these models the second
tensor is required for the construction of non-linear generalizations of the
Fierz-Pauli mass term.

In Grigorian & Saharian (1990a, 1990b, 1990c, 1991) we have suggested
a variant of scalar-tensor theories involving a second non-dynamical metric
tensor: bimetric scalar-tensor theory (BSTT). The BSTT belongs to the
class of

metric theories of gravity and consequently obeys the Einstein equiva-
lence principle (for a general review see Will (2018)). Here we consider a
static, spherically symmetric configuration of gravitating masses within the
framework of BSTT. In a variant of the theory with a constant coupling
function and zero cosmological function the corresponding solution outside
the matter distribution (external solution) has been found in Grigorian &
Saharian (1990b). The results for a numerical integration of the internal
equations were presented in Grigorian & Saharian (1990b) and Grigorian et
al. (2018) and Avakian et al. (1991) for some special cases of the equation
of state for gravitating masses.

2. BSTT action and the field equations

The BSTT belongs to the class of metric theories of gravity with a pre-
ferred geometry. In addition to the curved metric tensor gik it contains
a dynamical scalar field ϕ(x) and a nondynamical metric γik. The latter
is the absolute variable of the theory. We will denote by Γlik and Γ̂lik the
Cristoffel symbols for the metrics gik and γik, respectively. Though these
quantities are not tensors, their difference, Γ̄lik = Γlik− Γ̂lik, is a tensor (affine
deformation tensor). It can be written as

Γ̄lik =
1

2
glm

(
∇̂igmk + ∇̂kgmi − ∇̂mgik

)
, (1)

where ∇̂i stands for the covariant derivative with respect to the metric γik.
As a consequence of the latter property, in theories with two metrics it is

L.Sh.Grigorian et al. 328



Superdense stellar configurations in the Bimetric scalar-tensor theory of gravity

possible to construct a Lagrangian density for the gravitational field from
the metric tensor and its first derivatives. In the bimetric formulation of
general relativity, up to a coefficient, the corresponding scalar is given by

Λg = gik
(

Γ̄linΓ̄nkl − Γ̄likΓ̄
n
nl

)
. (2)

This scalar differs from the Ricci scalar R for the metric gik by a total
divergence, R = Λg +∇lw̄l with w̄l = gikΓ̄lik − glkΓ̄iik. As a consequence of
the latter property, the field equations obtained from (2) coincide with the
Einstein equations for the gravitational field in general relativity. By the
standard variational procedure with respect to the background metric γik,
from (2) we can construct the energy-momentum tensor for the gravitational
field (see, for example, Babak & Grishchuk (1999)).

The BSTT is constructed on the base of general relativity in bimetric
formulation in a way similar to that the usual scalar-tensor theories are
constructed from general relativity with the Lagrangian density proportional
to the Ricci scalar. The action of the theory, in its general form, reads (here
and below we use the units c = 1)

S =

∫
d4x
√
−g
[
−ϕ

2
Λg +

ζ(ϕ)

2ϕ
gik∂iϕ∂kϕ− Λ(ϕ) + Lm(gik, qa,∇lqa)

]
,

(3)
where ζ(ϕ) is a dimensionless coupling function, Λ(ϕ) is the cosmological
function, Lm is the Lagrangian density for nongravitational fields collec-
tively denoted by qa, ∇l is the covariant derivative operator with respect to
the metric gik. The simplest variant of the theory corresponds to a constant
coupling function ζ(ϕ) = ζ = const and to the zero cosmological function
Λ(ϕ) = 0. In the nongravitational part of the Lagrangian density the gravi-
tational field enters through the metric tensor gik only and, hence, the theory
obeys the Einstein equivalence principle. In usual scalar-tensor theories in-
stead of Λg in (3) the scalar curvature R for the metric tensor gik appears.
Though the difference R−Λg is a total derivative, because of the spacetime
dependence of ϕ, the field equations following from (3) differ from those for
scalar-tensor theories.

The field equations for the metric tensor and the scalar field, obtained
from (3), have the form

ϕRik + Γ̄lik∂lϕ− Γ̄ll(k∂i)ϕ− ζ(ϕ)∂iϕ∂kϕ/ϕ = Tik − gikT/2− Λ (ϕ) gik,

2ζ (ϕ)∇l∇lϕ+
[
ζ ′ (ϕ)− ζ (ϕ) /ϕ

]
∇lϕ∇lϕ = −ϕ

[
2Λ′ (ϕ) + Λg

]
, (4)

where Tik = (2/
√
−g)δ(

√
−gLm)/δgik is the metric energy-momentum ten-

sor for the nongravitational matter, T = gmnTmn, the prime means the
derivative with respect to the field ϕ and the brackets in the index ex-
pression of the first equation mean the symmetrization with respect to the
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indices included. By using the first equation in (4), the equation for the
scalar field can also be written in the form

