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Abstract

Continuing along the line of our previous report (Ter-Kazarian, 2021c), in present communi-
cation we briefly outline several closely related issues, carried out also in Byurakan Astrophysical
Observatory, not touched in it for brevity reasons. These issues reveal and further develop novel
aspects of the fundamental nature and structure of the space-time geometry and the high energy
physics, the inertia effects, the intense radiation physics, and the notion of relative velocity in a
curved space-time.
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1. Introduction

In our previous report (Ter-Kazarian, 2021c), among others, we have also developed on the
new physical perception of space-time geometry - the theory of distortion of space-time continuum
(DSTC) (Ter-Kazarian, 1986, 1989c, 1997, 2010) at huge energies (respectively, at short distances
< 0.4fm). Using the language of fundamental geometric structure - distortion gauge induced fiber-
bundle, it leads to modified gravitational theory as a corollary of the spacetime deformation/distortion
framework. We generalize the standard gauge scheme via the concept of distortion gauge field which
acts on the external spacetime groups. This theory, in turn, underlies the microscopic theory of black
hole (Ter-Kazarian, 1989a,b, 1990, 1991, 1992, 2001a, Ter-Kazarian & Yerknapetian, 1995), which has
smeared out the central singularities of BHs, and makes room for their growth and merging behavior.
The MTBH is the first-principles treatment of a fundamental `superdense protomatter´ physics, but it
also has an actual physical realization of Ambartsumian’s fundamental vision, which enables an insight
to key puzzles of ultra-high energy astrophysics (Ter-Kazarian, 2014, 2015, 2016a,b, Ter-Kazarian &
Sargsyan, 2013, Ter-Kazarian & Shidhani, 2017, 2019, Ter-Kazarian et al., 2003, 2006, 2007).

Continuing along this line, in present communication we briefly outline several closely related issues,
carried out also in Byurakan Astrophysical Observatory, not touched in previous paper for brevity rea-
sons. These issues reveal novel aspects of the fundamental nature and structure of space-time geometry
and high energy physics, inertia effects and intense radiation physics. In the same time, the interested
reader is invited to consult for details the original papers as follows: Two-step spacetime deforma-
tion (TSSD)-induced dynamical torsion (Ter-Kazarian, 2011); TSSD-metric-affine gravity behind the
spacetime deformation (Ter-Kazarian, 2015); Extended phase space SUSY (Ter-Kazarian, 2009, 2013a,
Ter-Kazarian & Sobouti, 2008); The operator manifold approach to geometry and particle physics (Ter-
Kazarian, 1884, 1996, 1999a); Microscopic theory of the Standard Model (MTSM) of elementary par-
ticles (Ter-Kazarian, 1999b, 2001b); and Supersymmetric extension of MTSM (Ter-Kazarian, 2001c);
Spacetime deformation induced inertia effects (Ter-Kazarian, 2010, 2012)); Probing inertia behind
the SUSY (Ter-Kazarian, 2001b); Einstein’s transition coefficients for Compton scattering, the an-
nihilation and creation of electron-positron pairs at intense radiation (Ter-Kazarian, 1984c,e); The
theory of Multiphoton Comptonization (Ter-Kazarian, 1984a,b,d, 1987, 1989a,b); Unique definition of
relative velocity of luminous source as measured along the observer’s line-of-sight in a generic pseudo-
Riemannian space-time (Ter-Kazarian, 2021b): The implications for the spatially homogeneous and
isotropic Robertson-Walker space-time (Ter-Kazarian, 2021a).

With this perspective in sight, we will proceed according to the following structure. To start with,
Section 2 recounts some of the highlights behind of the TSSD-induced dynamical torsion (Ter-Kazarian,
2011, 2015). We extend the geometrical ideas of the spacetime deformations (Ter-Kazarian, 2010, 2012)
to study the physical foundation of post-Riemannian geometry. To this aim, we construct the theory
of TSSD as a guiding principle. Through a non-trivial choice of explicit form of a deformation tensor,
we have a way to derive different post Riemannian spacetime structures such as: (i) the Weitzenböck
spacetime structure — (W4) underlying a teleparallelism theory of gravity; (ii) the RC manifold —
(U4) underlying Einstein-Cartan theory also called Einstein-Cartan-Sciama-Kibble theory; (iii) or
even the most general linear connection of metric-affine gravity (MAG) theory taking values in the
Lie-algebra of the 4D-affine group, A(4, R) = R4 ⊂× GL(4, R) (the semi-direct product of the group of
4D-translations and general linear 4D-transformations). We address the theory of teleparallel gravity
and construct a consistent Einstein-Cartan (EC) theory with the dynamical torsion. We show that
the equations of the standard EC theory, in which the equation defining torsion is the algebraic type
and, in fact, no propagation of torsion is allowed, can be equivalently replaced by the set of modified
Einstein-Cartan equations in which the torsion, in general, is a dynamical. The special physical ansatz
for the spacetime deformations yields the short-range propagating torsion.

Having gained some insight into the physical foundation of the Einstein-Cartan theory, with two-
step spacetime deformation induced dynamical torsion, TSSD-U4 theory, in Section 3, we extend these
ideas as applied to the more general TSSD-metric-affine gravity (Ter-Kazarian, 2015). The MAG
theory is an extension of the Poincaré gauge theory of gravity, constructed in the Rieman-Cartan ge-
ometry, to the most general spacetime symmetry gauge theory. The MAG theory has the most general
type of covariant derivative: in addition to curvature and torsion, the MAG also has nonmetricity, i.e.,
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a nonmetric compatible connection. Hence parallel transport no longer preserves length and angle.
The TSSD-MAG is constructed in the framework of the first order Lagrangian expressed in terms of
the gauge potentials and their first derivatives. We show that, in this framework, the equations of the
standard MAG theory which have no further propagating modes can be equivalently replaced by the
set of the modified equations which, in the limit of reducing the affine group, may recover TSSD-U4

theory, with propagating torsion. The special physical ansatz for the spacetime deformations yields
the short-range propagating torsion. In testing the modified TSSD-MAG framework for different
particular cases, the restrictions are imposed via the method of Lagrange multipliers. To pursue the
TSSD-approach further, here we address the essential features of the MAG theory in context of the
TSSD-construction of post-Riemannian geometry. A formulation of the major physical aspects of this
theory will be given in the framework of the first order Lagrangian expressed in terms of the gauge
potentials and their first derivatives. All the fundamental gravitational structures in fact - the metric
as much as the coframes and connections - acquire a TSSD induced theoretical interpretation. It is
remarkable that in the framework of the first order Lagrangian, the equations of the standard MAG
theory which have no further propagating modes can be equivalently replaced by the set of the mod-
ified equations which, in the limit of reducing the affine group, may recover TSSD-U4 theory, with a
dynamical torsion.

In Section 4, we give an outline of the `extended phase space´ stochastic quantization of constrained
hamiltonian systems (Ter-Kazarian & Sobouti, 2008). Exploring the concept of `actual and virtual
paths´ in a phase space formalism, we address a stochastic quantization of Hamiltonian systems
with first class holonomic constraints. Extended canonical transformations allows to go from one
extended phase space to another. This unifying feature of the theory makes the comparison of the
various functions existing in the literature possible and transparent. We have developed the stochastic
quantization method (SQM) in extended phase space and shown how this method can be generalized
to deal with systems subjected to first class constraints.

All this variety prompts us, in Section 5, to address the SUSY for an `extended phase space´ quan-
tum mechanical system (Ter-Kazarian, 2009). We have concerned ourselves with the extended phase
space quantum mechanics of particles which have both bosonic and fermionic degrees of freedom, i.e.,
the quantum field theory in (0+1)-dimensions in q− (position) and p− (momentum) spaces, exhibiting
supersymmetry. We present (N=2)-realization of the supersymmetry algebra, and discuss the vacuum
energy and the topology of super-potentials. We demonstrate the merits of shape-invariance of exactly
solvable extended SUSY potentials, which has underlying algebraic structure, by obtaining analytic
expressions for the entire energy spectrum of extended Hamiltonian with Scarf potential without ever
referring to underlying differential equation. However, a shape-invariance is not the most general inte-
grability condition as not all exactly solvable potentials seem to be shape-invariant. As an application
we obtain analytic expressions for the entire energy spectrum of extended Hamiltonian with Scarf
potential without ever referring to underlying differential equation.

In Section 6, we derive the classical analog of the `extended phase space´ SUSY quantum mechanics
and obtain the integrals of motion (Ter-Kazarian, 2013a). Consequently, we describe the extended
phase space (N=2)-SUSY algebra. In the second part, by means of an iterative scheme, first, we find
the approximate groundstate solutions to the extended Schrödinger-like equation, and then calculate
the parameters which measure the breaking of extended SUSY such as the groundstate energy. We
calculate a more practical measure for the SUSY breaking, in particular in field theories which is the
expectation value of an auxiliary field. We analyze non-perturbative mechanism for extended phase
space SUSY breaking in the instanton picture and show that this has resulted from tunneling between
the classical vacua of the theory. Finally, we deal with the independent group theoretical methods
with nonlinear extensions of Lie algebras from the perspective of extended phase space SUSY quantum
mechanics and, further, shows how it can be useful for spectrum generating algebra.

Section 7 offers a detailed analysis of the operator manifold approach to geometry and particle
physics (Ter-Kazarian, 1884, 1996, 1999a). The fundamental question that guides our discussion is
how did the geometry and particles come into being? To explore this query, the operator manifold
(OM)-formalism enables the unification of the geometry and the field theory. It yields the quantization
of geometry drastically different from earlier suggested schemes. It address itself to the question of the
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prime-cause of origin of geometry and basic concepts of particle physics such as the fundamental fields
of quarks and leptons with the spins and various quantum numbers, internal symmetries and so forth;
also basic four principles of Relativity, Quantum, Gauge and Color Confinement, which are, as it was
proven, all derivative and come into being simultaneously. The substance out of which the geometry
and particles are made is a set of new physical structures. The most promising aspect of our approach
so far is the fact that many of the important anticipated properties, basic concepts and principles of
particle physics are appeared quite naturally in the framework of suggested theory. In pursuing the
original problem further we have elaborated a new mathematical framework, which is, in fact, a still
wider generalization of familiar methods of secondary quantization with appropriate expansion over
the geometric objects. The OM formalism provides a natural unification of the geometry- yielding the
special and general relativity principles, and the quantized fermion fields serving as the basis for the
constituent subquarks.

In Section 8, we discuss the key points of field aspect of OM. The quantum field theory of the
OM is equivalent to configuration space wave mechanics employing the antisymmetric state functions
incorporated with geometric properties of corresponding objects. Therein, by applying the algebraic
approach we reach to rigorous definition of the OM. Considering an arbitrary superposition of state
vectors we get a whole set of explicit forms of the matrix elements of operator vector and covector
fields.

In Section 9, we briefly outline the key points of differential geometric aspect of OM. The operators
are the basis for all operator vectors of tangent section of principle bundle. The smooth field of
tangent operator vector is a class of equivalence of the curves. For any function of the ordinary class
of functions of smoothness, one may define an operator differential. Constructing matrix elements of
operator tensors, one produces the Cartan’s exterior forms. Whence, the matrix elements of symmetric
operator tensors equal zero. The differential operator form at given point can be defined as the exterior
operator form on tangent operator space of tangent operator vectors. The linear operator form of 1
degree is a linear operator valued function. The set of all linear operator forms defined at given point
fill up the operator vector space. We consider the integration of operator form. Next, we apply the
analog of exterior differentiation.

Section 10 deals with primordial structures and link establishing processes. It has cleared up the
physical conditions in which the geometry and particles come into being.

These structures are thought to be the substance out of which the geometry and particles are
made. There is not any restriction on the number of primordial structures of both types involved in
the link establishing processes simultaneously. Only, in the stable system the link stability condition
must be held for each linkage separately. The persistent processes of creation and annihilation of
the primordial structures proceed in different states. The processes of creation and annihilation of
`regular structures´ in lowest state are described by the OM formalism given above. In all higher states
the primordial structures are distorted (interaction states) and described by distorted link functions
defined on distorted manifolds. The `distorted ordinary structures´ emerge in geometry only in
permissible combinations forming a stable system. Below, in simplified schematic way we exploit the
background of the known colour confinement and gauge principles. Naive version of such construction
still should be considered as a preliminary one, which will be further elaborated to introduce a basis
for the subquarks. Due to the incompatibility commutation relations the transformation matrices
generate the unitary groups of internal symmetries U(1), SU(2), SU(3) corresponding to one-, two-
and three-dimensional rotations, while an action of physical system must be invariant under such
transformations (gauge principle). The subquarks emerge in the geometry only in certain permissible
combinations utilizing the idea of the subcolour (subquark) confinement principle, and have undergone
the transformations yielding the internal symmetries and gauge principle.

In Section 11, we generalize the OM-formalism via the concept of operator multimanifold (OMM),
which yields the multiworld (MW) geometry involving the spacetime continuum and internal worlds
of given number. All this is not merely an exercise in abstract reasoning but presumably bears
directly on the geometry of the universe in which we live. In an enlarged framework of the OMM
we define and clarify the conceptual basis of subquarks and their characteristics stemming from the
various symmetries of the internal worlds. The hypothesis of existence of the MW structures manifests
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its virtue by solving some key problems of particle phenomenology, when we attempt to suggest a
microscopic approach to the properties of particles and interactions.

A definite pattern for the theoretical description of particle physics has emerged based on the
framework of the Standard Model (SM) of high energy physics, which is built up from observation for
prediction and correlation of the new data. Although the SM has proven to be in spectacular agreement
with experimental measurements and quite successful in a predicting a wide range of phenomena,
however, it is not exception to the rule that as the phenomenological approach it suffers from own
difficulties. There were still many open key questions arisen inevitably that we have no understanding
why the SM is as it is? Why is the gauge symmetry? Why is this the particle spectrum? The
mechanism of the electroweak symmetry breaking is a complete mystery. A phenomenological standard
model (SM) of high energy physics with enormous success settles order in entangled experimental data.
Although it has proven to be in spectacular agreement with experimental measurements and highly
successful in a description and predicting a wide range of phenomena, however, it suffers from some
vexing problems and many key questions of both the phenomenological and SUSY aspects have yet to
be answered. To fill the void which the SM presents, and to innovate the solution to alluded problems,
we will use OM-formalism as a backdrop to discuss in Section 12 the key points of Microscopic theory
of the Standard Model (MTSM) of elementary particles (Ter-Kazarian, 1999b, 2001b). A theoretical
significance of the MSM, first of all, resides in the microscopic interpretation of all physical parameters.

With this perspective in sight, in Section 13, we further expose the assertions made in OM-
formalism, to recount some of the highlights behind of the supersymmetrization of MTSM (SuMTSM)
(Ter-Kazarian, 2001c). We promote the MTSM into supersymmetric framework in order to solve its
technical aspects of vacuum zero point energy and hierarchy problems, and attempt, further, to
develop its realistic viable minimal SUSY extension. Among other things that - the MTSM provides
a natural unification of geometry and the field theory, has clarified the physical conditions in which
the geometry and particles come into being, in microscopic sense enables an insight to key problems
of particle phenomenology and answers to some of its nagging questions - a present approach also
leads to quite a new realization of the SUSY yielding a physically realistic particle spectrum. It stems
from the special subquark algebra, from which the nilpotent supercharge operators are derived. The
resulting theory makes plausible testable implications for the current experiments at LEP2, at the
Tevatron and at LHC drastically different from those of the conventional MSSM models.

In Section 14, we further discuss the Spacetime deformation induced inertia effects (Ter-Kazarian,
2010, 2012). We construct a toy model of spacetime deformation induced inertia effects, in which
we prescribe to each and every particle individually a new fundamental constituent of hypothetical
2D, so-called, master-space (MS), subject to certain rules. The MS, embedded in the background
4D-spacetime, is an indispensable companion to the particle of interest, without relation to every
other particle. The MS is not measurable directly, but we argue that a deformation/(distortion of
local internal properties) of MS is the origin of inertia effects that can be observed by us. With this
perspective in sight, we construct the alternative relativistic theory of inertia (RTI) (Ter-Kazarian,
2010, 2012). We go beyond the hypothesis of locality with special emphasis on distortion of MS, which
allows to improve essentially the standard metric and other relevant geometrical structures referred to
a noninertial frame in Minkowski spacetime for an arbitrary velocities and characteristic acceleration
lengths. We compute the inertial force exerted on the photon in a gravitating system in the semi-
Riemann space. Despite the totally different and independent physical sources of gravitation and
inertia, this approach furnishes justification for the introduction of the weak principle of equivalence
(WPE), i.e., the universality of free fall. Consequently, we relate the inertia effects to the more general
post-Riemannian geometry. We derive a general expression of the relativistic inertial force exerted on
the extended spinning body moving in the Rieman-Cartan space.

In Section 15, we prob the inertia behind SUSY. We derive a standard Lorentz code (SLC) of
motion by exploring rigid double transformations of, so-called, master space-induced supersymmetry
(MS-SUSY), subject to certain rules (Ter-Kazarian, 2001b). The renormalizable and actually finite
flat-space field theories with Nmax = 4 supersymmetries in four dimensions, if only such symmetries
are fundamental to nature, yield the possible extension of Lorentz code (ELC), at which the SLC
violating new physics appears. In the framework of local MS-SUSY, we address the inertial effects.
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We argue that a space-time deformation of MS is the origin of inertia effects that can be observed by us.
We go beyond the hypothesis of locality. This allows to improve the relevant geometrical structures
referred to the noninertial frame in Minkowski space for an arbitrary velocities and characteristic
acceleration lengths. This framework furnishes justification for the introduction of the weak principle
of equivalence, i.e., the universality of free fall. The implications of the inertia effects in the more
general post-Riemannian geometry are briefly discussed.

In Section 16, we briefly outline the issues on the interaction of electrons with the intense ra-
diation: Einstein’s transition coefficients for Compton scattering, and the annihilation and creation
of electron-positron pairs at intense radiation (Ter-Kazarian, 1984c,e). Einstein’s ideas are devel-
oped for free-virtual, virtual-free and free-free transitions for electron-photon scattering at arbitrary
intense radiation by splitting Compton scattering into two components. Whereas, we consider the
general problem of interaction of electrons with the intense radiation via s-photon Compton scatter-
ing sγ + e → γ′ + e′. In doing this, we introduce a new concept of `effective photon´, and then
instead of s-photon scattering by electron with an `effective´ four-momentum, with equal footing,,
we should consider the scattering of one `effective photon´ by free electron. The Compton scatter-
ing is the s-channel of the photon-electron interaction. This formalism can be easily extended to
the t-channel of the photon-electron interaction, namely to processes of annihilation and creation of
electron-positron pairs. Certainly, since the Feynman diagram for these processes is topologically
identical to the corresponding diagram of the s-channel of the photon-electron interaction, then the
probability coefficients for the t-channel of the photon-electron interaction can be obtained directly
from the Compton scattering by performing simple replacements. Determining the probability co-
efficients of transitions in the state of thermodynamic equilibrium, we readily derive the radiation
transfer equation for nonequilibrium processes.

On this basis, in Section 17, we suggest the theory of multiphoton comptonization (Ter-Kazarian,
1984a,b,d, 1987, 1989a,b). Employing the method of `effective photons´, the integral kinetic equation
is derived that describes the time variation of the distribution function of quanta of non-equilibrium
intense radiation for their multiphoton Compton scattering on Maxwellian nonrelativistic electrons.
This equation is the crux for the constructed theory of multiphoton comptonization, which determines
the heating of thermal electrons during multiphoton induced Compton interaction. The integral kinetic
equation allows one to describe the evolution of intense spectral lines of radiation, for any spectral
widths, and any angular aperture of the radiation beam.

In Section 18, we discuss the unique definition of relative velocity of luminous source as measured
along the observer’s line-of-sight in a generic pseudo-Riemannian space-time. Using a way of sepa-
rating the spectral shifts into infinitesimally displaced `relative´ spectral bins and sum over them,
in Subsection 18.1, we overcome the ambiguity of the parallel transport of four-velocity, in order to
give an unique definition of the so-called kinetic relative velocity of luminous source as measured
along the observer’s line-of-sight in a generic pseudo-Riemannian space-time (Ter-Kazarian, 2021b).
A resulting relationship between the spectral shift and the kinetic relative velocity is utterly distinct
from a familiar global Doppler shift rule. We show that such a performance of having found a kinetic
relative velocity of luminous source, without subjecting it to a parallel transport, manifests its virtue
in particular case when adjacent observers are being in free fall and populated along the null geodesic.
So that the kinetic relative velocity is reduced to global Doppler velocity as studied by Synge (Synge,
1960).

