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Abstract

We describe what is essentially a correct solution to the kinematic interpretation of cosmological
redshifts in standard cosmological model. In the framework of `stretching of space´ point of view of
standard cosmological model, we study the `lookforward´ history of expanding universe, subject to
certain rules, in order to define the kinetic recession velocity of luminous source along the observer’s
line-of-sight in unique way, straightforwardly in terms of cosmological redshift. In doing this, we use
an alternative way of separating the spectral shifts into infinitesimally displaced `relative´ spectral
bins between adjacent emitter and absorber consequent on expansion of the universe, measured at
infinitesimally separated space-time points, and sum over them to overcome the ambiguity which
presents the parallel transport of four-velocity of source to an observer in the Robertson-Walker
curved space-time. The crux of our solution - the kinetic recession velocity of comoving astronomical
object, is always subluminal even for large redshifts of order one or more, so that it does not violate
the fundamental physical principle of causality. Our analysis establishes the ubiquitous relationship
of overall cosmological redshift and kinetic recession velocity, which is utterly distinct from a familiar
global Doppler shift formula. A difference of global Doppler velocity and kinetic recession velocity,
for redshifts 0.9 ≤ z ≤ 800, is ≥ 0.072c, where a maximum value, 0.187c, is reached at redshifts
z = 4.5 − 5.1. In particular case of such an implementation along the null geodesic, we show
that the kinetic recession velocity is reduced to a well known global Doppler velocity. We discuss
the implications for the case of a zero-density cosmological model of Milne universe, whereas a
correspondence to the more usual special relativity notion of relative speed retains. In Table 1,
we are summing up kinetic recession velocities of some typical distant astronomical objects with
spectroscopic redshift determinations collected from the literature.

Keywords: galaxies: high-redshift—galaxies: distances and redshifts—cosmology: theory

1. Introduction

A complex study of more distant astronomical objects raises several disturbing questions of the
physical interpretation of cosmological dynamics, see e.g. (Bolós & Klein, 2012, Bunn & Hogg, 2009,
Chodorowski, 2011, Davis & Lineweaver, 2004, Emtsova & Toporensky, 2019, Grøn & Elgarøy, 2007,
Harrison, 1993, 1995, 2000, Kaya, 2011, Klein & Collas, 2010, Klein & Randles, 2011, Liebscher, 2007,
Murdoch, 1977, Narlikar, 1994, Peacock, 1999, 2008, Peebles, 1993, Peebles et al., 1991, Pössel, 2019,
Silverman, 1986, Stuckey, 1992, Whiting, 2004).

The astronomers for decades routinely do not distinguish between the Hubble’s empirical linear
`redshift-distance´ law, cz = HL and the linear `velocity-distance´ law, L̇ = HL, derived later on
theoretical basis, where and throughout the overdot represents differentiation with respect to epoch
synchronous time, t, z is the redshift, L is the proper distance from a galaxy to an observer at epoch
t, and H is the Hubble’s parameter. They express redshifts as if they were radial velocities to convert
cosmological redshifts into velocity. But aside from the observations for relatively nearby galaxies, for
later measurements of more distant objects, with redshifts of order one or more, a special relativity
(SR) Doppler interpretation is neither useful nor adequate. One should, therefore, drop this interpre-
tation in favor of the `stretching of space´ point of view of general relativity (GR) description with a
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dynamical space. Such a concept of `stretching of space´ has by itself no physical content, but it is
merely the choice for analysing phenomena. In accord to it, the peculiar velocity of the object with
respect to the Hubble flow declines in magnitude as the universe expands δv ∝ 1/R(t), where R(t)
is the scale factor, and thus, at t→∞, the peculiar velocity tends to zero leaving the object moving
with the Hubble flow. This immediately has fostered a startling view to think of present day values of
the rate of expansion L̇(t, z) as the so-called `proper´ recession velocity of comoving galaxy of redshift
z away from an observer. We should look very sceptically at any argument which uses or implies the
concept of superluminal `proper´ recession velocity as a real physical velocity, as if the meaning of
that were clear and obvious. Although it is extremely hard to envisage a consistent theory having
such a logical impossibility of superluminal `proper´ recession velocity, this problem stood open for
nearly a century as a startling preoccupation of wide community of astronomers, see e.g. (Davis &
Lineweaver, 2004, Lineweaver & Davis, 2005). There is an important reason to question the validity of
such a description of apparent superluminal growth of the universe, because we inevitably encounter
with a crucial question of ”what is a practical measure of being swept up of galaxy in expanding
universe?”

Our primary interest in this article is rather to focus on the principle issue of how to reconcile
the cosmological interpretation of redshifts with the most natural kinematic interpretation. We try to
impart some knowledge about the physical nature of the kinetic velocity of luminous source along the
observer’s line-of-sight in unique way, straightforwardly in terms of cosmological redshift, in a mostly
non-technical, nevertheless hopefully precise and consistent language. The solutions given in present
article demonstrate its advantage over the specific extant definitions in the cited literature.

• We solve startling difficulties of superluminal `proper´ recession velocities in standard cosmolog-
ical model, which is the principle issue for the physics. This peculiarity deserves careful study,
because it furnishes valuable theoretical clues about the interpretation of kinetic velocity of lu-
minous object relative to observer in GR, a systematic analysis of properties of which happens
to be surprisingly difficult by conventional methods. Avoiding from any mistakes, therefore, we
preferred to work in an infinitesimal domain. The problem of subjecting the four-velocity vector
of the luminous source to parallel transport will not be broached in this paper, though it is
hoped that the present formulation of the theory will facilitate the task. We advocate with so-
called `lookforward´ history of expanding universe, to achieve an unique definition of the kinetic
recession velocity of astronomical object in terms of redshift. At any rate, it is remarkable that
these definitions above completely determine this velocity to always be subluminal even for large
redshifts of order one or more, and thus, it does not violate the fundamental physical principle
of causality. This will help astronomers to derive measurable quantities for further study of the
problems of fundamental physics of early universe.

• We discuss the implications of this approach for two instructive cases: (i) We show that a derived
general solution is reduced to global Doppler shift along null geodesic. (ii) For the limit of a
zero-density cosmological model of Milne universe, a correspondence to the more usual special
relativity notion of relative speed retains.

• We give (App.A) a reappraisal in a deep way of the preliminary attempts of `standard´ kine-
matic interpretation of redshifts as accumulated Doppler-shifts consequent on recession, widely
discussed in literature. Its study is valuable as affording insight into the whole subject. In doing
this, we are not suggesting any doubt about the principle statement. Rather, we doubt the
method of calculations, which as we have shown are in error. Moreover, this statement is a crux
of our derivation of an essentially correct solution to a kinematic interpretation of cosmological
redshifts.

Regarding a generalization, in the original sense of the term, of relative velocity of luminous source
in a general Riemannian space-time, indeed this problem is the most important for GR. It will be
separate topic for an investigation elsewhere.
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With this perspective in sight, we will proceed according to the following structure. To start
with, Section 2 deals with a startling challenge of the superluminal recession velocities. Deriving in
Section 3 the kinetic recession velocity of a distant astronomical object, we reconcile the cosmolog-
ical interpretation of redshift with the correct solution to a kinematic interpretation of redshifts as
accumulated Doppler-shifts. In Subsection 3.1, we show that a general solution is reduced to a global
Doppler shift along the null geodesic. In Section 4, we give a brief outline of a cosmological toy
model of the Friedmann-Robertson-Walker (FRW)-universe for zero-density in the RW coordinates.
Concluding remarks are given in Section 5. A few more technical details in use are deferred to appen-
dices. Appendix A provides a brief critical discussion of some key objectives with the analysis aimed
at clarifying the current situation of the often met preliminary attempts of kinematic interpretation
of redshifts as accumulated Doppler-shifts. This illustrates the problems and also hint at a possible
solution. It was used as a backdrop to explore in Section 3 the kinetic recession velocity. Since many
of the issues discussed in this contribution are conceptual, the observational status of these concepts
is important. In Appendix B, therefore, we calculate the kinetic recession velocities of some typical
distant astronomical objects with spectroscopic redshift determinations collected from the literature,
which are listed in Table 1.