∇l
[
2ζ (ϕ)∇lϕ− ϕw̄l

]
− ζ ′ (ϕ)∇lϕ∇lϕ = T + 4Λ (ϕ)− 2ϕΛ′ (ϕ) . (5)

From the equation for the nongravitational matter, δLm/δqa = 0, it follows
that ∇kT ki = 0. Note that, unlike to the usual scalar-tensor theories, in
BSTT the latter equation does not follow from the field equations. This is
a consequence of the presence of nondynamical metric γik. Another con-
sequence is that in BSTT the gravitational field is characterized by the
energy-momentum tensor (Grigorian & Sahakian 1990d, 1994).

The first step to check the validity of the gravitational theory is to con-
sider the Newtonian and post-Newtonian approximations and to compare
the predictions of the theory with the observational data, in particular, for
the gravitational effects in the solar system and in double pulsar systems.
The gravitational effects are expressed in terms of the PPN (parametrized
post-Newtonian) parameters of the theory. Under the condition |ζ(ϕ0)| � v2

the PPN parameters of BSTT coincide with those for general relativity.
Here ϕ = ϕ0 = (8πG)−1 is the value for the gravitational scalar at the
recent stage of the Universe expansion, G is the Newtonian gravitational
constant, v2 ∼ P/ρ (P/ρ ∼ 10−5 in the solar system) is the velocity in a
post-Newtonian system with the pressure P and the energy density ρ. In
particular, in contrast to most other bimetric theories, the PPN parameters
of BSTT do not depend on the cosmological connection coefficients. This is
related to the fact that the background metric γik enters in the action of the
theory through its Cristoffel symbols only. Note that in the Brans-Dicke the-
ory (the simplest variant of scalar-tensor theories with ζ(ϕ) = ζ = const and
Λ (ϕ) = 0) for the post-newtonian parameter γ one has γ = (1 + ζ)/(2 + ζ)
and the observational data within the framework of the solar system strongly
constrain (mainly from Cassini measurements of the Shapiro time delay) the
theory parameter: ζ > 4 ·104. This difference between the two scalar-tensor
theories is related to that in the Brans-Dicke theory the scalar field is sourced
by the scalar curvature R (in the equation for the scalar field, that is the
analog of the second equation in (4), R stands instead of Λg) which is of the
order v2 and, hence, the same for the variations of scalar field. In BSTT,
the scalar field is sourced by Λg which has the order v4 and related to that
the variations of scalar field in post-Newtonian systems are of the order v4

if the theory parameter is not too small (in the variations the parameter ζ
enters in the form 1/ζ (see, for example, (19) below)).

The gravitational waves in BSTT have been analyzed in Saharian (1993a,
1993b). In this theory, the velocity of weak perturbations of the curved met-
ric coincides with the speed of light in the vacuum. In a variant of the theory
with zero cosmological function, the same is the case for the scalar field. Sim-
ilar to general relativity, the BSTT is of class N2 in E(2) classification of
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the gravitational waves polarization of metric theories of gravity. In partic-
ular, this means that in BSTT the weak perturbations for metric and scalar
field propagate independently. In usual scalar-tensor theories (for example,
in Brans-Dicke theory) the equation for weak perturbations of the metric
tensor contain a contribution from the scalar field as well (see, for example,
Will (2018)). As a consequence of that the scalar and metric perturbations
are mixed and the theory belongs to the class N3. Related to the presence
of a scalar degree of freedom, in addition to the standard quadrupole gravi-
tational radiation, in BSTT there is also dipole gravitational radiation. The
corresponding Peters-Mathews parameters for the radiation from a grav-
itating system with small velocities and nonrelativistic internal structure
have been determined in Saharian (1993a). The corresponding formalism
for a system of gravitating bodies with small velocities but with relativistic
internal structure (modified Einstein-Infeld-Hoffmann formalism) has been
considered in Saharian (1993b).

3. Spherically symmetric static configurations

Consider a static spherically symmetric stellar configuration described
by the energy-momentum tensor

Tik = (ρ+ P )uiuk − Pgik. (6)

Here ρ and P are the energy density and the pressure of the matter and ui
is the corresponding four-velocity. In the coordinate system (t, r, θ, φ) with
the background metric

γik = diag(1,−1,−r2,−r2 sin2 θ), (7)

the curved metric tensor is presented as

gik = diag(eν ,−eλ,−r2eµ,−r2eµ sin2 θ), (8)

where ν(r), λ(r), µ(r) are functions of the radial coordinate tending to zero
at large distances from the configuration. The scalar field depends on the
radial coordinate alone: ϕ = ϕ(r). We will consider the variant of the theory
with ζ(ϕ) = ζ = const and Λ(ϕ) = 0.