In Section 19, we discuss the implications for the spatially homogeneous and isotropic Robertson-
Walker space-time (Ter-Kazarian, 2021a), which leads to cosmological consequences that the resulting
kinetic recession velocity of a galaxy is always subluminal even for large redshifts of order one or more,
and thus, it does not violate the fundamental physical principle of causality.

The physical outlook and concluding remarks are given in Section 20.

2. Two-step spacetime deformation-induced dynamical torsion

The TSSD as a guiding principle. When considering several connections with different curvature
and torsion, one takes spacetime simply as a manifold, and connections as additional structures. The
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universality of gravitation allows the Levi-Civita connection to be interpreted as part of the spacetime
definition. The form of Riemannian connection, which is a function of the tetrad fields and their
derivatives, shows that the relative orientation of the orthonormal frame ĕa(x̆ + d x̆) with respect to
ĕa(x̆)(parallel transported to (x̆+ d x̆) is completely fixed by the metric. Since a change in this orien-
tation is described by Lorentz transformations, it does not induce any gravitational effects; therefore,
from the point of view of the Principle of Equivalence, there is no reason to prevent independent
(due to arbitrary deformations) Lorentz rotations of local frames in the space under consideration. If
we want to use this freedom, the spin connection should contain a part which is independent of the
metric, which will realize an independent Lorentz rotation of frames under parallel transport. In this
way, we are led to a description of gravity which is not in Riemann space, but in the metric-affine
geometry. If all inertial frames at a given point are treated on an equal footing, the spacetime has to
have torsion, which is the antisymmetric part of the affine connection. Recall that the concept of a
linear connection as an independent and primary structure of spacetime is the fundamental proposal
put forward by Élie Cartan’s geometrical analysis. Cartan gave a beautiful geometrical interpretation
of torsion and curvature. Namely, the torsion is related to the translation of a vector, like curvature
is related to the rotation of a vector, when it is displaced around an infinitesimal closed path - loop,
and when this loop is developed in the flat space tangent to the manifold such that the tangent space
rolls without gliding around the loop. At the end of the journey one has a rotation if there is only
curvature, or the loop, mapped into the tangent space, has a small closure failure, i.e. a translational
misfit, a translation if there is only torsion, or both if there is curvature and torsion. When torsion is
nonvanishing, the affine connection is no longer coincident with the Levi-Civita connection, and the
geometry is no longer Riemannian, but one has a Riemann-Cartan U4 spacetime, with a nonsymmet-
ric, but metric-compatible, connection. On the other hand, teleparallel gravity attributes gravitation
to torsion, but in this case torsion accounts for gravitation not by geometrizing the interaction, but
by acting as a force. This theory represented a new way of including torsion into general relativity,
an alternative to the scheme provided by the usual Einstein-Cartan-Sciama-Kibble approach. How-
ever, for a specific choice of the free parameters, teleparallel gravity shows up as a theory completely
equivalent to Einstein’s general relativity, in which case it is usually referred to as the teleparallel
equivalent of general relativity. From this point of view, curvature and torsion are simply alternative
ways of describing the gravitational field, and consequently related to the same degrees of freedom of
gravity. The fundamental difference between these two theories above was that, whereas in the former
torsion is a propagating field, in the latter it is not, a point which can be considered a drawback of
this model. This prompt us below to separate these two different cases.

2.1. Model building: spacetime deformations

When considering several connections with different curvature and torsion, one takes spacetime
simply as a manifold, and connections as additional structures. From this view point, below we
shall tackle the problem of spacetime deformation. To start with, let us consider the holonomic
metric defined in the Riemann space, V4, as ğ = ğµν ϑ̆

µ ⊗ ϑ̆ν = ğ(ĕµ, ĕν) ϑ̆
µ ⊗ ϑ̆ν , with components,

ğµν = ğ(ĕµ, ĕν) in dual holonomic base {ϑ̆µ ≡ dx̆µ}. All magnitudes related with the Riemann space,
V4, will be denoted with an over ′ ˘ ′. The space, V4, has at each point a tangent space, T̆x̆V4, spanned
by the four tetrad fields, ĕa = ĕ µ

a ∂̆µ, which relate ğ to the tangent space metric, oab = diag(+−−−),
by oab = ğ(ĕa, ĕb) = ğµν ĕ

µ
a ĕ ν

b . The coframe members are ϑ̆b = ĕbµ dx̆
µ, such that ĕa ⌋ ϑ̆b = δba, where

⌋ denotes the interior product, namely, this is a C∞-bilinear map ⌋ : Ω1 → Ω0 with Ωp denotes the
C∞-modulo of differential p-forms on V4. In components ĕ µ

a ĕbµ = δba. One can consider general
transformations of the linear group, GL(4, R), taking any base into any other set of four linearly
independent fields. The notation, {ĕa, ϑ̆b}, will be used below for general linear frames. The converse
metric is ğµν = oab ĕ

a
µ ĕ

b
ν because of ĕ µ

a ĕaν = δµν . The anholonomy objects read C̆a : = d ϑ̆a =
1
2 C̆

a
bc ϑ̆

b ∧ ϑ̆c, where the anholonomy coefficients, C̆abc, which represent the curls of the base members

are C̆cab = −ϑ̆c([ĕa, ĕb]) = ĕ µ
a ĕ ν

b (∂̆µĕ
c
ν − ∂̆ν ĕ

c
µ) = −ĕcµ[ĕa(ĕ

µ
b ) − ĕb(ĕ

µ
a )]. The (anholonomic)

Levi-Civita (or Christoffel) connection can be written as Γ̆ab : = ĕ[a⌋dϑ̆b] − 1
2 (ĕa⌋ĕb⌋dϑ̆c) ∧ ϑ̆c

where ϑ̆c is understood as the down indexed one-form ϑ̆c = ocb ϑ̆
b. Next, we write a norm, ds, of
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the infinitesimal displacement, d xµ, on the general smooth differential 4D-manifold M4, in terms
of the spacetime structures of V4, as ds = Ω ν

µ ĕν ϑ̆
µ = Ω a

b ĕa ϑ̆
b = eρ ϑ

ρ = ea ϑ
a ∈ M4, where

Ω ν
µ is the world-deformation tensor, {ea = e ρ

a eρ} is the frame and {ϑa = eaρ ϑ
ρ} is the coframe

defined on M4, such that ea ⌋ϑb = δba, or in components, e µ
a ebµ = δba, also the procedure can be

inverted eaρ e
σ
a = δσρ . Provided, Ω ν

µ = π ρ
µ π ν

ρ , Ω
a
b = π a

c π c
b = Ω ν

µ ĕaν ĕ
µ
b , eρ = π ν

ρ ĕν ≡ ∂ρ,

ϑρ = πρµ ϑ̆µ ≡ d xρ, xρ ∈ U ∈ M4. Hence the deformation tensor, Ωab, yields a local tetrad

deformations eaϑ
a = Ωab ĕa ϑ̆

b, ec = π a
c ĕa, ϑc = πcb ϑ̆

b. A general spin connection then transforms
according ωabµ = π a

c ω̆
c
dµπ

d
b + π a

c ∂µ π
c
b. The matrices, π(x) : = (π a

b )(x), can be called first

deformation matrices, and the matrices γcd(x) = oab π
a
c (x)π b

d (x), as the second deformation matrices.
The matrices, πac(x) ∈ GL(4, R) ∀x, in general, give rise to right cosets of the Lorentz group, i.e.
they are the elements of the quotient group GL(4, R)/SO(3, 1).

2.2. The post-Riemannian geometry

In what follows, we deal with a more generic spacetime deformation π(x), consisted of a double

deformations (
•
π (

•
x), σ(x) ) of the infinitesimal displacements described on a generic smooth differential

4D manifold in terms of the spacetime structures of a Riemann space. The first deformation matrix
•
π (

•
x), will be conveniently chosen in such a way that the deformed connection is set as the Weitzenböck

connection, and the associated deformed spin-connection vanishes. the Weitzenböck connection is a
connection presenting a non-vanishing torsion, but vanishing curvature. This recovers a particular
case of the teleparallel gravity theory with the dynamical torsion. All magnitudes related with the
teleparallel gravity will be denoted with an over `•´. Then, we will be able, further, to generalize
the Einstein-Cartan equations for which the spin generates a dynamical torsion part, associated with
spacetime deformation σ(x), in the canonical energy-momentum tensor producing a deviation from
Riemannian geometry. Keeping in mind aforesaid, let a deformation (ĕ, ϑ̆)→ (e, ϑ) be now performed
in the two-steps:

@
@

@R
∫

∫
∫	?

(ĕ(x̆), ϑ̆(x̆))

(e(x), ϑ(x))

(
•
e (

•
x),

•
ϑ (

•
x))π(x)

•
π (

•
x)

σ(x)

Two-step deformation map

where the first deformation matrix,
•
π (

•
x) : = (

•
π a

b )(
•
x), is the solution of the following equa-

tion:
•
π a
c (

•
x)

•
∂µ

•
π−1 c

b(
•
x) = ω̆abµ(x̆), where ω̆

a
bµ(x̆) is the spin connection defined in the Riemann

space. We recall that for an arbitrary matrix M, Tr
{
M−1∂µM

}
= ∂µ ln DetM, where Det- de-

notes the determinant, Tr- the trace. Then, in matrix notation
•
π:= (

•
π a

b ) and ω̆µ : = (ω̆abµ), we

have Tr{ •π (
•
x)

•
∂µ

•
π−1 (

•
x)} = −

•
∂µ lnDet

•
π (

•
x) = Tr ω̆µ(x̆), which gives Det

•
π (

•
x) = Det

•
π0

exp{−
∫ •
x
0 Tr ω̆µ(x̆) d

•
x ′µ}. Hence •

π (
•
x) =

•
π (0) exp[−

∫ •
x
0 ω̆µ(x̆) d

•
x ′µ], where

•
π (0) ≡ C •

π0, C is an

arbitrary proper constant matrix |C| = 1. Provided,
•
Ω ν

µ =
•
π ρ
µ

•
π ν
ρ ,

•
Ω a

b =
•
π a
c

•
π

c

b =
•
Ω ν

µ ĕaν ĕ
µ
b ,

•
eρ=

•
π ν
ρ ĕν ≡

•
∂ρ=

∂

∂
•
xρ
,

•
ϑ ρ =

•
π ρ

µ ϑ̆µ ≡ d
•
x ρ. Under a local spacetime deformation

•
π (

•
x), the tetrad

changes according to
•
ea

•
ϑ a =

•
Ω a

b ĕa ϑ̆
b,

•
ec=

•
π a

c ĕa,
•
ϑ c =

•
π c

b ϑ̆
b, and, the general deformed spin

connection vanishes
•
ω a

bµ =
•
π a
c ω̆cdµ

•
π d

b+
•
π a
c

•
∂µ

•
π c

b =
•
e a

σ

•
Γ σ

ρµ
•
e ρ
b +

•
e a

ρ

•
∂µ

•
e ρ
b ≡ 0. In fact,

a general linear connection,
•
Γ
µ
ρσ, is related to the corresponding spin connection,

•
ω a

bµ, through the

inverse
•
Γ

µ
ρσ =

•
e µ
a

•
∂σ

•
e a

ρ+
•
e µ
a

•
ω a

bσ

•
e b

ρ =
•
e µ
a

•
∂σ

•
e a

ρ, which is the the Weitzenböck connec-
tion revealing the Weitzenböck spacetime W4 of the teleparallel gravity (see next subsect.). Thus,
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•
π (

•
x) can be referred to as the Weitzenböck deformation matrix. The above equations are simply

different ways of expressing the property that the total—that is, acting on both indices—derivative
of the tetrad vanishes identically. According to the two-step spacetime deformations map, the next
first deformation matrices σ(x) : = (σ a

b )(x), contribute to corresponding ingredient part, χ d
b , of

general deformation tensor, Ω a
b = χ d

b

•
Ω a

d = χ d
b

•
Ω̃ ν

ρ ĕ a
ν ĕρd, χ

c
d = σ c

e σ e
d , χ

d
e

•
π e
b = χ e

b

•
π d
e ,

or Ω ν
µ = χ ρ

µ

•
Ω̃ ν

ρ , χ
ρ
µ = χ d

b ĕ ρ
d ĕbµ. Under a deformation, σ(x), in general, the tetrad changes

according to ec = (σ d
c

•
π a
d ) ĕa = σ d

c
•
ed, ϑ

c = (σce
•
π e

b) ϑ̆
b = σce

•
ϑ e, eρ = σ σ

ρ
•
eσ, ϑ

ρ = σ ρ
σ

•
ϑ σ,

eρ = σ c
ρ

•
ec, ϑ

ρ = σ ρ
c

•
ϑ c, σ c

ρ = σ σ
ρ

•
e c
σ , σ

ρ
c = σρσ

•
e σ

c, ecϑ
c = χ c

d

•
ec

•
ϑ d = Ω a

b ĕa ϑ̆
b. The cor-

responding second deformation matrices read γcd(x) = χee′
•
π e
c

•
π e′
d ,

•
γcd (

•
x) = oab

•
π a
c (

•
x)

•
π b
d (

•
x),

where χee′ = oab σ
a
e σ b

e′ . Under a local tetrad deformation, a general spin connection transforms ac-

cording to ω′a
bµ = σ a

c
•
ω c

dµ σ
d
b + σ a

c ∂µ σ
c
b, such that

(σ)
ω a

bµ : = ω′a
bµ = σ a

c ∂µ σ
c
b, is referred to

as the deformation related frame connection, which represents the deformed properties of the frame
only. Then, it follows that the affine connection, Γ, related to tetrad deformations, transforms through

Γµρσ = e µ
a ∂σ e

a
ρ+e

µ
a

(π)
ω a

bσ e
b
ρ = σ µ

a ∂σ σ
a
ρ+σ

µ
a

(σ)
ω a

bσ σ
b
ρ, where σ

µ
a σ b

µ = δba, also the procedure

can be inverted σ µ
a σ a

ν = δµν , and that
(π)
ω a

bµ : = ωabµ = πac ω̆
c
dµ π

db+πac ∂µ π
cb, is the spin connec-

tion. Then, the line element, d s2 may alternatively be recast in general form of the spacetime or frame
objects, respectively, as d s2 = gµν ϑ

µ⊗ϑν = g(eµ, eν)ϑ
µ⊗ϑν = (Ω ν

µ Ω σ
ρ ) ğνσ ϑ̆

µ⊗ ϑ̆ρ = oab ϑ
a⊗ϑb =

(Ω c
a Ω d

b )ocd ϑ̆
a ⊗ ϑ̆b = γcd ϑ̆

c ⊗ ϑ̆d. For our convenience, the notation, {
(A)
e a,

(A)

ϑ b} (A = π, σ), will be

used below for general linear frames {
(A)
e a,

(A)

ϑ b} = {(
(π)
e a,

(σ)
e a), (

(π)

ϑ b,
(σ)

ϑ b)} ≡ {(ea,
•
ea), (ϑ

b,
•
ϑ b)},

where
(A)
e a ⌋

(A)

ϑ b = δba, or in components,
(A)
e µ

a
(A)
e b

µ = δba, also the procedure can be inverted
(A)
e a

ρ

(A)
e σ

a = δσρ . Provided,
(A)
e µ

a = (
(π)
e µ

a ,
(σ)
e µ

a ) ≡ (e µ
a , σ

µ
a ). Hence, the affine connection

can be re-written in the abbreviated form Γµρσ =
(A)
e µ

a ∂σ
(A)
e a

ρ+
(A)
e µ

a
(A)
ω a

bσ

(A)
e b

ρ. Since the
first deformation matrices π(x) and σ(x) are arbitrary functions, the transformed general spin con-

nections
(π)
ω (x) and

(σ)
ω (x), as well as the affine connection, are independent of tetrad fields and

their derivatives. In what follows, therefore, we will separate the notions of space and connections-
the metric-affine formulation of gravity. A metric-affine space (M4, g, Γ) is defined to have a metric
and a linear connection that need not dependent on each other. The new geometrical property of
the spacetime, are the nonmetricity one-form Nab and the affine torsion two-form T a representing a
translational misfit. These, together with the curvature two-form R b

a , symbolically can be presented
as (Nab, T

a, R b
a ) ∼ D(gab, ϑa, Γ b

a ), where D is the covariant exterior derivative. We may introduce
the contortion tensors related to the deformation related frame connection and the spin connection:
(A)

K c
aν =

(A)
ω c

aν+
(A)

∆ c
aν , , where

(A)

∆ µρν=
(A)
e µa

(A)
e a

[ρ, ν]−
(A)
e ρa

(A)
e a

[µ, ν]−
(A)
e νa

(A)
e a

[µ, ρ], is referred to as
the the Ricci coefficients of rotation. Both the contortion tensor and spin connection are antisymmet-
ric in their first two indices. The relations between the corresponding torsion and contortion tensors

read
(A)

K
ρ
µν : = 2

(A)

Q
ρ

(µν)+
(A)

Q ρ
µν ,

(A)

Q ρ
µν =

(A)

K
ρ
[µν],where

(A)

Q ρ
µν =

(A)
ω ρ

[µν]+
(A)
e a

[µ, ν]

(A)
e ρ

a. Let
us define then a translation in the connection space. Suppose a point in this space will be a Lorentz

connection,
(π)
ω (x) : =

(π)
ω bc

µ(x) Jbc d x
µ, presenting simultaneously curvature and torsion written in

the language of differential forms as
(π)

R= d
(π)
ω +

(π)
ω

(π)
ω ≡ D(π)

ω

(π)
ω ,

(π)

T = d e+
(π)
ω e ≡ D(π)

ω
e, where

D(π)
ω

denotes the covariant differential in the connection
(π)
ω . For more detail see (Ter-Kazarian, 2011).

2.3. Teleparallel gravity

The total covariant derivative of a geometrical object carrying both flat and curvilinear indices
is covariant with respect to both diffeomorphism and local Lorentz symmetries. In both, W4 and
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U4, spaces the total covariant derivative of the vierbein field, eaν , is assumed to vanish Dµ eaν =
∂µ e

a
ν − Γρνµ eaρ + ωabµ e

b
ν = 0, which provides a relation between both connections. We may now

introduce the Weitzenböck torsion
•
T

ρ
µν : =

•
Γ

ρ
µν−

•
Γ

ρ
νµ, and the Weitzenböck contortion:

•
K

ρ
µν : = 1

2(
•
T ν

ρ
µ+

•
T µ

ρ
ν+

•
T ρ

µν). We then obtain
•
T

ρ
µν = T ρµν − ωρµν + ωρνµ. and

•
K ρ

µν =
Kρ

µν + ωρµν . Below, we will concentrate on the specific space, W4, of vanishing affine torsion in

the class of frames, {•ea}: T ρµν = 0. While, the metricity condition holds:
•
Nab: = −

•
D gab = 0,

and that Γρµν =
◦
Γ

ρ
µν , as in the Riemann space. Consequently, Kρ

µν = 0, and
•
K ρ

µν = ωρµν .

Hence,
•
Γ ρ

µν =
◦
Γ ρ

µν+
•
K ρ

µν = Γρµν+
•
K ρ

µν , while, the Weitzenböck covariant derivative of the

tetrad field vanishes identically:
•
Dν

•
e a

µ ≡
•
∂ν

•
e a

µ−
•
Γ
ρ
µν

•
e a

ρ = 0. This is the so called distant, or
absolute parallelism condition. As a consequence of this condition, the corresponding Weitzenböck

spin connection also vanishes identically:
•
ω c

aν =
◦
ω c

aν+
•
K c

aν ≡ 0. Of course, these relations above

are true only in one specific class of frames. In fact, since
•
ω c

aν is the Weitzenböck spin connection,
if it vanishes in a given frame, it will be different from zero in any other frame related to the first by
a local Lorentz transformation. In teleparallel gravity, the coupling of spinor fields with gravitation
is a highly controversial subject. However, it seems there is no compelling arguments supporting the

choice of the Weitzenböck spin connection
•
ω c

aν as the spin connection of teleparallel gravity, otherwise
several problems are immediately encountered with such coupling prescription. The teleparallel gravity
becomes consistent and fully equivalent with GR, even in the presence of spinor fields if we write the

minimal coupling prescription as
•
∂a→

•
Da=

•
e µ
a

•
Dµ with

•
Dµ the teleparallel Fock-Ivanenko derivative

written in the form
•
Dµ: =

•
∂µ − i

2

•
Ω a

bµ J
b

a , where the teleparallel spin connection,
•
Ω a

bµ, reads
•
Ω a

bµ : = 0−
•
K a

bµ. Field equations can be derived from the least action, δ
•
S= 0, with the total

invariant action of conventional theory of teleparallel gravity.