2. The concerns of the superluminal recession velocities

In past decades, the debate about superluminal `proper´ recession velocities was less fettered by
observational evidence for large redshifts, but it gathers support from a breakthrough made in recent
observational efforts, and at present it would require a good deal more ingenuity, which is of immense
significance for the foundation of GR. Today there is no known feasible alternative way to account for
credible explanation of the principle problem of superluminally receding galaxies. Such claims cannot
be accepted as a convincing ones. This belief is suspect, and should be critically re-examined. A
healthy degree of scepticism based on at least three objections is in order:

• The conclusions derived from assertion that the object is moving with the `relative´ velocity,
L̇(t, z), to an observer must be treated with caution. Indeed, the incredibility of such an infer-
ence has been greatly enhanced by the recall that GR provides no a priori definition of `relative´
velocity, because their velocities are vectors at different events. This inability to compare vec-
tors at widely separated space-time events was the fundamental feature of a curved space-time.
Different coordinate reference frames and notions of `relative´ velocity yield different results for
the motion of distant test particles relative to a particular observer. Bolós (2006, 2007), Bolós
& Klein (2012), Bolós et al. (2002), Klein & Collas (2010), Klein & Randles (2011) address the
question of relative velocities in GR. Consequently, three distinct coordinate charts, each with
different notions of simultaneity, are employed by Bolós & Klein (2012) in the calculations of the
four geometrically defined inequivalent concepts of relative velocity: Fermi, kinematic, astromet-
ric, and the spectroscopic relative velocities. These definitions of relative velocities depend on
two different notions of simultaneity: `spacelike simultaneity´ (or `Fermi simultaneity´) (Klein
& Randles, 2011, Walker, 1935) as defined by Fermi coordinates of an observer, and `lightlike
simultaneity´ as defined by optical (or observational) coordinates of an observer (Ellis, 1985).
The Fermi and kinematic relative velocities can be described in terms of the `Fermi simultane-
ity´, according to which events are simultaneous if they lie on the same space slice determined
by Fermi coordinates. Thereby, for an observer following a timelike worldline in Riemannian
space-time, Fermi-Walker coordinates provide a system of locally inertial coordinates. If the
worldline is geodesic, the coordinates are commonly referred to as Fermi or Fermi normal co-
ordinates. Useful feature of Fermi coordinates was that the metric tensor expressed in these
coordinates is Minkowskian to first order near the path of the Fermi observer, with second order
corrections involving only the curvature tensor (Manasse & Misner, 1963). Klein & Randles
(2011) find explicit expressions for the Fermi coordinates for Robertson-Walker (RW) space-
times and show that the Fermi chart for the Fermi observer in non-inflationary RW space-times
is global. However, rigorous results for the radius of a tubular neighborhood of a timelike path
for the domain of Fermi coordinates are not available. The spectroscopic (or barycentric) and
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astrometric relative velocities, which can be derived from spectroscopic and astronomical obser-
vations, mathematically, both rely on the notion of light cone simultaneity. According to the
latter, two events are simultaneous if they both lie on the same past light cone of the central
observer. It is shown that the astrometric relative velocity of a radially receding test particle
cannot be superluminal in any expanding RW space-time. Necessary and sufficient conditions
are given for the existence of superluminal Fermi speeds. Note that for the Hubble velocity, the
proper distance is measured along non geodesic paths, while for the Fermi velocity, the proper
distance is measured along spacelike geodesics. In this respect the Fermi velocity seems to be
more natural, but the Hubble velocity is defined at all space-time points, whereas the Fermi
velocity makes sense only on the Fermi chart of the central observer. Although alluded four
definitions of relative velocities have own physical justifications, all they are subject to many
uncertainties, and the ambiguity still remains.

• What is more, the `proper´ recession velocity, L̇(t, z), referred to in this claim is an unnatural
quantity, because specifically it is the rate of change of the proper distance to the object with
respect to the cosmic time coordinate, as measured at the present cosmic time. It has nothing
to do with the object at all existed in the past. This coordinate velocity is a mere artifact to
discuss, because it refers to events far outside of an observer’s light cone.

• The picture of expanding universe is fully consistent with SR locally and GR globally (Robertson,
1935, Walker, 1936). One may, therefore, consider the large enough distance characteristic of
the universe as a whole only within a theoretical framework capable of dealing with velocities
approaching that of light. Any correctly defined relative velocity should be less than the speed
of light, independent of any distance or time lag. The important reason to question the validity
of a prediction of superluminal recession velocities, which became untenable, is the fact that
it violates the fundamental principle of causality within these frameworks. As Hu et al. (1993)
assert, ”Superluminal expansion might be most naturally defined as that where any two comoving
points eventually lose causal contact.” Let us put aside subtleties of RW-metric of expansion
(or whatever) of curved space, and focus on a clear academic question whether it is allowed
for particle to attain superluminal velocity in this space with the given metric (g), where the
particle always resides on the mass shell:

p2 = gµνp
µpν = m2

0c
4, (1)

provided, pµ(E, c−→p ) are the components of 4-momentum. But the truth is the contrariwise:
situating on the mass shell, the particles cannot attain the velocities exceeding the speed of light
even after making due allowances for bringing one back in time to an epoch when the universe
was very young. A reliable way to see that the prediction of superluminal velocities (recession
or whatever) is in error is the `monad´ formulation of metric theory of GR. The latter is
the mathematical apparatus of physically observable quantities (Cattaneo, 1958, Eckart, 1940,
Leaf, 1951, Pirani, 1962, Zelmanov, 1944, 1976). Monad formalism in the terms of Cartan’s
external calculus is worked out by Massa (1974). In this framework, one chooses a suitable
family of observers based on the definition of `congruence´ of time-like world lines in given
region. Whereas the tangent unit vector τµ (`monad´) of `congruence´ time-like world line is
τµ ≡ uµ = dxµ/ds, incorporated with the normalization condition τµτµ = τµτνgµν = 1. The
metric tensor can be written in the form gµν = τµτν−hµν , where hµν is the metric tensor of local
3D spatial section of an observer orthogonal to unit vector τµ: τµhµν = τµhνµ = τµh

µ
ν = τµh

µ
ν =

τµh
µν = τµ(τµτν−gµν) = 0. Then, instead of an arbitrary unobservable local displacement dxµ,

usually, the observable standards of spatial, d̃xν = −hνµdxµ, and time, dτ = τµdx
µ, intervals

can be introduced for whatever metric, so that the temporal and spatial components of tensors
are clearly separated. Going to a new time coordinate, τ , one sets the potentials to zero at
the world-point one is considering. The line element should be ds = cdτ

√
1− v2/c2, where

v2 = hµνv
µvν , and vµ = −hµν (dxν/dτ) are the spacial components of particle velocity, so that

the 4-dimensional speeds can be expressed through 3-dimensional, uµ = (τµ+vµ/c)/
√

1− v2/c2.
The `congruence´ of time-like world lines of the reference frame are characterized by four scalars,
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subject to certain rules (Vladimirov, 1982), respectively: (i) the `first curvature´, R1, defined
by relation R2

1 = −FµFµ, where Fµ is the chr.inv.-vector of the `acceleration of the instrument
of reference frame´ (`gravitational inertial force´), (ii) `stretching´, ε, defined as ε = −(1/2)D,
where Dµν is the chr.inv.-tensor of the `velocities of deformation of space´, (iii) the `rotation´, Ω,
defined by relation Ω2 = (1/2)AµνA

µν , where Aµν is the chr.inv.-tensor of the `angular velocity
of the rotation of space´ due to its non-holonomity (the non-orthogonality of the time lines to the
spatial section), and (iiii) `shear´, σ, of congruence defined as σ2 = (1/2)(DµνD