From the equation (4), for 0 6 r <∞ we get(
1− eλ−µ

)[
ϕ′′ + ϕ′

(
2

r
+
ν ′ + λ′

2

)]
= ϕ′

(
λ′ − µ′

)
, (9)

where the prime stands for the derivative with respect to r. The integration
of this equation leads to the result(

eµ−λ − 1
)
r2ϕ′e(ν+λ)/2 = const. (10)
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Assuming that ϕ′(0) is finite from here we find µ(r) = λ(r). With this
relation, the spatial part of the metric tensor (8) is conformally flat (this
corresponds to isotropic coordinates in general relativity). Introducing the
notation z = (ν + λ)/2 and the functions

M(r) = 4π

∫ r

0
dr r2 (ρ+ 3P ) e3z−ν , β(r) = 4π

∫ r

0
dr r2Pe3z−ν , (11)

the remaining equations are presented in the form

ν ′ =
M(r)e−z

4πr2ϕ
, ζ

ϕ′

ϕ
+ 2z′ =

3β(r)e−z

4πr2ϕ
,

P ′ = −ν
′

2
(ρ+ P ) , z′2 +

2

r
z′ − ν ′2

4
− ζ

2

(
ϕ′

ϕ

)2

=
P

ϕ
e2z−ν , (12)

In addition, the equation of state ρ = ρ(P ) should be given. For nongrav-
itational sources obeying the strong energy condition one has ρ + 3P > 0
and the function ν(r) is monotonically increasing.

Let us denote by r1 the radius of the configuration. Then, in the region
r > r1 one has ρ = 0 = P . In this region M(r) = M(r1) ≡ M , β(r) =
β(r1) ≡ β and ϕ(r) → ϕ0 = 1/(8πG) for r → ∞. The latter condition
is required to ensure the limiting transition to the Newtonian gravity for
weak fields. Note that the Tolmen formula for the mass M = M(r1) of the
configuration, obtained in general relativity, is valid in BSTT as well (see
Avakian et al. (1991)). In the case ζ 6= 2 the corresponding solution for the
function ν = ν(r) is given by

eν = exp

[
1√
a

(
2arctan

2l − α/ζ√
a

− π
)]

, (13)

for a > 0 and by

eν =

∣∣∣∣2l − α/ζ −√−a2l − α/ζ +
√
−a

∣∣∣∣
1√
−a
, (14)

for a 6 0. Here l = r/rg, rg = 2GM , and

α =
12π

M

∫ r1

0
dr r2Pe3z−ν , a =

1− α2

2ζ
− 1

4
. (15)

For the remaining metric component and the scalar field we get the
expressions

eλ =

∣∣∣∣ 4l2

(2l − α/ζ)2 + a

∣∣∣∣
2ζ
2−ζ

exp

[
ζ + 2 (α− 1)

2− ζ
ν

]
,

ϕ

ϕ0
=

∣∣∣∣ 4l2

(2l − α/ζ)2 + a

∣∣∣∣
2
ζ−2

exp

(
αν

ζ − 2

)
. (16)
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As seen, the external solution, in addition to the mass M , is determined by
the parameter α. In the special case ζ = 2 the solution is specified to

eν = |1− α/2l|2/α , eλ = |1− α/2l|(1−1/α)2 exp

(
1 + 1/α

2l

)
,

ϕ

ϕ0
= |1− α/2l|

1
2

(1−1/α)2 exp

(
−1 + 1/α

4l

)
. (17)

Under the condition −ζ/2 6 α2 < 1 − ζ/2 the external solution is regular
for all r1. For the values of the parameter α outside this region the external
solution is singular at

l = lc =
1

2

(
α

ζ
+

√
1

4
− 1− α2

2ζ

)
,

if r1 < lcrg. In the limit ζ → ∞ one has a = −1/4 and the solutions (14),
(16) reduce to the Schwarzschild solution in general relativity in isotropic
coordinates:

eν →
(
l − 1/4

l + 1/4

)2

, eλ →
(

1 +
1

4l

)4

, ϕ→ ϕ0. (18)

In these coordinates the horizon corresponds to the spherical surface r =
rg/4.