2.4. The TSSD-induced dynamical torsion in tensorial form

In this section we construct the TSSD-U4 theory, which considers curvature and torsion as repre-
senting independent degrees of freedom. The RC manifold, U4, is a particular case of general metric-
affine manifoldM4, restricted by the metricity condition Nλµν = 0, when a nonsymmetric linear con-
nection is said to be metric compatible. Taking the antisymmetrized derivative of the metric condition
gives an identity between the curvature of the spin-connection and the curvature of the Christoffel con-

nection
(A)

R ab
µν (

(A)
ω )

(A)
e ρb −Rσρµν(Γ)

(A)
e a

σ = 0, where
(A)

R ab
µν (

(A)
ω ) = ∂µ

(A)
ω ab

ν −∂ν
(A)
ω ab

µ +
(A)
ω ac

µ

(A)
ω

b
νc−

(A)
ω ac

ν

(A)
ω b

µc, R
σ
ρµν(Γ) = ∂µΓ

σ
νρ−∂νΓσµρ−ΓλµρΓσνλ+ΓλνρΓ

σ
µλ. Hence, the relations between the scalar

curvatures for an U4 manifold read
(A)

R (
(A)
ω ) ≡

(A)
e µ

a
(A)
e ν

b

(A)

R ab
µν (

(A)
ω ) = R(g, Γ) ≡ gρν Rµρµν(Γ). This

means that the Lorentz and diffeomorphism invariant scalar curvature, R, becomes either a function

of
(A)
e a

µ only, or a function of gµν only. Certainly, it can be seen by noting that the Lorentz gauge

transformations can be used to fix the six antisymmetric components of
(A)
e a

µ to vanish. Then in
both cases diffeomorphism invariance fixes four more components out of the six gµν , with the four
components g0µ being non dynamical, obviously, leaving only two dynamical degrees of freedom. This
shows the equivalence of the vierbein and metric formulations holds.

The total Einstein-Cartan action can be written in the terms of the spin connection,
(π)
ω and

the deformation related frame connection,
(σ)
ω , in the form S = S

(A)
g (

(A)
ω ) + S

(π)
m (

(π)
ω ) = − 1

2æ

∫ (A)

R
√
−g dΩ+

∫
L
(π)
m (g, Ψ, ∇Ψ)

√
−g dΩ, where S(A)

g (A = π, σ) is the action for the gravitational field

written in terms of scalar curvature
(A)

R (
(A)
ω ) for an U4 manifold, while S

(π)
m is the action for the matter

fields, æ is the coupling constant relating to Newton gravitational constant æ = 8πG/c4. The action
regards the contortion tensor as a variational variable, in addition to the gravitational and matter

fields. The gravitational action can be decomposed as S
(A)
g = − 1

2æ

∫ ◦
R
√
−g dΩ + S

(A)
Q , where the
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torsional action reads S
(A)
Q = 1

2æ

∫
dΩ
√
−gL(A)

Q The coupling constant of the spin-tortion is the same
of that of the mass-metric distortion field interaction. The dynamical spin density tensor, which is

antisymmetric in the Lorentz indices, reads
(π)
s ab

µ = 2 δ(
√
−g L(π)

m )

δ
(π)
ω µ

ab

= 2 δ(
√
−g L(π)

m )

δ
(π)

K
µ
ab

=
√
−g

(π)

S ab
µ .

The variation of the action have to be applied by independent variation of the fields g,
(π)
ω (x) (or

equivalently
(π)

K (x)) and Ψ(x), Ψ(x). In terms of the Euler-Lagrange variations, the least action

δS = 0 gives δgµν :
◦
Gµν +

δ(
√
−g L(A)

Q )

δgµν
= −2æ δ(

√
−g L(π)

m )
δgµν ; δ

(π)
ω µρ

ν :
∂

(A)
ω µ′ρ′

ν′

∂
(π)
ω µρ

ν

δ

δ
(A)
ω µ′ρ′

ν′

(
√
−g L(A)

Q ) =

− δ(
√
−g L(π)

m )

δ
(π)
ω µρ

ν

; δΨ : δ (
√
−g L(π)

m )
δΨ = 0; δΨ : δ (

√
−g L(π)

m )

δΨ
= 0, where

◦
Gµν is the Einstein tensor. Hence,

the first Einstein-Cartan equation is written
◦
Gµν= æ

(A)

θ µν , where including the spin contributions

directly into the energy-momentum tensor, we introduce the canonical energy-momentum tensor
(A)

θ µν :

= Tµν+
(A)

U µν . For variations δ
(π)

K ν
µρ (or equivalently

(π)
ω ν

µρ ), the δS = 0 gives the second

Einstein-Cartan equation
∂

(A)
ω µ′ρ′

ν′

∂
(π)
ω µρ

ν

(
(A)

T )
(A)

T ν′
µ′ρ′ = −1

2æ
(π)

S ν
µρ,where the modified torsion reads

(A)

T ν
µρ : = 1

2
√
−g

δ(
√
−g L(A)

Q )

δ
(A)
ω µρ

ν

=
(A)

Q ν
µρ + δνµ

(A)

Q ρ −δνρ
(A)

Q µ . Thus, the equations of the standard

Einstein-Cartan theory can be recovered for A = π:
◦
Gµν= æ

(π)

θ µν ,
(π)

T ν
µρ = −1

2 æ
(π)

S ν
µρ, in which

the equation defining torsion is the algebraic type, such that torsion at a given point in spacetime does
not vanish only if there is matter at this point, represented in the Lagrangian density by a function
which depends on torsion. Unlike the metric, which is related to matter through a differential field
equation, torsion does not propagate. However, these equations can be equivalently replaced by the set

of modified Einstein-Cartan equations for A = σ:
◦
Gµν= æ

(σ)

θ µν , Θµ′ρ′ν
ν′µρ (

(σ)

T )
(σ)

T ν′
µ′ρ′ = −

1
2 æ

(π)

S ν
µρ,

where
∂

(σ)
ω µ′ρ′

ν′

∂
(π)
ω µρ

ν

(
(σ)

T ) : = Θµ′ρ′ν
ν′µρ (

(σ)

T ) ≡ Θµ′ρ′ν
ν′µρ (π(x), σ(x)), in which the torsion

(σ)

T ν
µρ is a dynamical if

only Θµ′ρ′ν
ν′µρ (π(x), σ(x)) ̸= δµ

′
µ δρ

′
ρ δνν′ . Therefore, it is spin that generates a nonsymmetric part in the

canonical energy-momentum tensor and then, produces a deviation from the Riemann geometry. The

variation of S
(π)
m with respect to the metric-compatible affine connection in the metric-affine variational

formulation of gravity is equivalent to the variation with respect to the torsion (or contortion) tensor.

Consequently, the dynamical spin density
(π)
s µ

ab is identical with
(π)

Σ
µ

ab = ∂(
√
−g Lm)(π)

∂Ψ,µ

(π)

S ab Ψ,

referred to as the canonical spin density. The canonical tensor e
(A)

θ µν= τµν = eaν τ
a
µ is generally not

symmetric, whereas the canonical energy-momentum density is identical with the dynamical tetrad

energy-momentum density e
(A)

θ a
µ = τ a

µ , where e : = det|eµa | =
√
−g. The relation between the

tetrad dynamical energy-momentum tensor and the metric dynamical energy-momentum tensor for

matter fields is
(A)

θ (µν)= Tµν . The Belinfante-Rosenfeld relation, between the dynamical metric and

dynamical tetrad (canonical) energy-momentum tensors, can be written as
(A)

θ µν −Tµν = 1
2 ∇

∗
ν(

(π)

S

ν
µρ −

(π)

S ν
ρ µ+

(π)

S ν
µρ) =

(A)

U µν , where ∇∗
µ = ∇µ − 2

(π)

Q µ is the modified covariant derivative. The
conservation law for the spin density results from antisymmetrizing the Belinfante-Rosenfeld relation

with respect to the indices µ, ρ:
(π)
s ρ

µν ;ρ = τµν − τνµ + 2
(π)

Q ρ
(π)
s ρ

µν or 1
2 ∇

∗
ρ

(π)

S
ρ

µν =
(A)

θ [µν].

2.5. TSSD-U4 theory in the language of the differential forms

In this subsection we re-derive the field equations of the TSSD-U4 theory by using the exterior
calculus. The fields have to be expressed in terms of differential forms in order to build the total
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Lagrangian four-form as the appropriate integrand of the action. Let
(A)
ω ab =

(A)
ω ab

µ ∧ d xµ be the
one-forms of corresponding connections assuming values in the Lorentz Lie algebra. The action for

gravitational field can be written in the form Sg =
◦
S +SQ = − 1

4æ

∫
⋆

◦
R +SQ, provided,

◦
R≡

◦ (σ)
R cd

∧
•
ϑ c ∧

•
ϑ d =

◦ (π)
R cd ∧ϑc ∧ ϑd. Consider a phenomenological action of the spin-torsion interaction,

SQ, such that the variation of the connection one-form
(A)
ω ab yields δ SQ = 1

æ

∫
⋆

(A)

T ab ∧ δ
(A)
ω ab,

where ⋆
(A)

T ab: = 1
2 ⋆ (

(A)

Q a ∧
(A)
e b), and that

(A)

Q a =
(A)

D
(A)

ϑ a = d
(A)

ϑ a+
(A)
ω a

b ∧
(A)

ϑ b, with the

wedge product monomial,
(A)

ϑ µνα, defined on the U4 space. The variation of the action describing

the macroscopic matter sources S
(π)
m with respect to coframe ϑa, and connection one-form

(π)
ω ab reads

δ Sm =
∫
δ Lm =

∫
(−⋆

(A)

θ a ∧ δ
(A)

ϑ a + 1
2 ⋆

(π)

Σ ab ∧ δ
(π)
ω ab), where ⋆

(A)

θ a is the dual three-form

relating to the canonical energy-momentum tensor,
(A)

θ
µ
a , by ⋆

(A)

θ a=
1
3!

(A)

θ
µ
a εµναβ

(A)

ϑ ναβ . and

⋆
(π)

Σ ab= −⋆
(π)

Σ ba is the dual three-form corresponding to the canonical spin tensor, which is identical

with the dynamical spin tensor
(π)

S abc, namely ⋆
(π)

Σ ab=
(π)

S
µ
ab εµναβ ϑ

ναβ . The integral
◦
S= − 1

4æ

∫
⋆

◦
R=

− 1
4æ

∫
⋆

◦ (A)
R cd ∧

(A)

ϑ c ∧
(A)

ϑ d, is the usual Einstein action, written in the language of the exterior

forms. Actually, writing explicitly the holonomic indices, we have
◦
S= − 1

8æ

∫ ◦ (A)
R ab

µν

(A)
e c

α

(A)
e

d
β εabcd

(A)

ϑ µναβ = − 1
8æ

∫ ◦ (A)
R ab

µν εabαβ ε
µναβ dΩ. Also, one may readily verify that

◦
S= − 1

2æ

∫ ◦ (A)
R

ab
µν

(A)
e [µ

α
(A)
e ν]

β e dΩ = − 1
2æ

∫ ◦
R
√
−g dΩ. and δ SQ = 1

æ

∫ (A)

T β
µν δ

(A)
ω µν

β . The variation of the
total action, given by the sum of the gravitational field action and the matter action, with respect

to the ea,
(π)
ω ab, and Ψ, gives 1) 1

2

◦ (A)
R cd ∧

(A)

ϑ c = æ
(A)

θ d, 2)
∂

(A)
ω a′b′

∂
(π)
ω ab

∧ ⋆
(A)

T a′b′= −1
2 æ ⋆

(π)

Σ ab,

3) δ L
(π)
m
δΨ = 0, δ L

(π)
m

δΨ
= 0.

2.6. Short-range spin-spin interaction

In fact, torsion constitutes the more natural and simple way to introduce spin in general relativity.
For that reason it is of fundamental importance to see if there are some experiences that indicate,
if not directly at least indirectly, the presence of torsion. The most important experiments include
neutron interferometry, neutron spin rotation induced by torsion in vacuum, anomalous spin-dependent
forces with a polarized mass torsion pendulum, space-based searches for spin in gravity, etc. On the
other hand, from the theoretical point of view, a problem of primary importance is to obtain the
equation describing the short-range propagating torsion and showing the existence of torsion waves
that may contribute a new special polarized effects in these experiments. A broad motivation of
the present theoretical work just is the propagating torsion, which, in natural way, can be made

a short-range propagating. We then see that it is the spin
(π)

S and spacetime deformations π(x)

and σ(x) that define the torsion
(A)

Q :
(A)

Q ν
µρ =

(A)

T ν
µρ +

1
2δ
ν
µ

(A)

T λ
ρλ −

1
2δ
ν
ρ

(A)

T λ
µλ, which, in turn,

defines the Einstein’s field tensor
◦
G. This allows us to define the constraint, which, imposed upon the

spacetime deformations π(x) and σ(x), yields the torsion and spin-spin interaction to be short-range

propagating: Θµ′ρ′ν
ν′µρ (π(x), σ(x)) = (□ +M2

T )
(σ)

T ν
µρ (

(σ)

T −1) µ′ρ′

ν′ , where □ is a generalization of the
d’Alembertian operator for covariant derivatives defined on the RC manifold, U4. Then, the set of

modified Einstein-Cartan equations reduced to
◦
Gµν= æ

(σ)

θ µν , (□ +M2
T )

(σ)

T ν
µρ = −1

2 æ
(π)

S ν
µρ. At

large distances r > λT ≡ ℏ
MT c (Compton length), torsion vanishes

(σ)

T (r) = 0, so in this case the
torsion and spin-spin interaction are short-range propagating. To carry through TSSD-U4 theory in
full generality, below, for example, we may explicitly write the torsionic equation for the Dirac spinor
matter source coupled to the metric and to the torsion, both contained implicitly in the connection
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(π)
ω ba

µ. The spinor connection
(π)

Γ µ is given, up to the addition of an arbitrary vector multiple of

I, by the Fock-Ivanenko coefficients:
(π)

Γ µ= −1
4

(π)
ω abµ γ

a γb = −1
2

(π)
ω abµ S

ab = −1
8 e

ν
c;µ[

(π)
g ν , γ

c] =

1
8 [

(π)
g ν

;µ,
(π)
g ν ], with S

ab = 1
2 γ

[a γb] = 1
4 (γ

a γb − γb γa) - the spinor representation, where γa are Dirac

matrices, and
(A)
g µ =

(A)
e µ

a γa. Consequently, the torsionic equation can be recast into the form

(□ +M2
T )

(σ)

T ν
µρ = − i

4 æ ψ̄
(π)
g [µ

(π)
g ν

(π)
g ρ] ψ, where ψ satisfies the Heisenberg-Ivanenko non-linear

equation: i
(π)
g ρ ψ: ρ − 3æ

8 (ψ̄
(π)
g ργ

5ψ)
(π)
g ργ5 ψ = mψ. This is the Dirac equation written in the

so-called second-order formalism, in which the contortion tensor is given explicitly in terms of the
spin sources. In the limit when we neglect the usual Riemannian terms depending on the metric
and the curvature (∂;µ → ∂µ), as we are interested only in the spin-torsion interaction, we have

then
(σ)

T ν
µρ(x) = æ

2

∫
GF (x, x

′)
(π)

S ν
µρ(x

′) d4x′ where the Feynman propagator reads GF (x, x
′) =

− 1
4π δ(s) +

MT
8π

√
s
H

(1)
1 (MT

√
s) if s ≥ 0; and GF (x, x

′) = − iMT
4π2

√
−sK1(MT

√
−s) if s < 0, provided

s = (x − x′)2, H(1)
1 is the Hankel function of first kind and K1 is a modified Bessel function. We

emphasize that the short-range propagating torsion may contribute a new special polarized effects
in the gravitational waves experiments. Neutron interferometry is powerful method to verification
of gravitational spin-torsion interaction, whereas it was assumed that the neutron beams (I and II)
are polarized in the antiparallel direction to the z axis. In the situation when one (or both) neutron
beam(s) interact with torsion the states should be changed, and the interferences of these beams leads
to the effect of the polarized rotation plane. So we can observe the effect of the polarized rotation
plane due to quantum interferometry, which is caused by the interaction with torsion. At this point
we cut short our discussion, and refer the interested reader to original paper (Ter-Kazarian, 2011) for
more detail.

3. The TSSD-metric-affine gravity behind the spacetime deformation

At low energies the spacetime group associated the matter fields is the Poincaré group (PG). An
extension of the Poincaré gauge theory of gravity constructed in the RC geometry, to the most general
spacetime symmetry gauge theory, the MAG theory, has the most general type of covariant derivative:
in addition to curvature and torsion, the MAG also has nonmetricity, i.e., a nonmetric compatible
connection. Hence parallel transport no longer preserves length and angle.

3.1. Outline of the key points of TSSD-MAG

Note that there is only indications (but no conclusive evidence) for assuming invariance of physical
systems under the action of the entire affine group, and that in MAG one is far from actually calculating
S-matrix elements. Although the theoretical structure of this theory has been developed, we do not
yet much understanding of what new physics is allowed by the MAG theory. One source of improved
understanding is exact solutions, and references therein. But due to the highly nonlinear nature of
theory, exact solutions are not easily found unless they have a great deal of symmetry. However,
to carry in full generality through the extension of TSSD-ideas as applied to more general metric-
affine gravity, it reasonable as a next step to gauge immediately the 4 + 16 parameter affine group
A(4, R) = R4 ⊂× GL(4, R), which lacks a metric structure altogether and to introduce the metric
subsequently. General affine invariance adds dilation and shear invariance as physical symmetries to
Poincaré invariance, and both of these symmetries are of physical importance. Dilation invariance
is a crucial component of particle physics in the high energy regime. Shear invariance was shown to
yield representations of hadronic matter, the corresponding shear current can be related to hadronic
quadrupole excitations. From this in the framework of the gauge theory of the affine group with
a metric supplemented, as a physically meaningful field theory, it is speculated that the invariance
under affine transformations played an essential part at an early stage of the universe, such that todays
Poincaré invariance might be a remnant of affine invariance after some symmetry breaking mechanism.
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Thus MAG encompasses the PG as a subcase. A brief outline of the key points of relevance to the
context of TSSD can be stated here. To this aim, one enlarges at any point of the base manifold x ∈ M̃
a tangent space TxM̃ to an affine tangent space AxM̃ by allowing to freely translate elements of TxM̃
to different points p ∈ AxM̃ . The collection of all affine tangent spaces AxM̃ forms the affine bundle

AM̃ . An affine frame of M̃ at x is a pair (
(A)
e a, p) (where as before A = π, σ) consisting of a linear frame

(A)
e a∈ LxM̃ and a point p ∈ AxM̃ . The origin of AxM̃ is that point ox ∈ AxM̃ for which the affine frame

(
(A)
e a, ox) ∈ AxM̃ reduces to the linear frame

(A)
e a∈ LxM̃ . The transformation behavior of an affine

frame (
(A)
e a, p) under an affine transformation (Λ, τ) with τ = τa ∈ T 4 ≃ R4 and Λ = Λa

b ∈ GL(4, R)

reads (
(A)
e , p)

(Λ,τ)−→ (
(A)
e ′, p′) = (

(A)
e Λ, p+τ) = (

(A)
e b Λa

b, p+τa
(A)
e a) . The affine group acts transitively

on the affine tangent spaces AM̃ : Any two affine frames of some AxM̃ can be related by a unique affine
transformation. Consequently, the notion of an affine frame should be enlarged to include all GL(4, R)-
representations needed. The gauging is accomplished by the introduction of the generalized affine

connection as a prescription (
(A)

Γ (L),
(A)

Γ (T )), which maps infinitesimally neighbouring affine tangent

spaces AxM̃ , Ax̃M̃ , where x̃ = x+dx, by an A(4, R)-transformation onto each other. The generalized

affine connection consists of a GL(4, R)-valued 1-form
(A)

Γ (L) and an R4-valued one form
(A)

Γ (T ), both
of which generate the required A(4, R)-transformation. The two affine tangent spaces get now related

by an affine transformation according to the prescription dp =
(A)

Γ (T )a
(A)
e a, d

(A)
e a=

(A)

Γ
(L)b
a

(A)
e b . By

introducing origins in AxM̃ , i.e. by soldering AxM̃ to M̃ , one losts translational invariance in AxM̃
but gained a local one-to-one correspondence between translations in AxM̃and diffeomorphisms on M̃ .
However, one can introduce translational invariance by demanding diffeomorphism invariance instead
and continue to work with this modified notion of translation invariance. The diffeomorphisms itself,
as horizontal transformations in their active interpretation, cannot be gauged according to the usual
gauge principle and thus do not furnish their own gauge potential.