µν − ε2/2). The
`monad´ method is most effective in special systems of coordinates, so-called `chronometric´
(τ i = dxi/ds) = 0, chosen so that the congruence of coordinate lines x0 (xi = const) coincides
with the congruence of time-like world lines of the reference system τ . Solving the normalization
condition τµτνgµν = 1 the `monad´ is calibrated τµ = gµ0 /

√
g00. The condition of coincidence

of the congruence τ and xi = const defines a whole class of `chronometric´ coordinate systems
linked to each other by special ”chronometric” coordinate transformations, which are found from
condition τ i = 0 in all chronometric coordinate systems. The physically observable (projected)
quantities are invariant under ”chronometric” coordinate transformations, and called 3-tensors
or ”chronometric invariants” (chr.inv.), which are invariant in the spatial section of the observer.
So that the dispersion relation (1) can be recast into the form

p2 = E2 − c2−→p 2 = E2 − c2hµνp
µpν = m2

0c
4, (2)

provided, pµ = −m0ch
µ
α(dxα/ds) = mvµ are the components of chr.inv.-vector of 3-momentum,

and m = m0cταdx
α/ds = m0/

√
1− v2/c2 is the chr.inv.-invariant of moving (relativistic) par-

ticle dynamical mass. In no sense, therefore, can GR be said to allow for particle to attain
superluminal velocity, and hence the vacuum value of a velocity of light is the universal maxi-
mum attainable velocity of a material body found in this space regardless of coordinate reference
frame. Thus, the `monad´ formulation of GR ruptures once and for all the claim of separation
between two more distant objects to increase faster than the speed of light as it has insufficient
dimensions. The above said appears to provide a new perspective to have met the challenge
of superluminal recession velocities, which the conventional scenario of expanding universe of
standard cosmological model presents. In some instances, the distant astronomical objects are
observed to exhibit redshifts in excess of unity (earlier epochs), thus, only a consistent theory
would fill the void to tackle the key problems of a dynamics of such objects.

3. The kinetic recession velocity of comoving astronomical object in
RW space-time

In the framework of standard cosmological model, one assumes that the universe is populated with
comoving observers. In the homogeneous, isotropic universe comoving observers are in freefall, and
obey Wayl’s postulate: their all worldlines form a 3-bundle of non-intersecting geodesics orthogonal to
a series of spacelike hypersurfaces, called comoving hypersurfaces. In case of expansion, all worldlines
are intersecting only at one singular point. The clocks of comoving observers, therefore, can be
synchronized once and for all. Let the proper time, t, of comoving observers be the temporal measure.
Suppose R(t) is the scale factor in expanding homogenous and isotropic universe. One considers in
the so-called cosmological rest frame a light that travels from a galaxy to a distant observer, both of
whom are at rest in comoving coordinates. As the universe expands, the wavelengths of light rays
are stretched out in proportion to the distance L(t) between co-moving points (t > t1), which in turn
increase proportionally to R(t) (Harrison, 1993, 1995):

λ(t)
λ(t1) = dt

dt1
= R(t)

R(t1) = L(t)
L(t1) . (3)

Reviewing notations, L1 ≡ L(t1) is the proper distance to the source at the time when it emits light,
L(t) is the same distance to the same source at light reception. Thus, the photons are seen as perma-
nently loosing energy due to being cosmologically redshifted, because of which in modern cosmology
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the photons are usually taken as negligibly influencing the present-day expansion dynamics. Such con-
fidence is somehow based on the undoubted successes of GR in our immediate cosmic surroundings,
with or without a L-term which has been termed `dark energy´ when it has the sign opposite to that
of energy, whose necessity is still debated.

In what follows, we are going to define a more rigorous viable concept of kinetic recession velocity
of a comoving distant galaxy of redshift z, which crossed past light cone at time t1, at point (A1) away
from comoving observer (O) at the present time t. This is rather technical topic, and it requires care
to do correctly. To clarify the issues further, it should help a few noteworthy points of Fig. 1, which
illustrates the lookforward history of expanding homogenous and isotropic universe. The principle

Figure 1. ”Lookforward” history of expanding homogenous and isotropic universe: The increase of
the proper distance Li between a galaxy (Ai) and observer (Oi) (at epoch ti) is viewed over different
epochs (i = 1, 2, ..., n), with the infinitesimal time difference ((ti − ti−1) → 0). Whereas tn ≡ t
and Ln ≡ L(t). An observer (Oi) in its rest frame of reference measures the frequency of light rays
emitted by a galaxy (Ai) viewed over different epochs (1, ..., i) of expansion. Each proper distance
LAi−1Oi−1(ti−1) (at epoch ti−1) is identically mapped on the line segment LaiOi(ti) of proper distance
(at infinitesimally close epoch ti), such that LaiOi(ti) ≡ LAi−1Oi−1(ti−1). Proper distance is the spatial
geodesic measured along a comoving hypersurface S(ti) of constant cosmic time, into which a natural
foliation of the space-time is defined by the RW metric. Null geodesic of a light signal from a galaxy
(A1) to the observers Oi (On ≡ O) is also plotted.

foundation of our approach comprises the following steps. Let Li ≡ L(ti) be the `proper distance´
between a galaxy (Ai) and observer (Oi), at given epoch (ti), while the increment of the Li is viewed
over different epochs (i = 1, 2, ..., n), with the infinitesimal time difference ((ti − ti−1) → 0, n → ∞).
Whereas tn ≡ t and Ln ≡ L(t). We assume that an observer (Oi) in its rest frame of reference measures
the frequency of light rays emitted by a galaxy (Ai), viewed over different epochs (1, ..., i) of expansion.
Each proper distance LAi−1Oi−1(ti−1) (at epoch ti−1) is identically mapped on the line segment LaiOi(ti)
of proper distance (at infinitesimally close epoch ti), such that LaiOi(ti) ≡ LAi−1Oi−1(ti−1). Null
geodesic of a light signal travelling from a galaxy (A1) to the observer Oi (On ≡ O) is also plotted.
This picture, of course, wholly agrees with the Cosmological Principle. The requirement for spacial
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homogeneity and isotropy is implemented by this principle in order to avoid a privileged observer.
In accord to modern cosmology, the universe does not expand in space, but consists of expanding
space. It does not say anything about the point of origin of the universe, either it does not mean that
every pair of galaxy (Ai) and observer (Oi) is in any specially favoured or unfavoured position in the
universe: the universe is isotropic about this pair, which moving apart as universe expands. Now let
us explore the definition of Hubble’s parameter to write

H = d
dt log

(
R(t)
R1

)
= d

dt ln(1 + z) = 1
1+z

dz
dt . (4)

According to (3), the redshift, z must be expressed in terms of the increment z = L−L1
L1
≡ L(tn)−L(t1)

L(t1) ,

which incorporated with the relations dt/dt1 = 1 + z and (4) yield

dL1
dt1

= L̇−HL = 0. (5)

It is then mere question of convenience to think of an observer (O(1)) having observed in its rest frame
of reference that any point of curve L1(= LA1O(1)

) is not receding:

vA1O(1)
(t1)(recession velocity) = 0 (redshift = 0). (6)

Thus the relation λA1 = λO(1)
holds for the wavelengths, which is of course consistent with (3). Imagine

a family of comoving adjacent observers situated at the points ai (i = 2, ..., n) on the infinitesimal
distances from the galaxies (Ai), who measure the frequency of light rays emitted by (Ai) as it
goes by. After making due allowances for (3), particularly, the `relative´ infinitesimal increment δzj
(j = 1, ..., n− 1) of redshift reads

δzj =
δλj
λj

=
λj+1−λj

λj
=

δLj
Lj

=
Lj+1−Lj

Lj
=

δ̃zj
1+zj

≡ zj+1−zj
1+zj

, 1 + zj =
δλj
λ1
. (7)

Consequently, an observers should observe the successive increments of `relative´ redshifts, δz1, δz2,
δz3, ..., δzn−1, of the light when passing across the infinitesimal distances (A2, a2), (A3, a3), ..., (An, an).
Thus, the wavelength of light emitted at Ai is infinitesimally stretched out relative to the wavelength
of light emitted at the adjacent point ai. While weak, such effects considered cumulatively over a
great number of successive increments of redshifts could become significant. The resulting redshift is
the accumulation of a series of infinitesimal `relative´ redshifts. This interpretation holds rigorously
even for large redshifts of order one or more.