At large distances from the spherically symmetric configuration one has

eν ≈ 1− rg
r

+
1− α/ζ

2

(rg
r

)2
, eν ≈ 1 +

rg
r
,
ϕ

ϕ0
≈ 1− αrg

ζr
. (19)

Similar to the post-Newtonian considerations, in the expansion for the g00

component of the metric tensor we have also kept the next-to-leading correc-
tion. As seen, the theory parameter enters into the corrections in the form
of the ratio α/ζ. For α� ζ (this is the case for nonrelativistic sources and
for ζ & 1) the variation in the scalar field is much smaller than that for the
metric tensor components. Note that in the solar system α . 5 · 10−6. For
this type of matter sources one has lc ≈ (1/4)

√
1− 2/ζ and the spherical

surface l = lc is inside the Schwarzschild horizon in general relativity.

4. Superdense stellar configurations

In this section we consider models of superdense configurations based on
the numerical integration of the equations (12). It is convenient to use the
pressure as an independent variable and to consider the equation of state
of the form ρ = ρ(P ). For a given value of the central pressure P (0), the
quantities ν(0), λ(0), ϕ(0) and the mass M are determined by the matching
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conditions for the external and internal solutions on the surface of the grav-
itating body r = r1, where P (r1) = 0. Figure 1 presents the dependence of
the mass (in units of the solar mass M�) of a superdense configuration as
a function of P (0) for different values of the theory parameter ζ (numbers
near the curves). In the numerical integration we have used the equation
of state from Sahakian (1974), Grigorian (1983), and Sahakian (1995). The
curves with ζ =∞ correspond to configurations in general relativity.
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-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0

1

2

3

4

5

arctan [lgP33(0)]

M
/M

⊙

Figure 1: The mass of a superdense star as a function of the central pressure
P (0). The numbers near the curves correspond to the values of the BSTT
parameter ζ and P33 = P/1033erg · cm−3. The curve ζ =∞ corresponds to
configurations in general relativity.

In general relativity, the configurations corresponding to the monotoni-
cally increasing segment on the left of the first local maximum correspond
to white dwarfs. The monotonically increasing segment between the first
and second local maxima corresponds to configurations which are unstable
against radial perturbations. The monotonically increasing segment between
the second and third local maxima corresponds to neutron stars. Note that
in BSTT the issue of stability of the static configurations requires an addi-
tional investigation. As seen from the graphs, depending on the value of the
theory parameter ζ, in BSTT the masses of the corresponding configurations
for a fixed value of the pressure at the center can be essentially larger com-
pared with the corresponding values in general relativity. For large values
of the parameter, ζ � 1, the curves in BSTT and in general relativity are
practically indistinguishable. Note that the study of neutron star masses,
presently has attracted a considerable interest both in the fields of theory
and observations (see, for instance, Ozel & Freire (2016), Horvath et al.
(2017)). This, in particular, was motivated by the observation of neutron
stars with masses near 2M�.
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In addition to the mass of the configuration, the external geometry
is determined by β ≡ β(r1). In terms of this parameter one has α =
3β/M . In figure 2 we have plotted the ratio β/M� as a function of P (0)
for ζ = 0.1, 0.4,∞. For configurations corresponding to white dwarfs one
has β/M� � 1. The numerical analysis shows that the difference of the
external solution from that in general relativity with the same value of the
mass is rather small. The numerical integration shows that for ζ > 2 the
parameters of the configurations in BSTT are very close to those for general
relativity.
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Figure 2: The dependence of the ratio β/M� on the central pressure. The
numbers near the curves correspond to the values of the BSTT parameter
ζ.

Figure 3 presents the radius of the configuration versus the central pres-
sure for different values of the parameter ζ (numbers near the curves). The
graphs show that, depending on the value of ζ, the radii of the configurations
may notably exceed the corresponding values in general relativity.

5. Conclusion

We have investigated static spherically symmetric configurations of grav-
itating masses in the simplest version of BSTT with a constant coupling
function and with the zero cosmological function. The constraints on the
coupling constant, obtained from the observations within the framework
of the post-Newtonian approximation, are essentially weaker than those in
usual scalar-tensor theories (Brans-Dicke theory). The corresponding exter-
nal solution is given by (13), (14) and (16). In addition to the mass, the
solution depends on the parameter α that is determined in terms of the in-
tegral involving the pressure of the gravitating matter. For the integration
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Figure 3: The radius of a superdense star versus the central pressure. The
numbers near the curves correspond to the values of the parameter ζ. The
curve ζ =∞ corresponds to the results in general relativity.

of the field equations inside the configuration we have used the equation of
state from Sahakian (1974, 1995) and Grigorian & Sahakian (1983). The
corresponding numerical data are presented in figures 1-3. These results
show that, for strong gravitational fields, depending on the value of the
BSTT parameter ζ the characteristics of the superdense configurations may
essentially differ from those in general relativity. Note that we have consid-
ered spherically symmetric solutions with variable gravitational scalar.
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