3.2. Lagrangian formulation of the TSSD-MAG

In the Lagrangian formulation of a general metric-affine theory it was assumed that the matter
fields are described in terms of manifields. Actually, the matter fields, denoted in the following by ψ, are
supposed to be represented by vector- or spinor-valued p-forms. However, in MAG one goes beyond
Poincaré invariance, assuming that matter fields might not only undergo Poincaré transformations
but also the more general linear transformations. In this case, the unavailability of local Lorentz
frames poses no problem in the context of boson fields. They are naturally constructed so as to be
capable of carrying the action of SL(4, R), instead of the Lorentz group, whether in a local frame
or holonomically. However, this is not true of the conventional fermion fields one uses to represent
matter, and a linear action should nevertheless be realized, through the use of infinite-component
linear field representations of the double-covering of the linear, affine and diffeomorphism groups.
More general spinor-representations than the Poincaré-representations have to be constructed. Such
representations of the matter fields corresponding to the affine group must exist. Otherwise it does
not make sense to demand A(4, R)-invariance of a non-vacuum field theory. The construction of the
spinor representations of fermionic matter fields in MAG is called manifields. These representations
turn out to be infinite dimensional, due to the non-compactness of the gauge (sub-)group GL(4, R).
Fermions are then assigned to spinor manifields. The restriction of GL(4, R) to SO(1, n− 1) reduces
the manifield representations to the familiar spinor representations. The actual gauging of the affine

group introduced, in addition to the matter fields ψ, the gravitational gauge potentials
(A)

Γ (T ) and
(A)

Γ (L). Following the common practice, we will use as gauge potential the translation invariant
(A)

ϑ a

in place of the translational part
(A)

Γ (T ) of the affine connection, simply because it has the immediate

interpretation as a reference (co-)frame. Expanded in a holonomic frame, the components of
(A)

ϑ a and
(A)

Γ (T ) differ just by a Kronecker symbol, as is clear from the definition of
(A)

ϑ a. Also the homogeneous
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transformation behavior of
(A)

ϑ a will turn out to be quite convenient. For the action of the GL(4, R)-

gauge potential, below the shorthand notation
(A)

Γ a
b is used instead of (

(A)

Γ
(L)d
c Lcd)a

b. The introduction
of a metric into MAG is mandatory since we are interested in a realistic macroscopic gravity theory

that contains GR in some limit. So, it was assumed a metric of the general form
(A)
g =

(A)
g ab

(A)

ϑ a⊗
(A)

ϑ b

with coefficients
(A)
g ab which are independent of the coframe

(A)

ϑ a. The gauge potentials (
(A)

ϑ a,
(A)

Γ a
b)

become true dynamical variables if one has to add to the minimally coupled matter Lagrangian L
(π)
m a

gauge Lagrangian V . Here, we restrict ourself considering only first order Lagrangian V , which must be
expressed in terms of the gauge potentials and their first derivatives. The total action reads then S =∫
[V (

(A)
g ab,

(A)

ϑ a,
(A)

N ab,
(A)

T a,
(A)

R a
b)+L

(π)
m (

(A)
g ab,

(A)

ϑ a,Ψ, DΨ)]. If Ψ, as a p-form, represents a matter field
(fundamentally a representation of the SL(4, R) or of some of its subgroups), its first order Lagrangian

L
(π)
m will be embedded in metric-affine spacetime by the minimal coupling procedure, that is, exterior

covariant derivatives feature in the kinetic terms of the Lagrangian instead of only exterior ones. Just
as ordinary stress is the analogue of the (Hilbert) energy-momentum density, in MAG, one has, in
addition, the spin current and the dilation plus shear currents inducing the torsion and nonmetricity
fields, respectively. Both spin and dilation plus shear are components of the hypermomentum current,
symmetric for dilation plus shear and antisymmetric for spin: spin current ⊗ dilation current ⊗
shear current. And these currents ought to couple to the corresponding post-Riemannian structures.

In accord, the material currents are defined as follows:
(A)
t ab := 2 δL

(π)
m

δ
(A)
g ab

,
(A)

θ a:=
δL

(π)
m

δ
(A)

ϑ a

,
(π)

∆ a
b :=

δL
(π)
m

δ
(π)

Γ a
b

,

where
(A)
t ab is the metric (and symmetric) energy-momentum current of matter (`Hilbert current` ´),

whereas one believes that
(A)

θ a should be the dual 3-form relating to the canonical energy-momentum

tensor,
(A)

θ
µ
a , by ⋆

(A)

θ a=
1
3!

(A)

θ
µ
a εµναβ

(A)

ϑ ναβ , where we used the abbreviated notations for the

wedge product monomials,
(A)

ϑ µνα... =
(A)

ϑ µ ∧
(A)

ϑ ν ∧
(A)

ϑ α ∧ ... and ⋆ denotes the Hodge dual (see
Appendix). The canonical energy-momentum density is identical with the dynamical tetrad energy-

momentum density e
(A)

θ a
µ =

(A)
τ a

µ , where e : = det|eµa | =
√
−g, and that the canonical tensor

e
(A)

θ µν=
(A)
τ µν=

(A)
e aν

(A)
τ a

µ is generally not symmetric. The relation between the tetrad dynamical
energy-momentum tensor and the metric dynamical energy-momentum tensor for matter fields is
(A)

θ (µν)= tµν . The canonical hypermomentum current
(π)

∆ a
b, which couples to the linear connection,

can be decomposed according to
(π)

∆ab =
(π)

S ab + 1
4

(π)
g ab ∆ +

⌢
∆αβ, with

(π)

S ab:=
(π)

∆ [ab] as

(dynamical) spin current, ∆ :=
(π)

∆ c
c , as dilation current, and

⌢
∆ab as symmetric and tracefree shear

current, which is a bit more remote from direct observation than the other currents. From variation of

a total action, we find the matter and the gauge field equations as follows: D( ∂L
(π)
m

∂(DΨ))− (−1)p ∂L
(π)
m

∂Ψ =

0, (matter), D(2 ∂V

∂
(A)

N ab

) + 2 ∂V

∂
(A)
g ab

= −
(A)
t ab, (0th), D( ∂V

∂
(A)

T a

) + ∂V

∂
(A)

ϑ

a = −
(A)

θ a, (1st),

∂
(A)
ω a′

b′

∂
(π)
ω a

b
∧ [D( ∂V

∂
(A)

R a′
b′
)+

(A)

ϑ a′∧ ∂V

∂
(A)

T b′
+2

(A)
g b′c

∂V

∂
(A)

N a′c

] = −
(π)

∆ a
b, (2nd), where we taken into account

that the variation of L
(π)
m with respect to the affine connection in MAG is equivalent to the variation

with respect to the torsion (or contortion) or spin connection: (∂
(A)
ω a′

b′/∂
(π)
ω a

b = ∂
(A)

Γ a′
b′/∂

(π)

Γ a
b).

Note that, using the Noether identities, the zeroth field equation can be shown to be redundant,
provided the matter equations hold. In first, the canonical energy-momentum of the translational

gauge potential
(A)

ϑ a can be written in standard form ∂V

∂
(A)

ϑ a

=
(A)
e a ⌋V − (

(A)
e a ⌋

(A)

T b) ∧ ∂V

∂
(A)

T b

− (
(A)
e a

⌋
(A)

R b
c) ∧ ∂V

∂
(A)

R b
c

− (
(A)
e a ⌋

(A)

N bc)
∂V

∂
(A)

N bc

. Thus, the equations of the standard MAG theory written
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in the framework of the first order Lagrangian, which is expressed in terms of the gauge potentials
and their first derivatives, can be recovered for A = π. Consequently, the (2nd) equation defines
a non-dynamical torsion, such that torsion at a given point in spacetime does not vanish only if
there is matter at this point, represented in the Lagrangian density by a function which depends on
torsion. Unlike the metric, which is related to matter through a differential field equation, torsion
does not propagate. However, equations can be equivalently replaced by the set of modified MAG

equations for A = σ: D( ∂L
(π)
m

∂(DΨ))− (−1)p ∂L
(π)
m

∂Ψ = 0, (matter), D(2 ∂V

∂
(σ)

N ab

)+2 ∂V

∂
(σ)
g ab

= −
(σ)
t ab, (0th),

D( ∂V

∂
(σ)

T a

) + ∂V

∂
(σ)

ϑ

a = −
(σ)

θ a, (1st), Θab′
a′b(π(x), σ(x)) ∧ [D( ∂V

∂
(σ)

R a′
b′
)+

(σ)

ϑ a′ ∧ ∂V

∂
(σ)

T b′
+ 2

(σ)
g b′c

∂V

∂
(σ)

N a′c

] =

−
(π)

∆ a
b, (2nd), where

∂
(σ)
ω a′

b′

∂
(π)
ω a

b
: = Θab′

a′b(π(x), σ(x)), in which the torsion is dynamical if only

Θab′
a′b(π(x), σ(x)) ̸= δa

′
a δ

b
b′ . Actually, in testing the general MAG equations, we desire, in some limit,

to recover the field equation for different (sub-)cases, then we have to put on Lagrange multipliers.
Whereas, in the case of TSSD-PG, one has to kill nonmetricity; TSSD-EC is the TSSD-PG with the
curvature scalar as gravitational Lagrangian; in the case of TSSD-teleparallel gravity (TSSD-GR||)
in a Weitzenböck spacetime, one has to remove nonmetricity and curvature; and, finally, in the case
of GR in a Riemannian space, curvature scalar as Lagrangian, one has to remove nonmetricity and
torsion.

Teleparallel gravity. Finally, we will concentrate on the other (sub-)case when tabc =
(π)

T a
bc−

(π)

C a
bc,

and the connection
(π)
ω a

bc vanishes, which characterizes teleparallel gravity. In this case, the field

equations can be derived from the least action, δ
•
S= 0, with the Lagrangian of teleparallel gravity,

where we take Lagrange multipliers for extinguishing nonmetricity, curvature, which holds when the

deformation σ(x) vanishes identically (σ(x) ≡ 0): V|| = − 1
4æ

•
T a ∧ ∗(−(1)

•
T a +2(2)

•
T a +1

2
(3)

•
T a

) + 1
2

•
Nab ∧ (1)λab+

•
R a

b ∧ (2)λab, where the three irreducible pieces of the torsion
(A)

T a = (1)
(A)

T

a+(2)
(A)

T a+(3)
(A)

T a under SO(1, 3)-decomposition are: (1)
(A)

T a :=
(A)

T a−(2)
(A)

T a−(3)
(A)

T a,(tentor);

(2)
(A)

T a := 1
3

(A)

ϑ a ∧ (
(A)
e b ⌋

(A)

T b), (trator); (3)T a := − 1
3
∗(

(A)

ϑ a ∧ ∗(
(A)

T b ∧
(A)

ϑ b)), (axiator).

The projective transformation
(A)

Γ a
b −→

(A)

Γ a
b + δba P , with arbitrary 1-form field P , leaves the

Hilbert-Einstein type Lagrangian invariant, which leads to the connection determined up to a 1-form.
Projectively related connections have the same (unparametrized) geodesics. So, only projectively
invariant matter Lagrangians would be allowed. This necessitates to abandon this constraint, at the
very least replacing semi-Riemann geometry by Weyl’s. Namely, to remove this constraint from the
gravitational Lagrangians, we may lift the Lagrange multiplier λab and add a dilaton type massless

scalar field to V ′ = V + 1
2 dΦ ∧ ⋆dΦ , in the context of the Weyl 1-form

(A)

N , which is of the type of a

gauge potential for dilations anyways: V ′
GR = − 1

4æ (
(A)

R ab ∧
(A)
η ab +β

(A)

N ∧⋆
(A)

N )+
(A)

T a ∧ (2)λa, and

V ′
EC = − 1

4æ (
(A)

R ab ∧
(A)
η ab +β

(A)

N ∧⋆
(A)

N ), respectively. Provided, the trace
(A)

Γ c
c of a connection is

closely related to the Weyl 1-form, as
(A)

Γ c
c = 2

(A)

N +d ln

√
|det

(A)
g ab | , d

(A)

Γ c
c =

(A)

R c
c = 2 d

(A)

N .
In case if matter is present and supplies energy-momentum and hypermomentum currents, then the
hypermomentum, via the second field equation, turns out to be proportional to the post-Riemannian
pieces of the connection.

In case of translational gauge with the most general term V = d
(A)

ϑ a ∧
(A)

H a, quadratic in
(A)

ϑ a,

the field equation δLtot/δ
(A)

ϑ a = 0 then becomes ∂
(A)

ϑ a

∂
(π)

ϑ a′
∧ [d

(A)

H a′ −
(A)

E a′ ] =
(A)

θ a, where
(A)

H a is linear

in d
(A)

ϑ a, and
(A)

E a= (
(A)
e a ⌋ d

(A)

ϑ b)∧
(A)

H b −1
2

(A)
e a ⌋ (d

(A)

ϑ b ∧
(A)

H b) =
1
2 [(

(A)
e a ⌋ d

(A)

ϑ b)∧
(A)

H b −d
(A)

ϑ

b ∧ (
(A)
e a ⌋

(A)

H b)], the energy-momentum current of the gauge field. This can be considered as a starting
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point for turning to the Lagrangians with the quadratic ansatz for the kinetic term, i.e. quadratic in
the field strengths, which would be an interesting topic not discussed in this paper. For more detail
see (Ter-Kazarian, 2015).

4. An extended phase space stochastic quantization of constrained
hamiltonian systems

In this section , we give a theory of the extended phase space stochastic quantization of constrained
hamiltonian systems (Ter-Kazarian & Sobouti, 2008).

Objectives. The concept of an `extended´ Lagrangian, L(p, q, ṗ, q̇) in phase space allows a subse-
quent extension of Hamilton’s principle to actions minimum along the actual trajectories in (p, q)−,
rather than in q−space. The following notational conventions are used throughout this paper: ṗ
denotes dp/dx0 and so on, where x0 is the real time. This extension, in turn, allows a definition of
”second” momenta πp = δL/δ ṗ and πq = δL/δ q̇, and a subsequent introduction of an ”extended”
phase space (p, q, πp, πq) and of an ”extended” Hamiltonian, H(p, q, πp, πq). This simple formalism
manifests its practical and technical virtue in the proposed canonical quantization in (p, q) space that
at once provides a framework for quantum statistical mechanics, for the classical statistical mechanics
(Liouville’s equation), for the conventional quantum mechanics as a special case, for von Neumann’s
density matrix and its equation of evolution as its inevitable corollaries. Wigner’s distributions and
the equation satisfied by them are also obtained by an appropriate canonical transformation in the
proposed (p, q, πp, πq)-space.

Ordering of p and q factors in conventional quantum mechanics has always been a matter of
debate. For, there is nothing in the basic postulates of quantum mechanics to decide on the issue.
On the other hand the phase space quantization is constructed on the premises that p and q are
independent variables. Thus, in reducing the theory to that of Schrödinger and/or Heisenberg, the
standard ordering emerges as the rule of game. For example, qp in q−representation and pq in
p−representation. For Wigner’s distributions the appropriate ordering is the symmetric one. For
example, 1

2(pq+ qp) instead of pq or qp. This ordering is also obtained from the standard ordering by
the same canonical transformation which transforms the state functions and evolution equations to
those of Wigner.

Since Wigner’s initial attempt, 1932, alternative phase space distributions have been proposed.
Of these alternatives, the ones compatible with the uncertainty principle are obtainable from that
by suitable canonical transformation in (p, q, πp, πq)-space. Husimi’s all-positive distributions are,
however, exceptions. For, his averaging of Wigner’s distributions over small cells around phase space
points makes the averaged distributions incompatible with the uncertainty principle.

The stochastic quantization method (SQM) of recent years is an alternative to the conventional
canonical and path-integral quantizations. Conceptually and techniquewise it is versatile and powerful.
Our interest here is to generalize SQM, to study the classical stochastic processes underlying the
phase space quantization. In its present formulation, SQM exploits well-defined Markoffian process
of Wiener’s type with Gaussian white-noise. One may, however, envisage that different stochastic
processes with respect to a fictitious time may yield different variations of quantum theories.

4.1. An Extended Phase Space Formulation of SQM

Consider a dynamical system with N degrees of freedom described by the 2N coordinates q =
(q1, . . . qN ) and momenta p = (p1, . . . pN ) and a Lagrangian Lq(q, q̇) in q−representation and the
corresponding Lp(p, ṗ) in p−representation. In general, Lq and Lp are the Fourier transforms of each
other. One may now defines an extended Hamiltonian H(p, q, πp, πq) =

∑
n=1

1
n!{

∂nH
∂pn π

n
q − ∂nH

∂qn π
n
p },

where H(p, q) = piq̇i − Lq = qiṗi − Lp is the conventional Hamiltonian of the system. Intro-
ducing an imaginary time x4 = ix0, we define the Euclidian extended action as S[p, q, πp, πq] =∫ [
−iπpi

d pi
d x4
− iπqi

d qi
d x4

+H(p, q, πp, πq)
]
d x4. Following a general prescription of SQM, in case at

hand the Parisi-Wu ansatz consists of proposing a Markoffian hypothetical stochastic process by

the following set of Langevin equations: d qi
d t = − δ S

δ qi
+ ξqi (t), γ

d πqi
d t = − 1

γ
δ S
δ πqi

+ ηqi (t), γ d pid t =
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− 1
γ
δ S
δ pi

+ ηpi (t),
d πpi
d t = − δ S

δ πpi
+ ξpi (t), where an additional ”fictitious time” t is introduced, the ξνi (t)

and ηνi (t) (ν = q, p) are Gaussian white-noise sources with < ξνi (t), ξ
ν′
j (t′) >= 2 δij δνν′ δ(t − t′), <

ηνi (t), η
ν′
j (t′) >= 2 δij δνν′ δ(t − t′), < ξνi (t), η

ν′
j (t′) >= 0, and γ is an arbitrary dimensional pa-

rameter. In this, we have only to look upon the fictitious time t as a mathematical tool, but
need not to find its physical meaning. A remark on notation: Functional dependencies on vari-
ables are indicated by square brackets, such as S[p, q, ...]. The formalism being followed is based on a
well-defined classical Wiener-Markoffian process. The Gaussian white-noises incorporated into equa-
tions above are designed to yield the quantum mechanics as its thermal equilibrium limit. There-
fore, the task is to show that the dynamical system has an equilibrium distribution equivalent
to the conventional path-integral measure. The procedure is (a) to define a Fokker-Planck La-
grangian, (b) to define Fokker-Planck momenta from this Lagrangian, (c) to compose a Fokker-
Planck Hamiltonian, and finally (d) to set up the Fokker-Planck equation for the distribution of
the system in the extended phase space. For example, the Fokker-Planck Hamiltonian is: HF =

πFqi
d qi
d t +πFπqi

d πqi
d t +πFpi

d pi
d t +πFπpi

d πpi
d t −L

F , provided, the Fokker-Planck equation for the probability

distribution Φ[p, q, πp, πq, t] is
∂
∂ t Φ[p, q, πp, πq, t] = H

F Φ[p, q, πp, πq, t]. Here we have replaced the
canonical momenta πFqi , π

F
πqi

, πFpi and πFπpi
with −∂/∂ qi, −∂/∂ πqi , −∂/∂ pi and −∂/∂ πpi , respec-

tively. Then the equilibrium distribution clearly reads Φ[p, q, πp, πq] ∝ exp(−S[p, q, πp, πq]). Thus,
the Langevin equation give the same result as the conventional path-integral quantization method in
extended phase space if only the drift forces Ki(p, . . . t) = −( δ S[p,...]δ pi

)p=p(x0, t), etc., have a damping
effect. Along the trajectories in (p, q) space, however, it produces the state functions, χ(p, q, x0):
iℏ ∂

∂ x0
χ = Hχ. Solutions are χ = aαβ ψα(q, x0)ϕ

∗
β(p, x0) e

−i pq/ℏ, a = a†, positive definite, tr a =
1, where summation over repeated indices is implied, and ψα and ϕ∗α are solutions of the conven-
tional Schrödinger equation in q− and p−representations, respectively. They are mutually Fourier
transforms ψα(q, x0) = (2πℏ)−N/2

∫
ϕα(p, x0) e

ipq/ℏ d p, ϕα(p, x0) = (2πℏ)−N/2
∫
ψα(q, x0) e

−ipq/ℏ d q.
Note that the α and β are not, in general, eigenindices. The normalization condition for χ, is∫
χd p d q = tr(a) = 1.