If this view would prove to be true, it would lead to the chain rule for the wavelengths:

λAn
λ1
≡ λn

λ1
= λn

λn−1
· λn−1

λn−2
· · · λ3λ2 ·

λ2
λ1

=
∏n−1
i=1 (1 + δzi), (8)

where λ1 ≡ λA1 (= λO1 = λOn), which readily yields

1 + z =
λAn
λOn

=
∏n−1
i=1 (1 + δzi). (9)

With no loss of generality, we may of course apply (9) all the way to n → ∞. Let us view the
increment of the proper distance, Li = L(ti), between a galaxy (Ai) and observer (Oi) over epochs
ti (i = 2, ..., n) as follows: Li = L1 + (i− 1)ε, where ε can be made arbitrarily small by increasing n.
In the limit n→∞, all the emitters (Ai) and respective adjacent observers (ai) are arbitrarily close to
each other, the physical separations (Ai, ai) are approaching to zero, so that δzi = δLi/Li ' ε/L1 → 0.
This allows us to write the following relation for the infinitesimal `relative´ redshifts:

(δzn−1 = δzn−2 = · · · = δz1 = ε/L1)n→∞ = δz(a) =

limn→∞ δz
(a)
(n−1) ≡ limn→∞

(
1

n−1

∑n−1
i=1 δzi

)
,

(10)

where δz(a) is the average infinitesimal increment of `relative´ redshift. The relation (9) then becomes

1 + z = limn→∞
∏n−1
i=1 (1 + δzi) = limn→∞

(
1 + δz

(a)
(n−1)

)n−1
. (11)
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There does not seem to be any reason to doubt a validity of the relation (10). Certainly, the identifi-
cation adopted here can be readily proved as follows. According to (7), in curved space of expanding
universe, in general, the infinitesimal `relative´ redshifts arise at a series of infinitesimal stretching of
the proper distance, so that the relation (11), by virtue of (10), can be recast into the form

1 + z = limn→∞

(
1 + 1

n−1

∑n−1
i=1

δLi
Li

)n−1
= limn→∞

(
1 + 1

n ln Ln
L1

)n
= limn→∞

Ln
L1
, (12)

which agrees with (3). Hence the overall cosmological redshift is a new physical phenomenon conse-
quent on expansion of the universe, which induces the wave stretching of the traveling light via the
Lemâıtre’s important relationship:

z = L(t)
L(t1) − 1 = R(t)

R(t1) − 1, (13)

provided, (1 + z) is the factor by which the universe has expanded while the light was travelling to-
wards an observer.

It is worth emphasizing that the general equation (11) is the result of a series of infinitesimal
stretching of the proper distance in RW space-time, whereas the path of a light appears nowhere, thus
this equation does not relate to the special choice of any transport path. Therefore, to overcome the
ambiguity of parallel transport of four-velocities, particularly, in RW space-time, in what follows we
advocate exclusively with this proposal. To obtain some feeling about this statement, below we give
more detailed explanation.

According to well-known generalization of the spectral shift rule in a Riemannian space-time (Synge,
1960), the infinitesimal increments of `relative´ spectral shifts (δz1, δz2, δz3, ..., δzn−1) can be derived
from Doppler effect between adjacent emitter and absorber in relative motion measured in the re-
spective tangent local inertial rest frames at infinitesimally separated space-time points. Let vAiai(ti)
be the relative infinitesimal velocity consequent on recession of a galaxy (Ai) to adjacent observer
at the point ai, separated by the infinitesimal distance δLi ≡ LAiai(ti). Since each proper distance
LAi−1Oi−1(ti−1) (at epoch ti−1) is identically mapped on the line segment LaiOi(ti) of proper distance
(at infinitesimally close epoch ti), the relative velocity vAiai(ti) is the same as it is relative to a galaxy
(Ai−1): vAiAi−1(ti) ≡ vAiai(ti). Continuing along this line, we may commit ourselves in the series
of `relative´ spectral shifts a certain substitution of increments of relative velocities. Taking into
account that such infinitesimal relative velocities arise at a series of infinitesimal stretching of the
proper distance LA2a2(t2), ..., LAnan(tn) as it is seen from the Fig. 1, we may at equal footing fill out
now the whole pattern of monotonic increments of `relative´ spectral shifts (δz1, δz2, δz3, ..., δzn−1)
by replacing the respective pairs (A2, A1), ..., (An, An−1) with new ones (A2, a2), ..., (An, an), which
attribute to the successive increments of recession (relative) velocities vA2A1(t2), ..., vAnAn−1(tn) of a
galaxy (An) away from observer (On) in the rest frame of (On), viewed over different epochs (t2, ..., tn).
Thereby the principle of time-invariant homogeneity requires that if a galaxy (Ai) recedes from an
adjacent observer (ai) with velocity vAiai(ti)(= vAiAi−1(ti)), then a galaxy (Ai−1) simultaneously re-
cedes from an equally spaced observer (ai−1) with the same velocity vAi−1ai−1(ti−1)(= vAi−1Ai−2(ti−1)):
vAiai(ti) = vAi−1ai−1(ti−1). This framework furnishes justification for the recession velocity vn ≡ vAnA1 ,
to be now referred to as the kinetic recession velocity, of galaxy (An) away from observer (On), in its
rest frame, at epoch (tn). According to relation (10), at the limit n → ∞, the infinitesimal recession
velocities tend to zero: vAiai(ti) = cδβi = cδzi = cδLi/Li ' cε/L1 → 0, such that

limn→∞ δβ1 = limn→∞ δβ2 = · · · = limn→∞ δβn−1 =

δβ(a)
(
≡ limn→∞

1
n−1

∑n−1
i=1 δβi

)
= limn→∞

1
nβn.

(14)

Remark: Although we are free to deal with any infinitesimal `relative´ spectral shift δzi of emitter
(Ai) in local tangent inertial rest frame of adjacent absorber (ai) (where we may approximate away
the curvature of space in the infinitesimally small neighborhood), we should take into account that
the infinitesimal relative velocities arise in RW space-time at a series of infinitesimal stretching of the
proper distance, and that the SR law of composition of velocities cannot be implemented globally along
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the non-null geodesic, because these velocities are velocities at the different events, which should be
in a different physical frames, and cannot be added together.