4.2. Stochastic Quantization of Extended Dynamical Systems With Constraints

Here we discuss the SQM of an extended dynamical system with M first class independent and
irreducible constraints ϕa(p, q, πp, πq) = 0, a = 1, 2, ...,M < N. For reasons of simplicity let there
also be M gauge conditions: χa(p, q, πp, πq) = 0, a = 1, 2, ...,M. Equations obtained in previous
subsection define a (4N − 2M) dimensional submanifold in phase space on which the system orbits
dwell. For convenience we introduce the following new variables: xqi = (q1, . . . , qN , πp1 , . . . , πpN ),
xpi = (p1, . . . , pN , πq1 , . . . , πqN ). The gauge conditions are such that det∆ab ̸= 0, where ∆ab is the

Poisson bracket of χa and ϕb ∆ab = ∂ χa

∂ xqi

∂ ϕb

∂ xpi
− ∂ χa

∂ xpi

∂ ϕb

∂ xqi
. The Euclidean path-integral measure for

such a system can be obtained by the quantization procedure. The Faddeev-Popov path-integral for-
mula for this system is < f | i >= 1

2N

∫
Dxqi Dxpi δ(ϕa) δ(χa) det∆ab exp(−S[xp, xq]), where S[xp, xq]

is the extended Euclidian action. Our major goal is now to reproduce this equation from the stand-
point of SQM in phase space in thermal equilibrium limit. Next we attempt to write the derived
equations in a covariant form; that is, in a form invariant under general coordinate transformations.
In this, we introduce the notation (xI) = (xI) = (xqi, xpi), (X

I) = (Qa, P a, Qα, Pα), I = 1, ..., 4N.
Hereafter, the following convention will be observed in indexing the new variables. To begin with,
the x-coordinates are Euclidean ones. It will not matter if they are indexed covariantly or contravari-
antly. The X-coordinates, on the other hand, are curvilinear ones. A contravariant index could be
lowered by an appropriate metric tensor to be introduced shortly. The manifold M4N spanned by
X- coordinates could be split into two submanifolds M2M and M4N−2M . The X-coordinates span-
ning M2M will be indexed by A,B, ... = 1, ..., 2M . Those spanning M4N−2M will be indexed by
Λ,Σ, ... = 2M +1, ..., 4N . The indices I, J, ..., will be reserved for the whole manifold M4N . The con-

travariant metric tensor for the curvilinear X-coordinates is gIJ = ∂XI

∂xK
∂XJ

∂xK
= [

gAB

gΛΣ
], where

the 2M × 2M tensor gAB is gAB = ∂XA

∂xK
∂XB

∂xK
= [
{ϕa, ϕb} {ϕa, χb}
{χa, ϕb} {χa, χb} ]. The Poisson brackets, here,
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are to be calculated in (xqi , xpi)-coordinates, For conventional gauge conditions one has {χa, χb} = 0.
The Laplace expansion of det gAB then gives det gAB = −det{ϕc, χd}det{χe, ϕf} = det{ϕc, χd}2,
det gAB = det{ϕc, χd}−2. The expression for gΛΣ is gΛΣ = ∂XΛ

∂xK
∂XΣ

∂xK
; Λ,Σ = 2M + 1, · · · , 4N. For

the present, there is no need to manipulate gΛΣ beyond its definition. We are now in a position to
write down the Langevin equations in manifest covariant forms. Then dXΛ

dxI
dXA

dxI
= 0, and dXA

dt = 0.

This gives dXΛ

dt = −gΛΣ δS̃[X]
δXΣ + ∂XΛ

dxI
ζI , where ζI = (ξi, ηj), and S̃[X] = S[x(X)], is the action in-

tegral written in X-coordinates. This equation contains no new information, beyond the fact that
ϕa, χa are to vanish along the phase space trajectories. Finally the form invariant Fokker-Planck

equation emerges as ∂Φ̃[XΛ,t]
∂t = 1√

det gΛΣ

∂
∂XΛ [

√
det gΛΣ gΛΣ( ∂

∂XΣ + δS̃[X]
δXΣ ) Φ̃[XΛ, t]]. The stationary so-

lution is Φ̃eq[X
Λ] = 1√

detgΛΣ
exp(−S̃[XΛ]). In the limit of thermodynamic equilibrium the probability

of finding the system on the constraint surface in the volume element d(4N−2M)X centered at XΛ

is 1√
detgΛΣ

exp(−S̃[XΛ]) d(4N−2M)X = 1√
detgΛΣ

exp(−S̃[XI ])δ(2M)(XA) d(4N)X. Where δ(2M)(XA) is

the Dirac delta function in M2M . It is introduced to ensure that the system stays on the constraint
surface. To transform back to the Euclidean coordinates {xI} we note that S̃[X] transform into S[x],
and the volume element d(4N)X transforms into

√
det gIJ d(4N)x, where det(gIJ) = det(gAB) det(gΛΣ).

Hence Φeq[xp, xq] = det{χa,Φb} δ(M)(χc) δ(M)(Φd) exp(−S[xp, xq]). Thus, one of the most remarkable
features of SQM is that one may quantize even dynamical systems with non-holonomic constraints as
it is seen in the case of the stochastic gauge fixing.

5. An extended phase space SUSY quantum mechanics

In this section, we will concern ourselves with the extended phase space quantum mechanics of
particles which have both bosonic and fermionic degrees of freedom (Ter-Kazarian, 2009), i.e., the
quantum field theory in (0 + 1)-dimensions in q− (position) and p− (momentum) spaces, exhibiting
supersymmetry. We present (N=2)-realization of the supersymmetry algebra, and discuss the vacuum
energy and the topology of super-potentials. To demonstrate practical merits of shape-invariance of
exactly solvable extended SUSY potentials which has underlying algebraic structure, as an application
we obtain analytic expressions for the entire energy spectrum of extended Hamiltonian with Scarf
potential without ever referring to underlying differential equation.

5.1. Extended phase space SUSY algebra

Practically and techniquewise the conventional SUSY method is versatile and powerful. Following
a general prescription of SUSY quantum mechanics, we call an extended phase space quantum me-
chanical system characterized by an extended Hamiltonian Hext acting in some Hilbert space H super-
symmetric if there exist selfadjoint nilpotent operators Qi = Q†

i , i = 1, 2, . . . , N, called supercharges,
which also act on states in H and fulfill the following SUSY algebra: {Qi, Qj} = QiQj + Qj Qi =
2Hextδij , [Qi, Qj ] = QiQj − Qj Qi = 0, i, j = 1, . . . , N. Pursuing the analogy with these ideas in
outlined here approach let a selfadjoint operator P = P † be Witten operator or Witten parity, which
anticommutes with the supercharges, and therefore commutes with an extended Hamiltonian, and
whose square is equal to the identity {Qi, P} = 0, [Hext, P ] = 0, P 2 = 1. This operator allows
to introduce the notion of bosonic and fermionic states independently of an underlying space-time
symmetry. The Witten parity can also be written in the form P = (−1)nF where nF is the fermion-
number operator. Therefore, eigenstates of P with eigenvalue −1 correspond to fermions and those
with +1 correspond to bosons. In accordance, the bosonic HB- and fermionic HB- subspaces read
HB = {χ ∈ H|P χ = +χ}, HF = {χ ∈ H|P χ >= −χ}. Hence, any state χ ∈ H can be decomposed

into its bosonic and fermionic components as follows: χ = (
χB
χF

). The Hilbert space may be written

as a product space H = H0 ⊗ C2, and thus, the Witten operator is represented by the third Pauli

matrix σ3: P = 1⊗ σ3 = (
1 0
0 −1 ). It will be more appropriate to use the notion spin-up and spin-
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down states (of a fictitious spin-12 -particle with mass m > 0 moving along the d-dimensional Euclidean
line Rd line) instead of bosonic and fermionic states, respectively. Having in addition only cartesian
degrees of freedom H0 is given by the space of square-integrable functions over the d-dimensional Eu-
clidean space Rd, H0 = L2(Rd)⊗L2(Rd), d ∈ N. The SUSY has also implications on the spectral
properties of the extended hamiltonian Hext. First of all, we note Hext = Q2

i ≥ 0. That is, the extended
Hamiltonian has only non-negative eigenvalues. Suppose that χr is an eigenstate of Hext with posi-
tive eigenvalue Er > 0. Then it follows immediately from the algebra that χ̃r(q, p) =

1√
Er
Qi χr(q, p),

i = 1, 2 . . . , N, is also an eigenstate with the same positive eigenvalue. Hence, all positive-energy
eigenstates occur in spin-up (boson) spin-down (fermion) pairs. Actually, a multiplicity of degeneracy
of the levels of Hamiltonian Hext with the energy E equals to a dimension of invariant subspace with
respect to the action of all the Qi. If E = 0, then the corresponding subspace is one-dimensional - a
level of zero point energy. In general, the superalgebra defines the Clifford algebra with the basis of
qi =

Qi√
E

for non-zero-energy levels of Hext, which is a key point in the SUSY theories. Due to it a

definition of the multiplicity of degeneracy of the energy levels reduced to a definition of a dimension
of the representations of the Clifford algebra, which is well-known. For the even and odd number N
a dimension of the representation of Clifford algebra is given as ν = 2n = 2[N/2], where [. . . ] means
the integer part, namely the ν defines a number of states in given supermultiplet, Thus, the major
law for the supermultiplets is that each of them contains an equal number of fermionic and bosonic
degrees of freedom nB = nF . Certainly, re-writing the parity operator in the form (−1)2S where S is
the spin angular momentum having eigenvalue +1 acting on a bosonic state and eigenvalue −1 acting
on a fermionic state, we get

∑
i < i | (−1)2SHext | i >=

∑
i < i | (−1)2SQQ† | i > +

∑
i < i |

(−1)2SQ†Q | i >=
∑

i < i | (−1)2SQQ† | i > −
∑

j < j | (−1)2SQQ† | j >= 0. Here one has used
the relation of completeness §i | i >< i |= 1 within the subspace of states invariant with respect
to the action of Q and Q†, and the fact that the operator (−1)2S must anticommute with Q. The
§i < i | (−1)2SHext | i >= E tr

[
(−1)2S

]
is proportional to the number of bosonic degrees of freedom

nB minus the number of fermionic degrees of freedom nF in the trace. Hence, this relation holds
for any E > 0 in each supermultiplet. This, however, is in general not true for possible zero-energy
eigenstates. If the groundstate energy of Hext is equal to zero, that is, exists a state χ0 ∈ H0⊗C2 such
that Hext χ0 = 0, then SUSY is said to be a good symmetry, i.e. the groundstate is invariant under
SUSY transformations Qi χ0 = 0. If the groundstate energy of Hext is strictly positive then SUSY is
said to be broken.

5.2. The (N=2)-SUSY in extended phase space

In constructing a particular (N=2)-realization of the SUSY algebra in the Hilbert space H =
H0 ⊗ C2 = [L2(R) ⊗ L2(R)] ⊗ C2, let us first introduce a bosonic operators B± in q− and p-
representations and fermionic operator f̂ : Bq∓ : L2(R) → L2(R), Bq∓ = [p + πq ± iW (q)],

Bp∓ : L2(R) → L2(R), Bp∓ = [q + πp ± iV (p)], and f̂ : C2 → C2, f̂ = 1
2 [ψ̂+, ψ̂−]. The (π̂q, q̂) and

(π̂p, p̂) are usual bosonic momentum and coordinate operators respectively in q− and p− spaces, while

ψ̂± are two real fermionic creation and annihilation nilpotent operators describing the fermionic vari-
ables, W (q) : R → R and V (p) : R → R are the piecewise continuously differentiable functions called

SUSY potentials. The ψ̂±, having anticommuting c-number eigenvalues, imply ψ̂± =
√

1
2 (ψ̂1 ± iψ̂2),

{ψ̂α, ψ̂β} = δαβ, {ψ̂+, ψ̂−} = 1, ψ̂2
± = 0. They can be represented by finite dimensional matrices

P = 1 ⊗ σ3, where σ
± = σ1±σ2

2 are the usual raising and lowering operators for the eigenvalues
of σ3. The fermionic operator commutes with the Hext and is diagonal in this representation with
conserved eigenvalues ±1

2 . Due to it the wave functions become two-component objects: χ(q, p) =(
χ+1/2(q, p)

χ−1/2(q, p)

)
=

(
χ1(q, p)
χ2(q, p)

)
=

(
ψ1(q)ϕ1(p)
ψ2(q)ϕ2(p)

)
, where the states ψ1,2(q), ϕ1,2(p) correspond to

fermionic quantum number f = ±1
2 , respectively, in q− and p− spaces. Let us now to deal with ab-

stract space of eigenstates of the conjugate operator ψ̂± having anticommuting c-number eigenvalues.
Suppose |00− > is the normalized zero-eigenstate of q̂ and ψ̂−: q̂|00− >= 0, ψ̂−|00− >= 0. The
state |00+ > is defined by |00+ >= ψ̂+|00− >= 0, then ψ̂+|00+ >= 0, ψ̂−|00+ >= |00− > . Taking

into account that ψ̂†
± = ψ̂∓, we get < ∓00|ψ̂± = 0, < ∓00|ψ̂∓ =< ±00|. Now we may introduce
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the notation α, β, . . . for the anticommuting eigenvalues of ψ̂±. Consistency requires: αψ̂± = −ψ̂±α,

α|00± >= ±|00± > α. The eigenstates of q̂, ψ̂− can be constructed as |qα− >= e−iqp̂−αψ̂+ |00− >,
and thus, q̂|qα− >= q|qα− >, ψ̂−|qα− >= α|qα− > . Then, the π̂q and ψ̂+ eigenstates are obtained
by Fourier transformation. Thereby the completeness relations hold: −

∫
dα dq|qα± >< ∓α∗q| = 1,

−
∫
dα

dπq
2π |πqα± >< ∓α∗πq| = 1, −

∫
dα dp|pα± >< ∓α∗p| = 1, −

∫
dα

dπp
2π |πpα± >< ∓α∗πp| = 1.

If |t > is the sate of the system at time t, then the wave function is obtained by expanding this
state with respect to the coordinate basis in q- and p-spaces: χ−(qα pγ t) = ψ−(qαt)ϕ−(pγt) =<
+qα∗|t >< +pγ∗|t >, and χ+(qβ pδ t) = ψ+(qβt)ϕ+(pδt) =< −qβ∗|t >< −pδ∗|t >, where ψ+(qβ t) =
−
∫
dα e−αβψ−(qαt), ϕ+(pδ t) = −

∫
dγ e−γδϕ−(pγ t). On wave functions, the ψ̂± are represented by

anticommuting c-number operators: ψ̂− = ζ, ψ̂+ = ∂/∂ζ, provided χ(q, p, ζ) = ψ(q, ζ)ϕ(p, ζ) =
[ψ1(q) + ζψ2(q)][ϕ1(p) + ζϕ2(p)]. These operators allow us consequently to define a pair of appro-

priate nilpotent supercharges Qq+ = Bq− ⊗ ψ̂+ =

(
0 Bq−
0 0

)
, Qq− = Bq+ ⊗ ψ̂− =

(
0 9
Bq+ 0

)
,

Qp+ = Bp−⊗ ψ̂+ =

(
0 Bp−
0 0

)
, Qp− = Bp+⊗ ψ̂− =

(
0 0
Bp+ 0

)
, which obey the required relations

{Q±, Q±} = 0. The operators B± can be presented as B± = B1±B2, where B1 and B2 are the hermi-
tian operators. Accordingly, the operators Q1 and Q2 read Qq1 = Qq+ + Qq− = Bq1σ1 + Bq2σ2,
Qq2 = −i(Qq+ − Qq−) = Bq1σ2 − Bq2σ1, and similar relations hold for the operators Qp1 and

Qq2. It is easily verified that Qq± are the generators of SUSY transformations between q̂ and ψ̂,

as well as Qp± are the generators of SUSY transformations between p̂ and ψ̂: [Qq±, q̂] = −iψ̂±,

[Qq±, π̂q] = ∓W ′
q(q̂) ψ̂±, {Qq±, ψ̂∓} = p̂ + π̂q ± iW (q̂), {Qq∓, ψ̂∓} = 0, and [Qp±, p̂] = −iψ̂±,

[Qp±, π̂p] = ∓V ′
p(p̂) ψ̂±, {Qp±, ψ̂∓} = q̂ + π̂p ± iV (p̂), {Qp∓, ψ̂∓} = 0. The SUSY Hamiltonians read

2Hq = {Qq1, Qq2} = {Qq+, Qq−} = {Bq−, Bq+}+ [Bq−, Bq+]σ3, 2Hp = {Qp1, Qp2} = {Qp+, Qp−} =
{Bp−, Bp+} + [Bp−, Bp+]σ3. Along the trajectories in (p, q) space, however, this produces the ex-

tended Hamiltonian Hext, Hext =

(
H+ 0
0 H−

)
=

(
Hq+ −Hp+ 0

0 Hq− −Hp−

)
, where Hq =(

Hq+ 0
0 Hq−

)
= 1

2

(
Bq−Bq+ 0

0 Bq+Bq−

)
, Hp =

(
Hp+ 0
0 Hp−

)
= 1

2

(
Bp−Bp+ 0

0 Bp+Bp−

)
.

Then Hext =
1
2 [(p+ πq)

2 − (q + πp)
2 +W 2(q)− V 2(p) + σ3(p+ πq)W (q)− iσ3(q + πp)V (p)].

From now on we replace Hext by Hext, and χr(q, p) by χr(q, p), respectively, and retain for-
mer notational conventions. This realization characterizes two non-interacting point particles of
equal mass m = 1 moving along the real line under influence of the external scalar potential U± =
Uq± − Up± ≡ W 2(q) − V 2(p) ± (W ′

q(q) − V ′
p(p)). The time evolution of the state |t > is now given

χ−(qα pβ t) = −
∫
dα′ dq′ dβ′ dp′K(qα pβ t|q′α′ p′β′ t′), provided by the kernel K(qα pβ t|q′α′ p′β′ t′) =

< +qα∗pβ∗|e−iHext(t−t′)|q′α′p′β′ >, which can be evaluated by the path integral. Actually, an alterna-
tive approach to describe the state space and dynamics of the extended phase space quantum system
is by the path integral, which reads Kff ′(qpt|q′p′t′) =< qpf |e−iHext(t−t′)|q′p′f ′ >, where extended

SUSY Hamiltonian can be represented as Hext =
1
2(π̂

2
q +W 2(q̂) + iW ′

q(q̂)[ψ̂1, ψ̂2])− 1
2(π̂

2
p + V 2(p̂) +

iV ′
q (p̂)[ψ̂1, ψ̂2]). To infer the extended Hamiltonian equivalently one may start from the c-number ex-

tended Lagrangian of extended phase space quantum field theory in (0+ 1)-dimensions in q− and p−
spaces: Lext(p, q, ṗ, q̇) = −q̇i pi− qi ṗi+ 1

2 [(
dq
dt )

2−W 2(q)]+f W ′
q(q)+

1
2 [(

dp
dt )

2−V 2(p)]+f V ′
p(p). With

the Hamiltonian Hext, the path integral is diagonal: Kff ′(qpt|q′p′t′) = Kff ′(qt|q′t′)Kff ′(pt|p′t′) =

δff ′
∫ q
q′ Dq

∫ p
p′ Dp exp (i

∫ t
t′ Lext(p, q, ṗ, q̇)dt). Knowing the path integral, it is sufficient to specify the

initial wave function χf (q
′, p′, t′) to obtain all possible information about the system at any later time

t, by χf (q, p, t) =∑
f ′
∫
dq′ dp′Kff ′(qpt|q′p′t′)χf ′(q′, p′, t′), The path integral becomes K(qαpβt|q′α′p′β′t′) =∫ q,α,p,β

q′,α′,p′,β′ DqDpDζ Dη exp (i
∫ t
t′ Lext(p, q, ṗ, q̇)dt). The functional integral is taken over all trajecto-

ries from q′, α′ to q, α and p′, β′ to p, β between the times t′ and t.
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5.3. The vacuum energy and the topology of superpotential

The supersymmetry of quantum system is said to be a good symmetry (good SUSY) if the ground-
state energy of Hext vanishes. In the other case, inf specHext > 0, SUSY is said to be broken.
Let χ+

r and χ−
r denote the eigenstates of H+ and H−, respectively, for the same positive eigen-

value Er > 0: H±χ
±
r = Erχ

±
r . The SUSY transformation implies the relations χ+

r = 1√
Er
B+ χ

−
r ,

χ−
r = 1√

Er
B− χ

+
r , where B+B− = Bq+Bq− − Bp+Bp−, B−B+ = Bq−Bq+ − Bp−Bp+. Note that un-

der the replacement of SUSY potentials, W → −W and V → −V, (U± → U∓), the roles of the
two Hamiltonians H+ and H− are interchanged. Hence, the sign of the SUSY potentials may be
fixed by some convention. For good SUSY the groundsate χ0 of Hext either belongs to H+ or H−
H± χ

±
0 = 0 ⇔ B± χ

±
0 = 0, or (Hq± − Hp±)χ

±
0 = 0. As far as Hq± and Hp± are independent, we

have Hq± χ
±
0 = 0, Hp± χ

±
0 = 0, or Bq± χ

±
0 = 0, Bp± χ

±
0 = 0. Whence, ( ddq ±W (q))ψ±

0 (q) = 0,

( ddp ± V (p))ϕ±0 (p) = 0, χ±
0 (q, p) >≡ ψ±

0 (q)ϕ
±
0 (p), and < q|ψ±

0 >≡ ψ±
0 (q), < p|ϕ±0 >≡ ϕ±0 (p). The

functions ψ±
0 (q) and ϕ±0 (p) have to be square-integrable for SUSY to be a good symmetry. This

requirement puts conditions on the SUSY potentials:
∫∞
0 W (q′)dq′ → ∞ at q → ±∞ for ψ+

0 ,∫∞
0 W (q′)dq′ → −∞ at q → ±∞ for ψ−

0 ,
∫∞
0 V (p′)dp′ → ∞ at p → ±∞ for ϕ+0 ,

∫∞
0 V (p′)dp′ → −∞

at p → ±∞ for ϕ−0 . Depending on the asymptotic behavior of the SUSY potentials one of the two
functions χ±

0 will be normalizable (good SUSY) or both are not normalizable (broken SUSY). For
continuous SUSY potentials U±(p, q) the functions W (q) and V (p) must have an odd number of ze-
ros (counted with their multiplicity) for SUSY to be good. A continuous SUSY potentials with an
even number of zeros necessarily leads to a broken SUSY. Consequently, if W (q) and V (p) have a
well-defined parity, and odd W (q) and V (p) lead to good SUSY, whereas an even W (q) and V (p)
break SUSY: W (−q) = −W (q) ⇒ Uq±(−q) = Uq±(q) (SUSY and parity are good in q-subspace),
W (−q) = W (q) ⇒ Uq±(−q) ̸= Uq±(q) (SUSY and parity are broken in q-subspace), and correspond-
ingly the similar conditions hold for V (p) and Uq±(p). The spectra of H+ and H− are related as
follows: spec(H−)/{0} = spec(H+) (good SUSY), spec(H−) = spec(H+) (broken SUSY).

Clearing up this situation the Witten index is turned out to be one of the useful tool which,
according to the Atiyah-Singer index theorem associates with the operator index and depends only
on the asymptotic values of SUSY potentials. This is a topological characteristic and does not vary
with the variation of the parameters of theory. Thus, the Witten index reads ∆(β) = tr(P e−βHext) =
tr(P e−β(Hq−Hp)), β > 0. For a pure point spectrum of Hext this index is the difference of the number
of spin-up states (↑) and spin-down states (↓) with zero energy: ∆(β) = N↑(E = 0)−N↓(E = 0). Note
that the factor e−βHext has only been introduced for regularization of the trace. The conditions of the
positive-energy eigenstates cancel due to the pairwise degeneracy mentioned above. For a continuous
spectrum this is not the case as the spectral densities for the spin-up and spin-down states are in
general different due to which Witten index becomes β dependent. Therefore, for simplicity reasons
we assume purely discrete spectra. Then, ∆ = indB = dimkerH− − dimkerH+ = dimkerHq− +
dimkerHp+ − dimkerHq+ − dimkerHp−. Introducing a set of Hq and Hp upon reduction to the q−
or p− space yields ∆ = 1

2 [sgnW (+∞) + sgnV (−∞) − sgnW (−∞) − sgnV (+∞)]. Hence for good
SUSY one has ∆ = ±1 with the ground state belonging to H±. For broken SUSY one has ∆ = 0.
Although even small non-zero energy expectation value ε = (χ1, Hext χ1) gives direct evidence for the
SUSY breaking in the extended phase space quantum mechanical system, a more practical measure
for the SUSY breaking, in particular, in field theories is the expectation value of an auxiliary field,
which can be replaced by its equation of motion right from the start: < F >= (χ↑, i{Q+, σ−}χ↑),
where as we mentioned above the solutions for non-zero energy come in pairs of the form χ↑(q, p) or
χ↓(q, p) related by supersymmetry. Taking into account the relation Q+χ↑ = 0, where Q+ commutes
with Hext which means that the intermediate state must have the same energy as χ, the can be
re-written in terms of a complete set of states: < F >= i(χ↑, Q+ χ↓)(χ↓, ψ̂−, χ↑). We have ε =<
Hext >=

1
2(χ↑, Q+ χ↓)(χ↓, Q− χ↑) = εq − εp =< Hq > − < Hp >= (ψ↑, Hq ψ↑) − (ϕ↑, Hp ϕ↑) =

1
2(ψ↑, Qq+ ψ↓)(ψ↓, Qq− ψ↑)− 1

2(ϕ↑, Qp+ ϕ↓)(ϕ↓, Qp− ϕ↑).
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5.4. A shape-invariance of exactly solvable SUSY potentials

SUSY quantum mechanics provides an elegant and useful prescripton for obtaining closed analytic
expressions both for the energy eigenvalues and eigenstates of a large class of Schrödinger-like equa-
tions. The key point in this are the SUSY partner Hamiltonians H− = B−B+ and H+ = B+B−.
The operators in this factorization are expressed in terms of the SUSY potentials. The potentials
for which the Schrödinger-like equations are exactly solvable share an integrability conditions called
shape-invariance. The concept of shape-invariance in SUSY quantum mechanics has proven to be very
useful because it leads immediately to exactly solvable potentials. An extended Hamiltonian Hext of
SUSY quantum mechanics can be treated as a set of two ordinary two-dimensional partner Hamiltoni-
ans H± = 1

2 [π
2
q−π2p+U±(q, p)]. Due to SUSY they have the same energy spactra at arbitrary functions

W (q) and V (p), except the groundstate of H− (defined in accordance with usual convention) which
has no corresponding state in the spectra of H+. The partner potentials U±(q, p) are called shape-
invariant if they satisfy an integrability condition U±(a, q, p) = U−(a1, q, p) +R(a1), a1 = f(a), where
a and a1 are a set of parameters that specify phase-space-independent properties of the potentials,
and the reminder R(a1) is independent of (q, p). Although this looks like a satisfactory state of affairs,
we may not always be so fortunate to have such potentials at our disposal. In fact a shape-invariance
is not the most general integrability condition as not all exactly solvable potentials seem to be shape-
invariant. Using the standard technique, we construct a series of Hamiltonians Hn, n = 0, 1, 2, . . . ,
Hn = 1

2 [π
2
q−π2p+U−(an, q, p)+§nk=1R(ak)], where an = f (n)(a) (n means the number of multiple appli-

cations.) Comparing the spectraHn andHn+1, we obtainHn+1 =
1
2 [π

2
q−π2p+U+(an, q, p)+§nk=1R(ak)].

We see that the Hamiltonians Hn and Hn+1 have the same energy spectra, except the groundstate of
Hn, the energy of which is equal §nk=1R(ak). Going through Hn to Hn−1 and so on, we subsequently ob-
tain the initial Hamiltonian H0 = H− = 1

2 [π
2
q−π2p+U−(a, q, p)], the groundstate of which is equal zero,

but all the other energy levels coincide with the lower levels of Hamiltonians Hn. Continuing along this
line, the entire energy spectrum of Hext reads Ẽn = §nk=1R(ak). Hence the spectrum of Hamiltonian

with the potential U(a, q, p) = U−(a, q, p) + C(a) has the form En = Ẽn + C(a) = §nk=1R(ak) + C(a).
Instead of developing the full machinery here, we will illustrate this in passing in the following example.

Example: Scarf potential. To demonstrate practical merits of shape-invariance of exactly solvable
extended SUSY potentials, we now obtain analytic expressions for the entire energy spectrum of one-
dimensional problem with extended Scarf potential without ever referring to underlying differential
equation. This potential U(a, b, q, p) = Uq(a, b)− Up(b, p) = −a(a+1)

2ch2q
+ b(b+1)

2ch2p
, will be of vital interest

for the theory of solitons in extended phase space formalism. In case at hand we have W (q) = a th q

and V (p) = b th p, hence U±(a, b, q, p) = Uq±(a, q)−Up±(b, p) = −a(a∓1)
2ch2q

+ a2

2 + b(b±1)
2ch2p

− b2

2 . This yields

a1 = f1(a) = a−1; an = a−n; C1(a) = −a2

2 , b1 = f2(b) = b−1; bn = b−n; C2(b) = − b2

2 ,
∑n

k=1R1(ak) =
a2−a2n

2 ,
∑n

k=1R2(bk) = b2−b2n
2 . The entire energy spectrum of the Hext can be easily obtained as

En = Eqn − Epn = −a2n
2 + b2n

2 = − (a−n)2
2 + (b−n)2

2 . One final observation is worth recording. The
shape-invariance has underlying algebraic structure of Lie algebras, which transform the parameters
of the potentials. Shape-invariance algebra in general is an infinite-dimensional. However, under
some conditions they become finite-dimensional. The Hamiltonian of exactly solvable systems can
be written as a linear or quadratic function of an underlying algebra, and all the quantum states of
these systems can be determined by independent group theoretical methods with a general change of
parameters which involves nonlinear extensions of Lie algebras.

6. Classical analog of extended phase space SUSY and its breaking

It is certainly desirable to derive the classical analog of the extended phase space quantum me-
chanics of the particle with odd degrees of freedom directly from what may be taken as the first
principle (?). Let us consider a nonrelativistic particle of unit mass with two (α = 1, 2) odd (Grass-
mann) degrees of freedom. The classical extended Lagrangian can be written Lext(p, q, ṗ, q̇) =
−q̇ p− q ṗ+ 1

2 q̇
2−F (q)+ 1

2 ṗ
2−G(p)−R(q, p)N + 1

2 ψαψ̇α, provided by N = ψ1 ψ2 = −i ψ+ ψ−. Here
F (q) : R → R, G(p) : R → R and R(q, p) : R → R are arbitrary piecewise continuously differen-
tiable functions given over the 1-dimensional Euclidean space R. The ψα are two odd (Grassmann)
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degrees of freedom. The nontrivial Poisson-Dirac brackets of the system are {q, πq} = 1, {p, πp} =
1, {ψα, ψβ} = δαβ, {ψ+, ψ−} = 1, ψ2

± = 0, ψ± = 1√
2
(ψ1 ± iψ2). The extended Hamiltonian Hext

reads Hext(p, q, πp, πq) = 1
2 (p + πq)

2 + F 2(q) − 1
2 (q + πp)

2 − G2(p) + R(q, p)N, which reduces to
Hext(p, q, πp, πq) = 1

2 π
2
q + F 2(q) − 1

2 π
2
p − G2(p) + R(q, p)N. This Hamiltonian yields the follow-

ing equations of motion: q̇ = πq, ṗ = πp, π̇q = −F ′
q(q) − R′

q(q, p)N, π̇p = −G′
p(p) + R′

p(q, p)N,

ψ̇± = ±iR(q, p)ψ±. A prime will indicate differentiation with respect either to q or p. Thus, N
is the integral of motion additional to Hext. Along the trajectories q(t) and p(t) in (p, q)− spaces,
the solution to equations of motion for odd variables is ψ±(t) = ψ±(t0) exp[±i

∫ t
t0
R(q(τ), p(τ)) dτ ].

Hence the odd quantities θ± = θ±(t) exp[∓i
∫ t
t0
R(q(τ), p(τ)) dτ ] are nonlocal in time integrals of

motion. In trivial case R = 0, we have ψ̇± = 0, and θ± = θ±. Suppose the system has even complex
conjugate quantities Bq,p±, (Bq,p+)

∗ = Bq,p−, whose evolution looks up to the term proportional to
N like the evolution of odd variables. Then local odd integrals of motion could be constructed in
the form Qq,p± = Bq,p∓ ψ±. Let us introduce the oscilliator-like bosonic variables Bq,p± in q− and
p-representations Bq∓ : L2(R) → L2(R), Bq∓ = [p + πq ± iW (q)], Bp∓ : L2(R) → L2(R), Bp∓ =
[q + πp ± iV (p)]. The W (q) : R → R and V (p) : R → R are the piecewise continuously differentiable
functions called SUSY potentials. In particular case if R(q, p) = Rq(q) − Rp(p), for the evolution of
Bq,p± we obtain Ḃq∓ = [−(F ′

q + R′
qN) ± iW ′

q(q)(p + πq)], Ḃp∓ = [−(G′
p + R′

pN) ± iV ′
p(p)(q + πp)].

Consequently, Q̇q± = ±i[(W ′
q−R′

q±)±i(F ′
q−WW ′

q)ψ∓], Q̇p± = ±i[(V ′
p−R′

p±)±i(G′
p−V V ′

p)ψ∓]. This

shows that either Q̇q± = 0 or Q̇p± = 0 when W ′
q(q) = R′

q±(q) and F ′
q = 1

2(W
2)′q or V ′

p(p) = R′
p±(p)

and G′
p = 1

2(V
2)′p, respectively. Therefore, when the functions Rq,p and F (q), G(p) are related as

R′
q±(q) = W ′

q(q), Fq =
1
2(W

2) + Cq, R
′
p±(p) = V ′

p(p), Fp =
1
2(V

2) + Cp, where Cq,p are constants,
then odd quantities Qq,p± are integrals of motion in addition to Hext and N. Let us present Hext in
the form Hext = Hq − Hp, where Hq = 1

2 π
2
q + F 2(q) + RqN, Hp = 1

2 π
2
p + G2(p) + RpN. Then,

Qq,p± and N together with the Hq and Hp form the classical analog of the extended phase space
SUSY algebra {Qq,p+, Qq,p−} = −i(Hq,p−Cq,p), {Hq,p, Qq,p±} = {Qq,p±, Qq,p±} = 0, {N, Qq,p±} =
±iQq,p±, {N, Hq,p} = 0, with constants Cq,p playing a role of a central charges in (q, p)− spaces,
N is classical analog of the grading operator. Putting Cq = Cp = 0, we arrive at the classical
analog of the extended phase space SUSY quantum mechanics given by the extended Lagrangian
Lext(p, q, ṗ, q̇) = 1

2 π
2
q − 1

2 W
2(q) + 1

2 π
2
p − 1

2 V
2(p) + ψ1ψ2(W

′
q + V ′

p) +
1
2ψαψ̇α. We conclude that the

classical system is characterized by the presence of two additional local in time odd integrals of motion
being supersymmetry generators. Along the actual trajectories in q−space, the lagrangian reproduces
the results obtained in previous section.

6.1. Solution of the extended Schrödinger equation with small energy eigenvalue

First, we use the iterative scheme to find the approximate groundstate solutions to the extended
Schrödinger-like equation Hext χ(q, p) = (Hq − Hp)χ(q, p) = ε χ(q, p), with energy ε. We will then
use these solutions to calculate the parameters which measure the breaking of extended SUSY such
as the groundstate energy. The approximation, which went into the derivation of solutions meets our
interest that the graoundstate energy ε is supposedly small. As we mentioned above the solutions

for non-zero ε come in pairs of the form χ↑(q, p) = (
χ1(q, p)

0
) or χ↓(q, p) = (

0
χ2(q, p)

), related

by supersymmetry, where χ1,2(q, p) = ψ1,2(q)ϕ1,2(p). The state space of the system is defined by
all the normalizable solutions and the individual states are characterized by the energies εq and
εq and the fermionic quantum number f . One of these solutions is acceptable only if W (q) and
V (p) become infinite at both q → ±∞ and p → ±∞, respectively, with the same sign. If this
condition is not satisfied, neither of the solutions is normalizable, and they cannot represent the
groundstate of the system. The following relations between energy eigenstates with fermionic quantum

number ±1
2 hold:

[
( ∂∂q +Wq(q))− ( ∂∂p + Vp(p))

]
ψ1(q)ϕ1(p) =

√
2εqψ2(q)ϕ1(p)−

√
2εpψ1(q)ϕ2(p), and[

(− ∂
∂q +Wq(q))− (− ∂

∂p + Vp(p))
]
ψ2(q)ϕ2(p) =

√
2εq ψ1(q)ϕ2(p)−

√
2εp ψ2(q)ϕ1(p), where ε = εq−εp,

εq and εp are the eigenvalues of Hq and Hp, respectively. The technique now is to devise an iterative
approximation scheme by taking a trial wave function for χ2(q, p), substitute this into the first equation
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and integrate it to obtain an approximation for χ1(q, p). This can be used as an ansatz in the second
equation to find an improved solution for χ2(q, p), etc. The procedure converges for well-behaved
potentials with a judicious choice of initial trial function. If the Wq and Vp are odd, then ψ1(−q) =
ψ2(q), ϕ1(−p) = ϕ2(p), since they satisfy the same eigenvalue equation. The independent nature of
q and p gives the freedom of taking q = 0, p = 0 which yield an expression for energies:

√
2εq =

W (0) + ψ′
1(0) /ψ1(0) ,

√
2εp = V (0) + ϕ′1(0) /ϕ1(0) . Suppose the potentials Wq(q) and Vp(p) have a

maximum, at q− and p−, and minimum, at q+ and p+, respectively. For the simplicity sake we choose

the trial wave functions as ψ
(0)
1,2(q) = δ(q− q±), ϕ(0)1,2(p) = δ(p− p±). The normalization constant N ′ is

N ′ = (
∫∞
q−

dq e−2
R q
0 W (q′)dq′

∫∞
p−

dp e−2
R p′
0 V (p′)dp′)3/2. The energy expectation value ε = (χ1, Hext χ1)

gives the same result as that obtained for odd potentials. Assuming the exponentials e
−2

R 0
q−

W (q)dq

and e
−2

R 0
p−

V (p)dp
to be small, which is correct to the same approximations, the difference is negligible

and the integrals in both cases may be replaced by gaussians around q+ and p+, respectively. Hence,

it is straightforward to obtain ε = ℏW ′(q+)
2π e−2∆W/ℏ − ℏV ′(p+)

2π e−2∆V/ℏ, which gives direct evidence
for the SUSY breaking in the extended phase space quantum mechanical system. Here we have
reinstated ℏ, to show the order of adopted approximation, and its non-perturbative nature. We also
denoted ∆W =

∫ q−
q+

W (q) dq, ∆V =
∫ p−
p+

V (p) dp. However, a more practical measure for the SUSY
breaking, in particular, in field theories is the expectation value of an auxiliary field, which can be
replaced by its equation of motion right from the start: < F >= (χ↑, i{Q+, σ−}χ↑), etc. Hence

we obtain (χ↑, Q+ χ↓)(χ↓, ψ̂− χ↑) = 2i
√
ε [(

εq
ε )
√
εq

√
W ′(q−)

π ∆ q − (
εp
ε )
√
εp

√
V ′(p−)
π ∆ p], and that

< F >= −2
√
ε [(

εq
ε )

√
W ′(q+)

π e−2∆W∆q − (
εp
ε )

√
V ′(p)
π e−2∆V∆p].