Facilitating further the calculations of recession velocity (βn) in quest, we may address a galaxy
(An) and an adjacent observer at (an). Suppose V µ

(An) and V µ
(an) (µ = 0, 1, 2, 3) are the unit tangent

four-velocity vectors to their respective world-lines, thus in their respective rest frame we have V 0
(An) =

1 and V 0
(an) = 1, as the only nonzero components of velocity. Employing a generalization of the spectral

shift rule in a Riemannian space-time (Synge, 1960), the infinitesimal increment δzn−1 of spectral shift
can be written

δzn−1 =
Uµ(An)V

µ
(An)

Uν(an)V
ν
(an)
− 1, (15)

where Uµ(An) and Uµ(an) are the tangent vector to null geodesic ΓAnan at end points. The frequency
shift δzn−1 is expressed by the metric tensor, the direction of the velocity of light and the velocities
of source and observer. Since all the paths between infinitesimally separated space-time points (An)
and (an) coincide at n → ∞, there is no need to worry about specific choice of the path of parallel
transport of four-vector. Therefore, let us further subject the unit tangent four-velocity vector V µ

(An)

to parallel transport along the null geodesic joining (An) and (an). This yields at (an) the vector
βµ(an) = gµν′(an, An)V ν′

(An), where the two point tensor gµν′(an, An) is the parallel propagator, which

is determined by the points An and an. At (An) → (an), we have the coincidence limit [gµν ](an) =
gµν(an). As we have at point (an) two velocities V µ

(an) and βµ(an), following Synge, (see also Narlikar

(1994), we can associate Doppler shift δzn−1 to a galaxy (An) with four-velocity βµ(an) observed by an

adjacent observer (an) with four-velocity V µ
(an) as measured by the latter:

δzn−1 =
Uµ(an)β

µ
(an)

Uν(an)V
ν
(an)
− 1 = 1− 1

(1+β2
(an)

)
1
2 +βR(an)

, (16)

where cβµ(an) = vµ(an), cβ(an) = v(an), cβR(an) = v
R(an)

, and

v2
(an) = v(α)(an)v

(α)
(an), v(α)(an) = vµ(an)ξ

µ
(α)(an), vR(an) = vµ(an)r

µ
(an) = v(α)(an)v

(α)
(an). (17)

Reviewing notations the three-velocity of (An) relative to (an) are defined by the tree invariant com-
ponents v(α)(an), the relative speed is v(an), and vR(an) is the speed of recession of (An). The frame of

reference ξµ(α)(an) defined at (an) implies ξµ0(an) = V µ
(an), the unit vector rµ(an) at (an) is orthogonal to

world-line of (an) (rµ(an)V
µ

(an) = 0) and lying in the 2-element which contains the tangent at (an) to

world-line of an observer (an) and (An, an).

In the local inertial rest frame ξµ(α)(an) of an observer (an), the velocity vector βµ(an) takes the form

(γ, γδβ(an), 00), where a galaxy (An) is moving away from an observer (an) with the relative infinitesi-
mal three-velocity cδβ(an) in a direction making an angel θ(an) with the outward radial direction from

(an) to (An), and γ = (1− δβ2
(an))

−1/2. Hence, the equation (16) is reduced to

δzn−1 =
1+δβ(an) cos θ√

1−δβ2
− 1 = βR(an) − β2

R(an) + 1
2β

2
(an) + · · · ' βR(an) =

p(α)(an)v
(α)
(an)

E(an)
= δβ(an) cos θ(an),

(18)

where p(α)(an) and E(an) are, respectively, the momentum and energy of light ray as measured locally
by an observer (an). Thus, at n → ∞, the wavelength of emitted by a galaxy (An) radiation is
increased by the first-order Doppler shift caused unambiguously by the infinitesimal recession velocity

δβ(an) ≡ δβ
(r)
n−1 in radial direction (cos θ(an) → 1):

δzn−1 = δLn−1

Ln−1
= δβ

(r)
n−1. (19)
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In the local tangent inertial rest frame of an observer (an), the latter reads (see subsect. 3.1):

δβ
(r)
n−1 = βn−βn−1

1−βnβn−1
' δβn−1

1−β2
n−1

, (20)

where vn = cβn ≡ cV(An) and vn−1 = cβn−1 ≡ cV(an) are, respectively, the three-velocities of a galaxy
(An) and an observer (an) along the radial direction from (an) to (An). A resulting infinitesimal
increment δzn−1 of spectral shift, at n→∞ then reads

limn→∞ δzn−1 = limn→∞
δβn−1

1−β2
n−1

= limn→∞
βn

n(1−β2
n)
, (21)

For our goal, the most straightforward guess at the convenient form of (13), by virtue of (10), is
written

1 + z = R(t)
R(t1) = limn→∞(1 + δzn−1)n. (22)

Certainly, it is merely the choice to be rewarding to go ahead with a finite spectral shift

1 + z = R(t)
R(t1) = limn→∞

[
1 + 1

n

(
βn

(1−β2
n)

)]n
. (23)

This straightforwardly yields the general kinematic relationship of the overall cosmological redshift, z,
and kinetic recession velocity βrec (in units of the speed of light) of the comoving distant galaxy (A1)
of redshift z, which crossed past light cone at time t1 away from comoving observer (O):

1 + z = R(t)
R(t1) = exp

(
βrec

1−β2
rec

)
, (24)

where, hereinafter, the kinetic recession velocity βn is marked with subscript ()rec. This interpretation
so achieved has physical significance as it agrees with a view that the light waves will be stretched
by travelling through the expanding universe, and in the same time the kinetic recession velocity of
a distant astronomical object is always subluminal even for large redshifts of order one or more. It,
therefore, does not violate the fundamental physical principle of causality.

The kinetic recession radial velocity of a galaxy is plotted on the Fig. 2 (Top panel(a): for red-
shifts 0 ≤ z ≤ 10; and Bottom panel(b): for redshifts 0 ≤ z ≤ 800), where the global Doppler velocity,
and their difference are also presented to guide the eye. As it can be seen from the Figure 2, the
difference of global Doppler velocity and kinetic recession velocity, for redshifts 0.9 ≤ z ≤ 800, is
(βDop − βrec) ≥ 0.072c, where a maximum value, (βDop − βrec)max = 0.187c, is reached at redshifts
= 4.5− 5.1.

If, and only if, for the distances at which the Hubble empirical linear `redshift-distance´ law
(cz = HL) is valid, the relationship between the physical recession velocity, vrec, and the expansion
rate, L̇ (= HL), reads

βrec =

√
1+4 ln2(1+L̇/c)−1

2 ln(1+L̇/c)
. (25)

Once we are equipped with the general solution, it is worth emphasizing the importance of the pa-
rameter ζ(z) of practical measure of being swept up of galaxy in expanding universe:

ζ(z) = vrec
L̇

= βrec
z . (26)

Next we will study a particular case of establishing a global Doppler shift from a general solution (24).

3.1. A global Doppler shift along the null geodesic

Once we are equipped with the general solution (24), it is worth to show that this solution is reduced
to a global Doppler shift along the null geodesic, previously studied by Synge (1960) (see also Bunn
& Hogg (2009), Narlikar (1994)) who used the parallel transport of source four-velocity along the null
geodesic to an observer. Certainly, suppose a dense family of adjacent comoving observers being in free
fall populated along the path of light ray from a galaxy (A1) to an observer (On) (Fig. 1). The (i)-th
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Figure 2. The recession velocity along the line of sight (βrec) of luminous source (S) with redshift z
away from the observer (O), the global Doppler velocity (βDop), and their difference (in units of the
speed of light). Top panel: 0 ≤ z ≤ 25; Bottom panel: 0 ≤ z ≤ 800.

observer situated at the point (i) of intersection of the ray’s trajectory with a comoving hypersurface
S(ti) of constant cosmic time. Then, the end points of infinitesimal distance δli = cδti between the
adjacent observers (i+ 1) and (i) will respectively be the points of intersection of the ray’s trajectory
with the comoving hypersurfaces S(ti+1) and S(ti). Thus the infinitesimal increment of the frequency
shift on the distance δli = cδti, caused by expansion of the universe during the infinitesimal epoch
time interval δti = ti+1−ti, according to (7), should be δzi = δλi/λi = δLi/Li. Due to the equivalence
principle, we may approximate away the curvature of space in the infinitesimally small neighborhood of
two adjacent observers. Thereby, approximating away the curvature of spacetime in the infinitesimally
small neighborhood does not mean approximating away the expansion altogether. That is, it must be
stated emphatically that if we approximate an infinitesimally small neighborhood of the size δLi of an
expanding spacetime as flat, the resulting errors are of order (δLi/LH)2 in the metric. If we regard
such errors as negligible, then we can legitimately approximate spacetime as flat. The increment of
redshift δzi is not approximated away in this limit because it is in that neighborhood of leading order
(δLi/Li). Imagine a thin world tube around the null geodesic within which the space-time is flat to
arbitrary precision. In particular, this implies the vacuum value of a velocity of light to be universal
maximum attainable velocity of a material body found in this space. This statement is true for any
thin neighborhood around a null geodesic. Therefore, each observer has a local reference frame in
which SR can be taken to apply, and an observers are close enough together that each one (i+ 1) lies
within the local frame of his neighbor (i). Only in this particular case of null geodesic, the relative
velocity of observers can be calculated by the SR law of composition of velocities globally along this
path. Within each local inertial frame, there are no gravitational effects, and hence the infinitesimal
frequency shift from each observer to the next is a Doppler shift. Hence, at the limit n → ∞, a
resulting infinitesimal frequency shift δzi, can be unambiguously equated to infinitesimal increment of
a fractional SR Doppler shift δz̄i from observer (i+ 1) to the next (i) caused by infinitesimal relative
velocity δβ̄ri : (