6.2. An extended SUSY breaking in the instanton picture

The matrix elements of ψ̂±, Qq± and Qp± can be calculated in the background of the classical
solution q̇c = −Wc and ṗc = −Vc. In doing this we re-write the matrix element in terms of eigenstates
of the conjugate operator ψ̂±. In the limit T → −i∞, this reduces to

√
ε < +0q+p+|Q+|q−p−0− ><

−0q−p−|ψ̂−|q+p+0+ >=
√
εq < +0q+|Qq+|q−0− >< −0q−|ψ̂−|q+0+ > −√εp < +0p+|Qp+|p−0− ><

−0p−|ψ̂−|p+0+ >, which, in turn, can be presented by path integrals defined in terms of anticom-
muting c-number operators ζ and η with Euclidean actions of the instantons in q− and p− spaces,
respectively. These functional integrals include an integration over instanton time τ0 which is due
to the problem of zero modes of the bilinear terms in Euclidean actions. This arises from time-
transformation of instantons, and SUSY transformations on them, respectively. The existence of
zero modes gives rise to non-gaussian behaviour of the functional integral. Due to it the matrix
elements above do not receive any contributions from either no-instanton or anti-instanton config-
urations. The zero mode problem is solved by introducing a collective coordinate τ0 replacing the
bosonic zero mode. Whereas, the funcional integrals depend only on the difference τ − τ0. Note also
that multi-instanton configurations could contribute in principle, provided they have not more than
one normalizable fermionic zero mode. But, their contribution is clearly smaller with respect to

√
2εq

and
√

2εp. In the case when the SUSY potentials in q− and p− spaces have more than two extrema
qν and pµ, ν, µ = 1, 2, . . . , N , one can put conditions on the SUSY potentials

∫∞
0 W (q′)dq′ → ∞ at

q → ±∞ for ψ+
0 ,
∫∞
0 W (q′)dq′ → −∞ at q → ±∞ for ψ−

0 , and similar for V (p), that the ex-

trema are well separated:
∫ qν+1
qν

W (q′)dq′ ≫ 1, and
∫ qµ+1
pµ

V (p′)dp′ ≫ 1. Around each of the classical

minima qν and pµ of the potentials W 2(q) and V 2(p), respectively, one can approximate the theory
by a suppersymmetric harmonic oscilliator. Then there are N ground states which have zero energy.
These states are described by upper or lower component of the wave function, depending on whether
ν and µ are odd or even. With this provision the functional integrals can be calculated, which al-

low us consequently to write down < +0q+|Qq+|q−0− >= i

√
W ′

c(q+)
π e−∆Wc , < −0q−|ψ̂−|q+0+ >=√

W ′
c(q+)
π e−∆Wc∆qc, etc. Then, we arrive at the < +0q+p+|Q+|q−p−0− >< −0q−p−|ψ̂−|q+p+0+ >=

2i
√
ε [(

εq
ε )
√
εq

√
W ′

c(q+)
π ∆qc− (

εp
ε )
√
εp

√
V ′
c (p+)
π ∆pc], and, as its inevitable corollary, to final solution.
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This proves that the extended SUSY breaking has resulted from tunnelling between the classical vacua
of the theory. The corrections to this picture are due to higher order terms and quantum tunneling
effects.

7. Operator manifold approach to geometry and particle physics

The operator manifold formalism enables the unification of the geometry and the field theory. It
yields the quantization of geometry drastically different from earlier suggested schemes. We explored
the query how did the geometry and fields, as they are, come into being. The substance out of which
the geometry and fields are made is the `primordial structures´. The mathematical framework of the
OM formalism reveals the fundamental concepts of the particle physics. The primordial structures are
designed to posses certain physical properties. The processes of their creation and annihilation in the
lowest state (the regular structures) just are described by the OM formalism. In all the higher states the
primordial structures are distorted ones, namely they have undergone the distortion transformations.
The distortion transformation functions are the operators acting in the space of the internal degrees of
freedom (colours) and imply the fundamental Incompatibility relations, which hold for both the local
and the global distortion rotations. They underly the most important symmetries such as the internal
symmetries U(1), SU(2), SU(3), the SU(2) ⊗ U(1) symmetry of electroweak interactions, etc. Our
major purpose is to prove the idea that the Geometry and Fields, with the Internal symmetries and all
interactions, as well the four major principles of Relativity (Special and General), Quantum, Gauge
and Colour confinement are derivative, and they come into being simultaneously. For illustrative
purposes below we briefly consider just only a few preliminary examples from the two important
aspects of mathematical background of the OM-formalism (Ter-Kazarian, 1884, 1996, 1999a). Thereby
we suppress the indices without notice.

7.1. Quantization of Geometry

Unifying the geometry and particles into one framework the OM formalism is analogous to the
method of secondary quantization with appropriate expansion over the geometric objects. We proceed
at once to the secondary quantization of geometry by substituting the basis elements for the creation
and annihilation operators acting in the configuration space of occupation numbers. Instead of pseudo
vectors Oλ we introduce the operators supplied by additional index (r) referring to the quantum

numbers of corresponding state Ôr1 = Or1α1, Ô
r
2 = Or2α2, Ô

λ
r = ∗δλµÔrµ = (Ôrλ)

+
, {Ôrλ, Ôr

′
τ } =

δrr′
∗δλτI2. The matrices αλ satisfy the condition {αλ, ατ} = ∗δλτI2, where α

λ = ∗δλµαµ = (αλ)
+,

and I2 = (
1 0
0 1

). For example α1 = (
0 1
0 0

), α2 = (
0 0
1 0

). The creation Ôr1 and annihilation Ôr2

operators are acting as follows: Ôr1 | 0 >= Or1 | 1 >, Ôr2 | 1 >= Or2 | 0 >, where | 0 >≡| 0, 0, . . . > and
| 1 >≡| 0, . . . , 1, . . . > are respectively the nonoccupied vacuum state and the one occupied state. Thus,

Ôr1 | 1 >= 0, Ôr2 | 0 >= 0. A matrix realization of such states, for instance, can be: | 0 >≡ χ1 = (
0
1
),

| 1 >≡ χ2 = (
1
0
). Hence χ0 ≡| 0 >=

N∏
r=1

(χ1)r and χr′ ≡| 1 >= (χ2)r′
∏
r ̸=r′

(χ1)r. Also, instead

of ordinary basis vectors we introduce the operators σ̂rα ≡ δαβγσ
r
βσ̃γ , where σ̃γ are Pauli’s matrices

such that < σrα, σ
r′
β >= δrr′δαβ, σ̂

α
r = δαβσ̂rβ = (σ̂rα)

+ = σ̂rα, {σ̂rα, σ̂r
′
β } = 2δrr′δαβI2. The vacuum state

| 0 >≡ φ1(α) and the one occupied state | 1(α) >≡ φ2(α) read: φ1(α) ≡ χ1, φ2(1) = (
1
0
), φ2(2) = (

−i
0

),

φ2(3) = (
0
−1 ), thus, σ̂rαφ1(α) = σrαφ2(α) = (σrασ̃α)φ1(α), σ̂

r
αφ2(α) = σrαφ1(α) = (σrασ̃α)φ2(α). Whence,

the single eigenvalue (σrασ̃α) associates with different φλ(α), namely it is degenerate with degeneracy
degree equal 2. Thus, among quantum numbers r there is also the quantum number of the half integer
spin σ⃗ (σ3 = 1

2s, s = ±1). This consequently gives rise to the spins of particles. The one occupied

state reads φr′(α) = (φ2(α))r′
∏
r ̸=r′ (χ1)r. Next, we introduce the operators γ̂r(λ,µ,α) ≡ Ô

r1
λ ⊗ Ô

r2
µ ⊗ σ̂r3α
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and the state vectors χλ,µ,τ(α) ≡| λ, µ, τ(α) >= χλ⊗χµ⊗φτ(α), where λ, µ, τ, ν = 1, 2; α, β = 1, 2, 3
and r ≡ (r1, r2, r3). Omitting two valuedness of state vectors we apply | λ, τ, δ(β) >≡| λ, τ >, and
remember that always the summation must be extended over the double degeneracy of the spin states
(s = ±1). The explicit matrix elements of basis vectors read < λ, µ | γ̂r(τ,ν,α) | τ, ν >=

∗δλτ
∗δµνe

r
(τ,ν,α),

< τ, ν | γ̂(τ,ν,α)r | λ, µ >= ∗δλτ
∗δµνe

(τ,ν,α)
r , for given λ, µ. The operators of occupation numbers N̂1

rr′
αβ =

γ̂r(1,1,α)γ̂
r′

(2,2,β), N̂2
rr′
αβ = γ̂r(2,1,α)γ̂

r′

(1,2,β) have the expectation values implying Pauli’s exclusion principle

< 2, 2 | N̂1
rr′
αβ | 2, 2 >=< 1, 2 | N̂2

rr′
αβ | 1, 2 >= δrr′δαβ, < 1, 1 | N̂1

rr′
αβ | 1, 1 >=< 2, 1 | N̂2

rr′
αβ | 2, 1 >= 0.

The operators {γ̂r} are the basis for tangent operator vectors Φ̂(ζ) = γ̂rΦr(ζ) of the 12 dimensional
flat OM: Ĝ, where we introduce the vector function belonging to the ordinary class of functions of C∞

smoothness defined on the manifold G: Φ
(λ,µ,α)
r (ζ) = ζ(λ,µ,α)Φλ,µr (ζ), ζ ∈ G. But, the operators

{γ̂r} is a dual basis for operator covectors
¯̂
Φ(ζ) = γ̂rΦ

r(ζ), where Φr = Φ̄r (charge conjugated). Hence

< λ, µ | Φ̂(ζ) ¯̂Φ(ζ) | λ, µ >= ∗δλτ
∗δµνΦ

(τ,ν,α)
r (ζ)Φr(τ,ν,α)(ζ), for given λ, µ. Considering the state vectors

| χ± >, we get the matrix elements < χ+ | Φ̂(ζ) ¯̂Φ(ζ) | χ+ >≡ Φ2
+(ζ) = Φ

(λ,1,α)
r (ζ)Φr(λ,1,α)(ζ),

< χ− | Φ̂(ζ) ¯̂Φ(ζ) | χ− >≡ Φ2
−(ζ) = Φ

(λ,2,α)
r (ζ)Φr(λ,2,α)(ζ). The basis {γ̂r} decomposes into {γ̂ir} (i =

η, u), where γ̂i
r
(+α) =

1√
2
(γr(1,1α)+ εiγ

r
(2,1α)), γ̂i

r
(−α) =

1√
2
(γr(1,2α)+ εiγ

r
(2,2α)). The expansion of operator

vectors Ψ̂i ∈ Ĝi and operator covectors
¯̂
iΨ are written Ψ̂i = γ̂i

rΨir,
¯̂
iΨ = γ̂irΨi

r, where the following

vector functions of C∞ smoothness are defined on the manifolds Gi : Ψη
(±α)
r (η, pη) = η(±α)Ψη

±
r (η, pη),

Ψu
(±α)
r (u, pu) = u(±α)Ψu

±
r (u, pu). Namely, the probability of finding the vector function in the state r

with given sixvector of coordinate (η or u) and momentum (pη or pu) is determined by the square of
its state wave function Ψη

±
r (η, pη), or Psiu

±
r (u, pu). Due to the spin states, the Ψi

±
r can be regarded

as the Fermi field of the positive and negative frequencies Ψi
±
r ≡ Ψi

r
±p.

7.2. Realization of the Flat Manifold G

The bispinor Ψ(ζ) defined on the manifold G = Gη ⊕ Gu can be written Ψ(ζ) = Ψη(η)Ψu(u),
where Ψi is the bispinor defined on the manifold Gi. The free state of i-type fermion with defi-
nite values of momentum pi and spin projection s is described by plane waves. The relations of
orthogonality and completeness hold for the spinors. Considering also the solutions of negative fre-
quencies, we make use of localized wave packets constructed by means of superposition of plane
wave solutions furnished by creation and annihilation operators in agreement with Pauli’s princi-

ple Ψ̂i =
∑

±s
∫ d3pi

(2π)3/2
(γ̂i(+α)Ψi

(+α) + γ̂i(−α)Ψi
(−α)), etc, where the summation is extended over

all dummy indices. In such a manner we can treat as well the wave packets of operator vec-
tor fields Φ̂(ζ). While the matrix element of the anticommutator of expansion coefficients reads
< χ− | {γ̂i(+α)(pi, s), γ̂j(+β)(p′j , s′)} | χ− >= εiδijδss′δαβδ

(3)(p⃗i−p⃗′i). In the aftermath, we get the most

important relation
∑

λ=± < χλ | Φ̂(ζ) ¯̂Φ(ζ) | χλ >=
∑

λ=± < χλ | ¯̂Φ(ζ)Φ̂(ζ) | χλ >= −i ζ2Gζ(0) =
−i (η2Gη(0) − u2Gu(0)),where Gi(0) ≡ limi→i′ Gi(i − i′), (i = ζ, η, u, ), etc., the Green’s function

Gi(i − i′) = −(i∂̂i + m)∆i(i − i′) is provided by the usual invariant singular functions ∆i(i − i′).
Realization of the flat manifold G ensued from the constraint imposed upon the matrix element that,

as the geometric object, it is required to be finite
∑

λ=± < χλ | Φ̂(ζ) ¯̂Φ(ζ) | χλ >< ∞, which gives
rise to ζ2GζF (0) < ∞, and GζF (0) = GηF (0) = GuF (0) = limu→u′ [−i

∑
p⃗u

Ψupu(u) Ψ̄upu(u
′) θ(u0 −

u′0)+i
∑

p⃗u
Ψ̄u−pu(u

′)Ψu−pu(u) θ(u
′
0−u0)), where the GζF , GηF and GuF are causal Green’s functions

characterized by the boundary condition that only positive frequency occur for η0 > 0 (u0 > 0), only
negative for η0 < 0 (u0 < 0). Here η0 =| η⃗0 |, η0α = 1√

2
(η(+α) + η(−α)) and the same holds for u0.

Satisfying the condition above, a length of each vector ζ = eζ ∈ G compulsory must be equaled zero
ζ2 = η2− u2 = 0, which is the condition of realization of the flat manifold G. The latter subsequently
leads to Minkowski flat space M4, the relativity principle holds d η2

∣∣
6→4
≡ d s2 = d u2 = inv.
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8. OM:Field aspect

The quantum field theory of the OM is equivalent to configuration space wave mechanics employing
the antisymmetric state functions incorporated with geometric properties of corresponding objects.
Therein, by applying the algebraic approach we reach to rigorous definition of the OM: Ĝ, construct
the explicit forms of wave state functions and calculate the matrix elements of field operators. While,

the Ĝ reads Ĝ =
∑∞

n=0 Ĝ
(n) =

∑∞
n=0(Û (n) ⊗ H̄(n)), where Û (n)

(r1,...,rn)
= Û (1)

r1 ,⊗ · · · ⊗ Û
(1)
rn is the open

neighbourhood of the n-points ζ̂ri of the OM, H̄(n)
(r1,...,rn)

= H(1)
r1 ⊗ · · · ⊗ H

(1)
rn is the Hilbert space for

description of n particle system. To illustrate the point at issue, the operators {γ̂r} are the basis
for tangent operator vectors Φ̂(ζ) = γ̂rΦr(ζ) of the 12D flat OM: Ĝ, where we introduce the vector
function belonging to the ordinary class of functions of C∞ smoothness defined on the 12D manifold

G: Φ
(λ,µ,α)
r (ζ) = ζ(λ,µ,α)Φλ,µr (ζ), ζ ∈ G (λ, µ = 1, 2;α = 1, 2, 3). But, the operators {γ̂r} is a

dual basis for operator covectors
¯̂
Φ(ζ) = γ̂rΦ

r(ζ), where Φr = Φ̄r (charge conjugated). The explicit

matrix elements of basis vectors read < λ, µ | γ̂r(τ,ν,α) | τ, ν >=
∗δλτ

∗δµνe
r
(τ,ν,α), < τ, ν | γ̂(τ,ν,α)r |

λ, µ >= ∗δλτ
∗δµνe

(τ,ν,α)
r , for given λ, µ, and ∗δλτ = 1 − δλτ . The operators of occupation numbers

N̂1
rr′
αβ = γ̂r(1,1,α)γ̂

r′

(2,2,β), N̂2
rr′
αβ = γ̂r(2,1,α)γ̂

r′

(1,2,β), have the expectation values implying Pauli’s exclusion

principle < 2, 2 | N̂1
rr′
αβ | 2, 2 >=< 1, 2 | N̂2

rr′
αβ | 1, 2 >= δrr′δαβ, < 1, 1 | N̂1

rr′
αβ | 1, 1 >=< 2, 1 | N̂2

rr′
αβ |

2, 1 >= 0. And < λ, µ | Φ̂(ζ) ¯̂Φ(ζ) | λ, µ >= ∗δλτ
∗δµνΦ

(τ,ν,α)
r (ζ)Φr(τ,ν,α)(ζ), for given λ, µ. Meanwhile,

one has to modify the basis operators (the creation γ̂r → γ̂ri and annihilation γ̂r → γ̂ri operators) in
order to provide an anticommutation in arbitrary (|>ri) states. For example, acting on free state | 0 >ri
the creation operator γ̂ri now yields the one occupied state | 1 >ri with the phase ′+′ or ′−′ depending of
parity of the number of quanta in the states r < ri. Modified operators satisfy the same anticommuta-

tion relations of the basis operators. It is convenient to make use of notation γ̂
(λ,µ,α)
r ≡ e(λ,µ,α)r b̂λµ(rα), and

abbreviate the pair of indices (rα) by the single symbol r. Then for each Φ ∈ AH(n) and any vector f ∈
H(1) the operators b̂(f) and b̂∗(f) imply b̂(f)Φ = 1√

(n−1)!

∑
σ∈S(n) sgn(σ)(f Φ

(1)
σ(1))Φ

(1)
σ(2) ⊗ · · · ⊗ Φ

(1)
σ(n),

b̂∗(f)Φ = 1√
(n+1)!

∑
σ∈S(n+1) sgn(σ)Φ

(1)
σ(0)⊗Φ

(1)
σ(1)⊗· · ·⊗Φ

(1)
σ(n), where Φ

(1)
(0) ≡ f . One continues the b̂(f)

and b̂∗(f) by linearity to linear reflections, which are denoted by the same symbols acting respectively
from AH(n) onto AH(n−1) or AH(n+1). They are limited over the values

√
n|f | and

√
(n+ 1)|f | and can

be expanded by continuation up to the reflections acting from AH̄(n) onto AH̄(n−1) or AH̄(n+1). Finally,
they must be continued by linearity up to the linear operators acting from AF onto AF defined on
the same closed region in AH̄(n), namely in AF , which is invariant with respect to reflections b̂(f) and
b̂∗(f). Hence, at fi, gi ∈ H(1) (i = 1, . . . , n; j = 1, . . . ,m) all polynomials over {b̂∗(fi)} and {b̂(gj)} are
completely defined on AF . While, for given λ, µ, one has < λ, µ | {b̂λµr (f), b̂r

′
λµ(g)} | λ, µ >= δr

′
r . The

mean values < φ; b̂λµr (f) b̂rλµ(f) > calculated at fixed λ, µ for any element Φ ∈ AF equal to mean values

of the symmetric operator of occupation number in terms of N̂ r = b̂r(f) b̂
r(f), with a wave function f

in the state described by Φ. Here, as usual, it is denoted < φ;AΦ >= Tr PφA = (Φ, AΦ) for each vec-
tor Φ ∈ H with |Φ| = 1, while the Pφ is projecting operator onto one dimensional space {λΦ |λ ∈ C}
generated by Φ. Therewith, the probability of transition φ → ψ is given Pr{φ |ψ} = |(ψ,φ)|2. The
linear operator A defined on the elements of linear manifold D(A) of H takes the values in H. The
D(A) is an overall closed region of definition of A, namely the closure of D(A) by the norm given in
H coincides with H. Meanwhile, the D(A) included in D(A∗) and A coincides with the reduction of
A∗ on D(A), because D(A) is the symmetric operator such that the linear operator A∗ is the maximal
conjugated to A. That is, any operator A′ conjugated to A - (Ψ, A′Φ) = (A′Ψ,Φ) for all Φ ∈ D(A) and
Ψ ∈ D(A′) coincides with the reduction of A∗ on some linear manifold D(A′) included in D(A∗). Thus,
the operator A∗∗ is closed symmetric expansion of operator A, namely it is a closure of A. Self conju-
gated operator A, the closure of which is self conjugated as well, allows only the one self conjugated
expansion A∗∗. Hence, self conjugated closure N̂ of operator

∑∞
i=1 b̂

∗(fi) b̂(fi), where {fi | i = 1, . . . , n}
is an arbitrary orthogonal basis on H(1), can be regarded as the operator of occupation number. For
the vector χ0 ∈ AF and χ0(n) = δ0n one gets < χ0(n), N̂(f) >= 0 for all f ∈ H(1). Thus, χ0 is the
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vector of vacuum state: b̂(f)χ0 = 0 for all f ∈ H(1). If f = {fi | i = 1, 2, . . .} is an arbitrary orthogonal
basis on H(1), then due to irreducibility of operators b̂∗(fi) | fi ∈ f , the AH includes the 0 and whole
space AH as invariant subspaces with respect to all b̂∗(f). To define the 12 dimensional operator man-
ifold Ĝ we consider a set F̂ of all the sequences Φ̂ = {Φ̂(0), Φ̂(1), . . . , Φ̂(n), . . .} with a finite number of

nonzero elements provided by Φ̂
(n)
(r1,...,rn)

= Φ̂
(1)
r1 ⊗· · ·⊗ Φ̂

(1)
rn ∈ Ĝ(n), Φ̂

(1)
ri = ζ̂riΦ

(1)
ri ∈ Ĝ

(1)
i = Û (1)

i ⊗H
(1)
i ,

ζ̂ri ≡
∑3

αi=1 γ̂
ri
(λi,µi,αi)

ζ
(λi,µi,αi)
ri ∈ Û (1)

ri , Ĝ
(n) = Û (n) ⊗ H̄(n), Û (n)