δzi = δLi
Li

)
n→∞

=
(
δz̄i = δβ̄ri = β̄i+1−β̄i

1−β̄i+1β̄i
' δβ̄i

1−β̄2
i

)
n→∞

, (27)
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where by (̄) we denote the null-geodesic value, as different choice of geodesics yields different results
for the motion of galaxy relative to a particular observer. The relation (27), incorporated with the
identity (10), yield

(δzn−1 =)n→∞ =
(
δβn−1

1−β2
n

)
n→∞

=
(
δz̄

(a)
(n−1) = δβ̄

r(a)
(n−1) ≡

1
n−1

∑n−1
i=1

δβ̄i
1−β̄2

i

)
n→∞

, (28)

which, by virtue of (14), for sufficiently large but finite n gives

βn
1−β2

n
=
∑n−1

i=1
δβ̄i

1−β̄2
i

=
∫ β̄n

0
dβ̄

1−β̄2 , (29)

or
β̄n = e%n−1

e%n+1 , %n ≡ 2βn
1−β2

n
. (30)

Hence the general solution (24), by means of (29), is reduced to a global Doppler shift along the null
geodesic:

1 + z = exp
(

βrec
1−β2

rec

)
=
√

1+β̄rec
1−β̄rec

, (31)

where β̄rec = limn→∞ β̄n. Thus, this procedure in fact is exactly equivalent to performing parallel
transport of the source four-velocity in curved space of expanding universe along the null geodesic to
an observer. In Minkowski space a parallel transport of vectors is trivial and mostly not mentioned at
all. This allows us to apply globally the SR law of composition of velocities to relate the velocities β̄i+1

to the β̄i of adjacent observers along the path of light ray, measured in the i-th adjacent observer’s
frame. Then, according to (27)-(31), a global Doppler shift of light ray emitted by luminous source as
it appears to observer at rest in flat Minkowski space can be derived by summing up the infinitesimal
Doppler shifts caused by infinitesimal relative velocities of adjacent observers.

4. A cosmological toy model of FRW-universe for zero-density in the
RW coordinates

In our actual universe space-time is not exactly flat, but a sufficiently large region of the transparent
universe, say on length scales of one to ten or so billion light years, usually can be well approximated
by a zero-density spatially flat homogeneous isotropic cosmological model having (k = 0) FRW metric
(Page 2009):

ds2 = c2dt2 −R2(t)dχ2, (32)

where dχ =
√
dx2 + dy2 + dz2 is the (constant) comoving coordinate distance between the comoving

two particles, with (dx, dy, dz) being the differences between their comoving coordinates. The particles
in this idealized model each stay at fixed comoving coordinates (x, y, z) as their proper time t increases.
The physical distance between two particles, as measured along a geodesic of a comoving hypersurface
of constant t, grows at the Hubble expansion rate of the universe at the time t. For the spatially
flat model (32), there is no upper limit to the comoving coordinate distance χ, and that also to the
proper distance L(t) = R(t)χ, at any fixed t. The metric (32) can be rewritten as an expanding open
RW-metric (k = −1) with R(t) ∝ t (Gron 2007; Page 2009), i.e. the Milne model (Milne 1934). The
Milne universe is the Minkowski space-time described from an expanding reference frame. Although in
the RW coordinates the 3D comoving hypersurface of constant t (constant proper time) does have an
extrinsically non-zero curvature, nevertheless the 4D curvature is zero. Therefore, simple coordinate
transformations transform the metric to the standard Minkowski form with the Minkowski coordi-
nates. The Minkowski coordinates (T,X, Y, Z) are the coordinates of a rigid inertial reference frame
of an arbitrarily chosen reference particle P in the expanding cloud of particles defining the Milne
universe model. The time T is the private time of P . The time t is measured on clocks following all of
the reference particles. The Milne universe can be identified as the forward light cone in Minkowski
space-time, foliated by negatively curved hyperboloids orthogonal to the time axis. In the inertial and
rigid Minkowski coordinate system the velocity of a reference particle with comoving coordinate χ is
less than the speed of light for all values of χ. The components of a parallel transported four-vector in
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inertial coordinates are constant and, thus, a parallel transport is trivial and mostly not mentioned at
all. As mentioned in Subsection 3.1, the general equation (11) of redshift is unambiguously reduced
in this limit to a conventional global Doppler shift formula with SR-relative speed, because the SR
law of composition of velocities can be implemented globally in the whole Minkowski space. Thus, in
this limit a correspondence to the more usual notion of SR-relative speed retains.

But this is no longer true for non-inertial coordinates RW of expanding cosmic frame. In this frame,
the reference particles with Milne coordinates (t, χ) define the expanding public space of the universe
model. The Hubble’s expansion refers to the GR space defined by simultaneity on the clocks following
the reference particles. It is valid in the public space of the universe model, not the private space of a
particular observer. It has infinite extension. Hence the reference particles have superluminal velocity
at sufficiently great distances from an observer. Moreover, in the extrinsically curved 3D comoving
hypersurface t = const (public space) a parallel transport is not trivial and needs consideration (Page
2009). A geodesic between two events on such hypersurface passes through the future, and a transport
along this geodesic will yield a different result. Using the length of geodesics of a particular spatial
hypersurface worsens the problem of superluminal expansion. The infinitesimal relative velocities arise
at a series of infinitesimal stretching of the proper distance, and that the SR law of composition of
velocities cannot be implemented globally in the curved 3D hypersurface. In this case, the relation (11)
leads to the general solution (24) of the overall cosmological redshift, with a kinetic recession velocity,
which is always subluminal even for large redshifts of order one or more.

5. Concluding remarks

The conceptual and technical problems involved in this contribution provide scope for the argu-
ments discussed, aiming to reconcile the cosmological interpretation of redshift with the most natural
kinematic interpretation. Below we briefly reflect upon a few relevant points. The solutions given in
present report demonstrate its advantage over the specific extant definitions in the cited literature:

• Section 3 presents what is essentially a correct solution to a kinematic interpretation. In the
framework of ”stretching of space” point of view of the spatially homogeneous and isotropic
RW space-time of standard cosmological model, we overcome an ambiguity of the procedure of
parallel transport of source four-velocity along the null geodesic to an observer by an alternative
study of a ”lookforward” history of expanding universe. We use a way of separating the cos-
mological redshifts into infinitesimal `relative´ redshift bins and sum over them to achieve an
unique definition of the kinetic recession velocity of comoving astronomical object. The latter
is always subluminal even for large redshifts of order one or more, so that it does not violate
the fundamental physical principle of causality. The difference of global Doppler velocity and
kinetic recession velocity, for redshifts 0.9 ≤ z ≤ 800 is ≥ 0.072c, where a maximum value,
0.187c, is reached at redshifts z = 4.5− 5.1. We calculate a practical measure parameter ζ(z) of
being swept up of galaxy in expanding universe. We show that the derived general solution is
unambiguously reduced to global Doppler shift along null geodesic.

• We discuss the obtained results in the limit of a zero-density cosmological model of Milne uni-
verse. Whereas, in the inertial and rigid Minkowski coordinate system the components of a
transported four-vector in inertial coordinates are constant and, thus, a parallel transport is
trivial and mostly not mentioned at all. The general solution (24) of redshift is unambiguously
reduced in this limit to a conventional global Doppler shift with SR-relative speed, because the
SR law of composition of velocities can be implemented globally in the whole Minkowski space.
Thus, in this limit a correspondence to the more usual notion of SR-relative speed retains. But
this is no longer true for non-inertial RW coordinates of expanding cosmic frame. In this frame,
the reference particles with Milne coordinates define the expanding public space of the universe
model. In the extrinsically curved 3D hypersurface (public space) a parallel transport is not
trivial and needs consideration. The infinitesimal relative velocities arise at a series of infinites-
imal stretching of the proper distance so that the SR law of composition of velocities cannot
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be implemented globally in the curved 3D hypersurface. In this case, the overall cosmological
redshift is described by the formula (24) with a kinetic recession velocity.

• In Appendix A, we give a reappraisal in a deep way of the preliminary attempts of `standard´
kinematic interpretation of redshifts as accumulated Doppler-shifts consequent on recession,
widely discussed in literature. Its study is valuable as affording insight into the whole subject. In
doing this, we are not suggesting any doubt about the principle statement. Rather, we doubt the
method of calculations, which as we have shown are in error. Moreover, the principle statement
is a crux of our derivation of an essentially correct solution to a kinematic interpretation of
cosmological redshifts. In appendix B, we calculate the kinetic recession velocities of some
typical distant astronomical objects with spectroscopic redshift determinations collected from
the literature, which are listed in Table 1.
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Pâris I., Petitjean P., Aubourg É. e. a., 2012, A&A, 548A, 66
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Appendices

Appendix A The standard kinematic interpretation of redshifts

One source of the preliminary attempts along this line of alternative understanding of a complex
problem is the ”standard” kinematic interpretation that cosmological redshift of distant galaxy is
the recession effect of the accumulation of a series of infinitesimal Doppler shifts due to infinitesimal
relative velocities of the Hubble flow along the line of sight. Following Padmanabhan (1993), Peacock
(1999, 2008), Peebles (1993), (see also e.g. Bunn & Hogg (2009), Chodorowski (2011), Grøn & Elgarøy
(2007), Whiting (2004)), within the ”stretching of space” point of view, assume that an observer at
the origin at the present epoch time measures the redshift of a galaxy at some comoving distance.
Consider a light ray that travels from a galaxy to this observer, both of whom are at rest in comoving
coordinates. Imagine a family of comoving observers along the path of light ray, each of whom
measures the frequency of light ray as it goes by. It was assumed that each observer is close enough
to his neighbor so that we can accommodate them both in one inertial reference frame and use SR to
calculate the change in frequency from one observer to the next. If adjacent observers are separated
by the infinitesimal proper distance δL, then their relative velocity in this frame is δv = HδL. This
infinitesimal recessional velocity should cause a fractional shift given by the non-relativistic Doppler
formula:

δν
ν = − δv

c = −HδL
c = −Hδt. (33)

And hence, as it was concluded, the relation (33) for overall redshift, by means of H = Ṙ/R, becomes
δν
ν = − δR

R . This integrates to give the main result of expansion scenario that the frequency decreases
in inverse proportion to the scale factor, ν ∝ 1/R.

It was claimed even more that the cosmological redshifts can be interpreted as a combination of
Doppler and gravitational shifts with the difference in gravitational potential between the point of
emission and reception of a light ray. It is the purpose of this Section to give a reappraisal of the
key aspects of the ”standard” interpretation in a deep way. We wish to make clear at the outset that
we are not suggesting any doubt about the principle statement that the redshift of distant galaxy is
the recession effect of the accumulation of a series of infinitesimal Doppler shifts due to infinitesimal
relative velocities along the line of sight, which seemed appealing and attractive. Moreover, this
statement has been a crux of our derivation of a correct solution to a kinematic interpretation of
cosmological redshifts presented in Section 4. Rather, we doubt the method of calculations. A hard
look at the basic relation (33) reveals the following objections, which together constitute a whole
against the claim:

• Even this worry is subtle, but here we have called attention to the fact that there is no necessity
for integration of (33) to reveal the ”stretching-of-wavelength” effect, because the term of as-
sumed expansion dynamics, HδL, written for the infinitesimal change of expansion rate on the
infinitesimal distances, δL, is already steeped in (33), which implies the wave-stretching relation,
δλ ∝ δL ∝ δR.

• We doubt a validity of a scale-behavior ν ∝ 1/R of the frequency that enters the equation (33).
Upon closer examination, the arguments about this are completely futile because they are con-
ducted without any attempt to analyze the meanings of the terms employed in (33). The factor
1 + z measures the expansion of the universe between emission and absorption of a light. The
equation (33) would lead to the relation δν

ν = − δR
R if, and only if, L̇(t, z) = c, i.e. when galaxy

situates on the Hubble sphere: L = LH ≡ c/H, where LH is the Hubble length. But in general
case of L̇(t, z) 6= c (L 6= LH), it was in conflict because the infinitesimal time interval δt′ = δL/c
does not equal to the infinitesimal epoch time interval δt = δL/L̇ (δt′/δt = L̇/c):

HδL
c = 1

R

(
dR
dt δt

)
δL
cδt = L̇(t,z)

c
δR
R , (34)

and hence (33) leads to
δν
ν = − L̇(t,z)

c
δR
R . (35)
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This can readily be transformed into the equation

δ ln ν = δ

[
ln
(

1
R

)L̇/c]
+ δL̇

c lnR. (36)

As it is evidently seen, the result of integration of (36) will be utterly distinct from the simple
behavior of ν ∝ 1/R.

• To render our discussion more transparent, it is worthwhile to clarify the ingredient relation
δv = HδL in (33), where δv is the Doppler velocity: cδz = δv. We argue that this relation is
in error at the infinitesimal distances. It is necessary to substantiate this principle statement
further by the reasoning recast in more physical terms. For the self-contained arguments, it
must be stated emphatically that the Hubble’s linear ’redshift-distance’ law, cz = HL, certainly
must be classified as an empirical law rather than as a law of pure reason. It must then suffice
to expect some objections against its idealization and, thus, it should be a subject of limited
validity (an approximate relation). One ought to be cautious about a validity of this law in the
vicinity of nearby clusters of galaxies, or on much smaller scales. It seems there is rather no
local counterpart for the dynamics from the Hubble law on the much smaller distances, say in
the vicinity of a star such as our Sun. In this, the Schwarzschild field will dominate, with the
cosmological field perhaps exerting some small perturbative effects (Dirac, 1979, Gautreau, 1984,
Grøn & Rippis, 2003, McVittie, 1933). Needless thus to say that the Hubble’s linear ”redshift-
distance” law becomes a dangerously flawed way of thinking and cannot be representative of the
global behavior at least on the infinitesimally smaller distances, because if this law could affect
local dynamics this should contradict profoundly to principle of ”relativity”. Our conclusion
drawn from the above discussion can be stated as follows:

δv = cδz 6= HδL. (37)

• We further argue that the cosmological redshift, in general, cannot be interpreted as a combi-
nation of the global Doppler and gravitational shifts. Certainly, Narlikar (1994) has presented
the proof that as the universe expands, the parallel transported in curved space four-velocity
vector of a distant source along the null geodesic to an observer does yield Doppler four-velocity
in the rest frame of observer. This result is particular case of a general rule described in com-
prehensible terms by Synge (1960) (Chap.III). We seem to have attractive proposal of choosing
a null geodesics for the parallel transport since it does not require any additional structures, like
particular foliation of space-time, which in turn is applicable to any space-time. However, a re-
sulting global Doppler effect is inconclusive, and could not be regarded as a final word, because
a definition of relative velocity has disadvantage that in a curved space-time for Levi-Civita
connection the result of parallel transport depends on the chosen path along which the vector
is transported. This is the defining property of curvature. Hence, there is no relative velocity
of distant objects without prior choice of transport paths. If such definition of relative velocity
is not accepted, then the statement attributing frequency shifts to relative velocity cannot be
accepted either.

• Finally, recall that the gravitational redshift occurs if light travels from a strong to a weak
gravitational field and blueshift occurs for the light traveling in the reverse direction. But the
cosmological redshift occurs in both these cases as the universe expands. Moreover, the GR
interpretation of the expansion interprets cosmological redshift as an indication of velocity since
the proper distance between comoving objects increases. Since the Riemann tensor appears
nowhere, thus the cosmological redshifts do not relate to gravitational effect.
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Appendix B The kinetic recession velocities of some typical distant
astronomical objects

A tremendous observational effort has been put in many decades into the programme of detec-
tion and characterization of distant galaxies and high redshift bright quasars, which is pivotal for
elucidating the physics in time to an epoch when the universe was very young and galaxies in their
infancy. The high redshift bright quasars have fundamental implications for the formation and growth
history of supermassive black holes ((SMBHs), see e.g. (Mortlock et al., 2011, Wu et al., 2015), and
probe the progress of cosmic reionisation (Fan et al., 2006a,b). This ultimately yields the constraints
imposed for the metal enrichment and dust production in the early epoch of the universe, (Jiang et al.,
2016). The largest SMBH-candidates are a few 1010M� (McConnell et al., 2011, Postman et al., 2012,
Scharẅachter et al., 2016, Thomas et al., 2016).

The first z > 5 quasars were found in the the large-area Sloan Digital Sky Survey (SDSS, (Fan
et al., 1999, 2001, Pâris et al., 2012, 2014, Schneider et al., 2010)). The SDSS quasar surveys provided
the largest quasar sample (∼ 500 quasars at z > 4.5). Quasars at z > 4.5 are routinely discovered in
varieties of wide-field surveys, including the Canada-France High-Redshift Survey (CFHQS, (Willott
et al., 2007)). There are newly identified quasars from the the Panoramic Survey Telescope and Rapid
Response System (Pan-STARRS, (Bañados et al., 2018, Kaiser et al., 2002)), the UKIRT Infrared
Deep Sky Survey (UKIDSS, (Lawrence, 2007, Yang et al., 2017)), Large Area Survey (ULAS), the
VISTA VIKING (Edge, 2013), and VST ATLAS (Shanks, 2015) surveys, the Subaru Suprime Cam
surveys (Kashikawa, 2015), and the Hyper Suprime Cam (HSC) survey (Matsuoka, 2016), the Dark
Energy Survey (DES, (Reed et al., 2015)), and the Dark Energy Camera Legacy Survey (DECaLS,
(Wang et al., 2007)).

However, the SDSS spectroscopic surveys have a lower degree of completeness at high redshift.
The SDSS only covers a large portion of the Northern sky, although the Pan-STARRS1 survey (PS1,
(Chambers, 2011, Kaiser et al., 2002, 2010)) has extended coverage of 1.5 hemispheres to a declination
of −30 deg South. The Sky Mapper Southern Survey is a full hemispheric imaging survey carried out
by the Sky Mapper telescope at Siding Spring Observatory in New South Wales, Australia (Wolf et al.,
2018). By combining Wide-field Infrared Survey Explorer (WISE) and SDSS photometric data, Wang
et al. (2016) have spectroscopically identified 72 new z ∼ 5.0 quasars. The Table A1 is summing up
the kinetic recession velocities of some typical distant astronomical objects with spectroscopic redshift
determinations collected from the literature.
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Table 1. The kinetic recession velocities (βrec) (in units of the speed of light) of some typical distant
astronomical objects.

Name Redshift Type (Ref.) βrec
GN-z11 11.09 Galaxy, e.g. (1) 0.819

MACS1149-JD1 9.11 Galaxy, e.g. (2) 0.807

EGSY8p7 8.68 Galaxy, e.g. (3) 0.804

A2744 YD4 8.38 Galaxy, e.g. (4) 0.801

GRB 090423 8.2 Gamma-ray burst, e.g. (5) 0.8

EGS-zs8-1 7.73 Galaxy, e.g. (1) 0.796

ULAS J1342+0928 7.54 Quasar, e.g. (6) 0.794

A1689-zD1 7.5 Galaxy, e.g. (7) 0.793

BDF-3299 7.109 Galaxy, e.g. (8) 0.789

ULAS J0109-3047 6.75 Quasar, e.g. (9) 0.785

ULAS J0305-3150 6.6 Quasar, e.g. (9) 0.783

HCM-6A 6.56 Galaxy, e.g. (10) 0.783

CFHQS J2329-0301 6.417 Quasar, e.g. (11) 0.781

SDSS J010013.02+280225.8 6.3 Quasar, e.g. (12,13) 0.78

SDSSJ1048+4637 6.2 Quasar, e.g. (14,15) 0.778

SDSS J125051.93+313021.9 6.13 Quasar, e.g. (16) 0.777

SDSS J030331.40001912.9 6.07 Quasar, e.g. (17,18) 0.777

CFHQS J1641+3755 6.047 Quasar, e.g. (19) 0.776

SDSS J081827.40+172251.8 6 Quasar, e.g. (15,16) 0.776

PSO J183.2991-12.7676 5.86 Quasar, e.g. (19) 0.774

J104433.04-012502.2 5.8 Quasar, e.g. (20) 0.773

PSO J215.1514-16.0417 5.73 Quasar, e.g. (19) 0.772

PSO J045.1840-22.5408 5.7 Quasar, e.g. (19) 0.771

HDF 4-473.0 5.6 Galaxy, e.g. (20) 0.77

RD300 5.5 Quasar, e.g. (21) 0.768

SDSS J003125.86+071036.92 5.33 Quasar, e.g. (13) 0.765

SDSS J133257.45+220835.91 5.11 Quasar, e.g. (13) 0.761

SDSS J160111.16-182835.08 5.06 Quasar, e.g. (13) 0.76

SDSSp J120441.73-002149.6 5.03 Quasar, e.g. (22,23) 0.76

SDSS J025121.33+033317.42 5 Quasar, e.g. (13) 0.759

PC 1247+3406 4.9 Quasar, e.g. (21) 0.757

SDSS J014741.53-030247.88 4.75 Quasar, e.g. (13) 0.754

BR 1033-0327 4.51 Quasar, e.g. (22) 0.749

Q0046-293 4.01 Quasar,e.g. (23) 0.737

Q1208+1011 3.8 Quasar,e.g. (24) 0.731

OH471 3.408 Quasar, (25) 0.718

4C 05.34 2.877 Quasar,e.g. (26) 0.697

5C 02.56 2.399 Quasar,e.g. (27) 0.672

3C 241 1.617 radio galaxy, e.g. (28) 0.607

3C 252 1.105 radio galaxy, e.g. (29) 0.533

(1) Oesch et al. (2016); (2) Hashimoto et al. (2018); (3) Zitrin et al. (2015); (4) Laporte et al. (2017);
(5) Tanvir et al. (2009); (6) Bañados et al. (2018); (7) Watson et al. (2015); (8) Vanzella et al.

(2011); (9) Venemans et al. (2013); (10) Hu et al. (2002); (11) Willott et al. (2010); (12) Wu et al.
(2015); (13) Wang et al. (2016); (14) Fan et al. (2006b); (15) Fan et al. (2006c); (16) Wang et al.

(2007); (17) Jiang et al. (2008); (18) Kurk et al. (2009); (19) Bañados et al. (2014); (20) Jiang et al.
(2007); (21) Stern et al. (2002); (22) Iwamuro & Motohara (2002); (23) Warren et al. (1987);

(24) Schmidt et al. (1987); (25) Warren & Hewett (1990); (26) Bahcall & Oke (1971); (27) Lynds &
Wills (1970); (28) Lilly & Longair (1984); (29) Stern & Spinrad (1999)
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