(r1,...,rn)
= Û (1)

r1 ,⊗ · · · ⊗ Û
(1)
rn . Then, the

operator manifold Ĝ ensues Ĝ =
∑∞

n=0 Ĝ
(n) =

∑∞
n=0(Û (n)⊗H̄(n)). To define the secondary quantized

form of one particle observable A on H, let consider a set of identical samples Ĥi of one particle
space H(1) and operators Ai acting on them. To each closed linear operator A(1) in H(1) with overall

closed region of definition D(A(1)) following operators are corresponded: A
(n)
1 = A(1)⊗ I⊗· · ·⊗ I, . . .,

A
(n)
n = I⊗I⊗· · ·⊗A(1). The sum

∑n
j=1A

(n)
j is given on the intersection of regions of definition of opera-

tor terms including a linear manifoldD(A(1))⊗· · ·⊗D(A(n)) closed in Ĥ(n). While, theA(n) is a minimal
closed expansion of this sum withD(A(n)). One considers a linear manifoldD(Ω(A)) inH =

∑∞
n=0 Ĥ(n)

defined as a set of all the vectors Ψ ∈ H such as Ψ(n) ∈ D(A(n)) and
∑∞

n=0

∣∣A(n)Ψ(n)
∣∣2 < ∞ . The

manifold D(Ω(A)) is closed in H. On this manifold one defines a closed linear operator Ω(A) acting as
Ω(A)(n) = A(n)Ψ(n), namely Ω(A)Φ =

∑∞
n=0A

(n)Ψ(n), while the Ω(A) is self conjugated operator with
overall closed region of definition, where Φi ∈ D(A). Then, < φ(n);A(n) >=

∑n
i=1 < φi;A >, which

enables the expansion by continuing onto D(A). Thus, A(n) is the n particle observable corresponding
to one particle observable A. So < φ; Ω(A) >=

∑∞
n=0 < φ(n);A(n) > for any Φi ∈ D(Ω(A)). While,

the Ω(A) reflects AD = D(Ω(A))⌢ AH into AH. The reduction of Ω(A) on AH is the self conjugated
in the region AD, because AH is the closed subspace of the H. Hence, the Ω(A) is the secondary quan-
tized form of one particle observable A on the H. The vacuum state reads χ0(ν1, ν2, ν3, ν4) =| 1, 1 >ν1

· | 1, 2 >ν2 · | 2, 1 >ν3 · | 2, 2 >ν4 , νi =
{

1 if ν = νi for some i,
0 otherwise,

, where | χ−(1) >≡ χ0(1, 0, 0, 0),

| χ+(1) >≡ χ0(0, 0, 0, 1), | χ−(2) >≡ χ0(0, 0, 1, 0), | χ+(2) >≡ χ0(0, 1, 0, 0), < χ±(λ) | χ±(µ) >= δλµ,
and < χ±(λ) | χ∓(µ) >= 0, provided by < χ± | A | χ± >≡

∑
λ < χ±(λ) | A | χ±(λ) > and

the normalization condition < χ0(ν ′1, ν
′
2, ν

′
3, ν

′
4) | χ0(ν1, ν2, ν3, ν4) >=

∏4
i=1 δνiν′i . The state vec-

tors are introduced χ({nr}N1 ; {mr}M1 ; {qr}Q1 ; {tr}
T
1 ; {νr}

4
1) = (b̂11N )

nN · · · (b̂111 )
n1 · (b̂12M )

mM · · · (b̂121 )
m1 ·

(b̂21Q )
qQ · · · (b̂211 )

q1 · ·(b̂22T )
tT · · · (b̂221 )

t1
χ0(ν1, ν2, ν3, ν4), where {nr}N1 = n1, . . . , nN , etc., which are the

eigenfunctions of modified operators. They form a whole set of orthogonal vectors < χ,χ′ >=
N∏
r=1

δnrn′
r
·
M∏
r=1

δmrm′
r
·
Q∏
r=1

δqrq′r ·
T∏
r=1

δtrt′r ·
4∏
r=1

δνrν′r . Considering an arbitrary superposition χ =∑1
a={nr}N1 ,{mr}M1 ,{qr}Q1 ,{tr}

T
1 =0

c′(a)χ(a), the coefficients c′ of expansion are the corresponding ampli-

tudes of probabilities. The nonvanishing matrix elements of operators b̂11rk and b̂rk11 read

< χ({n′r}
N
1 ; 0; 0; 0; 1, 0, 0, 0) | b̂11rkχ({nr}

N
1 ; 0; 0; 0; 1, 0, 0, 0) >=< 1, 1 | b̂r

′
1
11 · · · b̂

r′n
11 · b̂11rk · b̂

11
rn · · · b̂

11
r1 | 1, 1 >={

(−1)n′−k′ if nr = n′r for r ̸= rk and nrk = 0;n′rk = 1,
0 otherwise,

, etc., where one denotes n =
∑N

r=1 nr, n′ =∑N
r=1 n

′
r, the rk and r′k are k-th and k′-th terms of regulated sets of {r1, . . . , rn} (r1 < r2 < · · · < rn)

and {r′1, . . . , r′n} (r′1 < r′2 < · · · < r′n), respectively. Continuing along this line we get a whole set
of explicit forms of matrix elements of the rest of operators b̂rk and b̂rk . Hence

∑1
{νr}=0 < χ0 |

Φ̂(ζ) | χ >=
∑N

r=1 c
′
nr
enr

(1,1,α)Φ
(1,1,α)
nr + · · · , provided by c′nr

≡ δ1nrc
′(0, . . . , nr, . . . , 0; 0; 0; 0), · · · Here-

inafter we change a notation of the coefficients c̄(r11) = c′nr
, c̄(r21) = c′qr , N11 = N, N21 = Q,

c̄(r12) = c′mr
, c̄(r22) = c′tr , N12 =M, N22 = T, and make use of convention Frλµ =

∑
α e

rλµ

(λ,µ,α)Φ
(λ,µ,α)

rλµ
,∑1

{νr}=0 < χ0 | Â | χ >≡< χ0 ∥ Â ∥ χ >, The matrix elements of operator vector and covector

fields take the final forms < χ0 ∥ Φ̂(ζ) ∥ χ >=
∑2

λµ=1

∑Nλµ

rλµ=1
c̄(rλµ)Frλµ(ζ), < χ ∥ ¯̂

Φ(ζ) ∥ χ0 >=∑2
λµ=1

∑Nλµ

rλµ=1
c̄∗(rλµ)F r

λµ
(ζ). In the following we shall use a convention:

{∑2
λµ

}n
1
≡
∑2

λ1µ1
. . .
∑2

λnµn
,

rλµi ≡ rλiµi and c̄(r111 , . . . , r
11
n ) = c′(n1, . . . , nN ; 0; 0; 0), etc. The anticommutation relations ensue <

χ− | {b̂i+r , b̂ir
′

+} | χ− >=< χ+ | {b̂i−r , b̂ir
′

−} | χ+ >= δr
′
r , provided by γ̂i

(λα)
r = êi

(λα)
r b̂i

λ
(rα), (rα)→ r.
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The state functions χ = (b̂+ηN )
nN · · · (b̂+η1)n1 ·(b̂−ηM )mM · · · (b̂−η1)m1 ·(b̂+uQ)qQ · · · (b̂

+
u1)

q1 ·(b̂−uT )tT · · · (b̂
−
u1)

t1 ·
χ−(λ)χ+(µ), form a whole set of orthogonal eigenfunctions of corresponding operators of occupation
numbers N̂i

λ
r = b̂i

λ
r b̂i

r
λ with the expectation values 0, 1.

For more detail see (Ter-Kazarian, 1884, 1996, 1999a).

9. OM:Differential geometric aspect

The operators {γ̂r} are the basis for all operator vectors of tangent section T̂Φp of principle bundle

with the base Ĝ at the point Φp = Φ(ζ(t))|t=0 ∈ Ĝ. The smooth field of tangent operator vector

Â(Φ(ζ)) is a class of equivalence of the curves f(Φ(ζ)), f(Φ(ζ(0))) = Φp. While, the operator dif-

ferential d̂ Atp of the flux Atp : Ĝ → Ĝ at the point Φp with the velocity fields Â(Φ(ζ)) is defined by

one parameter group of operator diffeomorphisms given for the curve Φ(ζ(t)) : R1 → Ĝ. Provided

one has Φ(ζ(0)) = Φp and ̂̇Φ(ζ(0)) = Âp d̂ A
t
p(A) = d̂

d t

∣∣∣
t=0

At(Φ(ζ(t))) = Â(Φ(ζ)) = γ̂rAp, where

the {Ap} are the components of Â in the basis {γ̂r}. According to eq.(3.2), in holonomic coordi-

nate basis γ̂r → (∂̂ / ∂Φr(ζ(t)))p one gets Ap = ∂Φr
∂ζr

d ζr
d t

∣∣∣
p
. Hence, for any function f : Rn → Rn

of the ordinary class of functions of C∞ smoothness on Ĝ one may define an operator differential

< d̂ f, Â >= (̂Af), by means of smooth reflection d̂ f : T̂(Ĝ) → R̂ (T̂(Ĝ) =
⋃

Φp
T̂Φp), where

< χ∥d̂ f, Â∥χ0 >=
∑2

λ,µ=1

∑Nλµ

rλµ=1
ĉ∗(rλµ) < df,A >rλµ=

∑2
λ,µ=1

∑Nλµ

rλµ=1
ĉ∗(rλµ) (A f)rλµ . In coor-

dinate basis < dΦı̂, ∂̂ / ∂Φj >= ∂Φı̂

∂Φj = δı̂j , provided by dΦı̂ ≡ d̂Φi and
< χ∥δ̂ıj∥χ0 >=

∑2
λ,µ=1

∑Nλµ

rλµ=1
ĉ∗(rλµ)δij , where the i and j stand for a set of (λi, µi, αi). The operator

tensor T̂ of (̂n, 0)-type at the point Φp is a linear function of the space T̂n
0 = T̂Φp ⊗ · · · ⊗ T̂Φp︸ ︷︷ ︸

n

, where

the ⊗ denotes the tensor product. It enables a correspondence between the element (Â1, . . . , Ân) of
T̂n

0 and the number T (Â1, . . . , Ân) furnished by linearity. Constructing matrix elements of operator
tensors of Ĝ one produces the Cartan’s exterior forms. Whence, the matrix elements of symmetric
operator tensors equal zero. The differential operator n form ω̂n|Φp

at the point Φp ∈ Ĝ can be

defined as the exterior operator n form on tangent operator space T̂Φp of tangent operator vectors

Â1, . . . , Ân. That is, if the ∧T̂∗
Φp

(Ĝ) means the exterior algebra on T̂∗
Φp

(Ĝ), then operator n form

ω̂n|Φp
is an element of n-th degree out of ∧T̂∗

Φp
depending of the pointΦp ∈ Ĝ. Hence ω̂n =

⋃
Φp
ω̂n|Φp

.

Any differential operator n form of dual operator space T̂∗
Φp
⊗ · · · ⊗ T̂∗

Φp︸ ︷︷ ︸
n

may be written ω̂n =

∑
i1<···<in αi1···in(Φ)dΦ

ı̂1∧· · ·∧dΦı̂n , provided by the smooth differentiable functions αi1···in(Φ) ∈ C∞

and basis dΦı̂1∧· · ·∧dΦı̂n =
∑

σ∈Sn
sgn(σ)γσ(̂ı1⊗· · ·⊗γ ı̂n). The linear operator form of 1 degree ω̂1 is a

linear operator valued function on T̂Φp , namely ω̂1(Âp) : T̂Φp → R̂, where Âp ∈ T̂Φp , and the operator

ω̂1(Â) =< ω̂1,A >∈ R̂ corresponds to Âp at the point Φp, provided, according to eq.(A.1.25), with

< χ∥ω̂1∥χ0 >=
∑2

λ,µ=1

∑Nλµ

rλµ=1
ĉ∗(rλµ)ω1

rλµ
, where ω1

rλµ
= e

(λ,µ,α)

rλµ
ωr

λµ

(λ,µ,α), the < ω1
rλµ
,A >= ω1

rλµ
(A)

is a linear form on Tp, and ω̂
1(λ1Â1+λ2Â2) = λ1ω̂

1(Â1)+λ2ω̂
1(Â2), ∀λ1, λ2 ∈ R, Â1, Â2 ∈ T̂Φp .

The set of all linear operator forms defined at the point Φp fill up the operator vector space T̂∗
Φp

dual

to T̂Φp . While, the {γ̂r} serves as a basis for them. The operator n form is defined as the ex-
terior product of operator 1 forms. Here as well as for the rest of this section we abbreviate the
set of indices (λi, µi, αi) by the single symbol i. Let the D̂1 and D̂2 are two compact convex par-
allelepipeds in oriented n dimensional operator space R̂n and the f : D̂1 → D̂2 is differentiable
reflection of interior of D̂1 into D̂2 retaining an orientation, namely for any function φ ∈ C∞ defined
on D̂2 it holds φ ◦ f ∈ C∞ and f∗φ(Φp) = φ(f(Φp)), where f

∗ is an image of function φ(f(Φp))

on D̂1 at the point Φp. Hence, the function f induces a linear reflection d̂ f : T̂(D̂1) → T̂(D̂2)

as an operator differential of f implying d̂ f(Âp)φ = Âp(φ ◦ f) for any operator vector Âp ∈ T̂Φp

and for any function φ ∈ C∞ defined in the neighbourhood of Φ′
p = f(Φp). If the function f is
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given in the form Φ′i = Φ′i(Φp) and Âp = (Ai ∂̂
/
∂Φi)p, then in terms of local coordinates one gets

(d̂ f)Âp = Ai(∂Φ
′j

∂Φi )p(
∂̂

∂Φ′j )p′ . So, if f1 : D̂1 → D̂2 and f2 : D̂2 → D̂3 then d̂ (f2 ◦ f1) = d̂ f2 ◦ d̂ f1.
For any differential operator n form ω̂n on D̂2 the reflection f induces the operator n form f̂∗ω̂n

on D̂1 (f̂∗ω̂n) (Â1, . . . , Ân)
∣∣∣
Φp

= f̂∗ω̂
n (f̂∗Â1, . . . , f̂∗Ân)

∣∣∣
f(Φp)

. We may consider the integration of

operator n form implying
∫
D̂1
f̂∗ω̂n =

∫
D̂2
ω̂n. In general, let D̂1 is the limited convex n dimensional

parallelepiped in the n dimensional operator space R̂n. One defines the n dimensional i-th piece of
integration path σ̂i in Ĝ as σ̂i = (D̂i, fi, Ori), where D̂i ∈ R̂n, fi : D̂i → Ĝ and the Ori is an
orientation of R̂n. Then, the integral over the operator n form ω̂n along the operator n dimensional
chain ĉn =

∑
miσ̂

i may be written
∫
ĉn
ω̂n =

∑
mi

∫
σ̂i ω̂

n =
∑
mi

∫
D̂i
f̂∗ω̂n, where the mi is a multiple

number. Next, we may apply the analog of exterior differentiation. We define the operator (n + 1)
form d̂ ω̂n on (n+1) operator vectors Â1, . . . , Ân+1 ∈ T̂Φp by considering diffeomorphic reflection f of

the neighbourhood of the point 0 in R̂n into neighbourhood of the point Φp in Ĝ. The prototypes of

operator vectors Â1, . . . , Ân+1 ∈ T̂Φp(Ĝ) at the operator differential of f belong to tangent operator

space R̂n in 0. Namely, the prototypes are the operator vectors ξ̂1, . . . , ξ̂n+1 ∈ R̂n. Let f reflects the
parallelepiped Π̂∗, stretched over the ξ̂1, . . . , ξ̂n+1, onto the (n + 1) dimensional piece Π̂ on the Ĝ.
While the border of the n dimensional chain ∂Π̂ in R̂n+1 defined as follows: the pieces σ̂i of the chain
∂Π̂ are n dimensional facets ∂Π̂i of parallelepiped ∂Π̂ with the reflections embedding the facets into
R̂n+1: fi : Π̂i → R̂n+1, and the orientations Ori has defined as ∂Π̂ =

∑
σ̂i, σ̂i = (Π̂i, fi, Ori)

Considering the curvilinear parallelepiped F (Â1, . . . , Ân) =
∫
∂Π̂ ω̂n, one may state that the unique

operator of the (n+1)-form Ω̂ exists on T̂Φp , which is the principle (n+1) linear part in 0 of integral

over the border of F (Â1, . . . , Ân), namely F (εÂ1, . . . , εÂn) = εn+1Ω̂(Â1, . . . , Ân+1)+O(εn+1), where
Ω̂ is independent of choice of the coordinates used in definition of F . The prove of it is the same to
those of similar one given in the differential geometry.

At this point we cut short our discussion, and refer the interested reader to original papers (Ter-
Kazarian, 1884, 1996, 1999a) for more detailed justification of some of the procedures and complete
exposition of a lengthy mathematical apparatus of OM.

10. Primordial structures and link establishing processes

We have chosen a simple setting and considered the primordial structures designed to possess
certain physical properties satisfying the stated general rules. These structures are thought to be the
substance out of which the geometry and particles are made.

10.1. The Regular Primordial Structures

We distinguish η- and u-types primordial structures involved in the linkage establishing processes
occurring between the structures of different types. The η-type structure may accept the linkage
only from u-type structure, which is described by the link function ψη(η) belonging to the ordinary
class of functions of C∞ smoothness, where η = eη(λα)η

(λα), (λ = ±;α = 1, 2, 3), η is the link
coordinate. Respectively the u-type structure may accept the linkage only from η-type structure
described by the link function ψu(u) (u-channel, u = euu), where ψη

(±α)(η, pη) = η(±α)ψη
±(η, pη),

ψu
(±α)(u, pu) = u(±α)ψu

±(u, pu), a bispinor ψi
± is the invariant state wave function of positive or

negative frequencies, pi is the corresponding link momentum. Thus, a primordial structure can be
considered as a fermion. A simplest system made of two structures of different types becomes stable

only due to the stable linkage |pη| = (pη
(λα), pη(λα))

1/2
= |pu| = (pu

(λα), pu(λα))
1/2
. Otherwise they are

unstable. There is not any restriction on the number of primordial structures of both types involved in
the link establishing processes simultaneously. Only, in the stable system the link stability condition
must be held for each linkage separately. Suppose that persistent processes of creation and annihilation
of the primordial structures proceed in different states s, s′, s′′, ... The ”creation” of structure in the
given state (s) is due to its transition to this state from other states (s′, s′′, ...), while the ”annihilation”
means a vice versa. Satisfying the stability condition the primordial structures from arbitrary states
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can establish a stable linkage. Among the states (s, s′, s′′, ...) there is a lowest one (s0), in which all
structures are regular, i.e., they are in free (pure) state and described by the plane wave functions
ψη

±(ηf , pη) or ψu
±(uf , pu) defined respectively on flat manifolds Gη and Gu. The index (f) specifies

the points of corresponding flat manifolds ηf ∈ Gη, uf ∈ Gu. Note that the processes of creation and
annihilation of regular structures in lowest state are described by the OM formalism given above.

10.2. Distorted primordial structures

In all higher states the primordial structures are distorted (interaction states) and described by

distorted link functions defined on distorted manifolds G̃η and G̃u. The distortion G → G̃ with
hidden Abelian local group G = U loc(1) = SOloc(2) and one dimensional trivial algebra ĝ = R1 is
considered in (Ter-Kazarian, 2010). Within that scheme the basis ef undergoes distortion transforma-
tion e(θ) = D(θ) ef . The matrix D(θ) is in the form D(θ) = C ⊗ R(θ), where O(λα) = Cτ(λα)Oτ

and σ(λα)(θ) = Rβ(λα)(θ)σβ. Here R(θ) is the matrix of the group SO(3) of ordinary rotations

of the planes involving two arbitrary basis vectors of the spaces R3
± around the orthogonal third

axes (±k) through the angle (θ±k). The relation between the wave functions of distorted and reg-
ular structures reads ψu

λ(θ+k) = f(+)(θ+k)ψu
λ, ψuλ(θ−k) = ψuλf(−)(θ−k), where ψu

λ (ψuλ) is the
plane wave function of regular ordinary structure (antistructure). Next, we supplement the pre-
vious assumptions given in subsec.2.3 by the new one that now the η-type (fundamental) regu-
lar structure can not directly form a stable system with the regular u-type (ordinary) structures.
Instead of it the η-type regular structure forms a stable system with the infinite number of dis-
torted ordinary structures, where the link stability condition held for each linkage separately. Such
structures take part in realization of flat manifold G. We employ the wave packets constructed by
superposition of these functions furnished by generalized operators of creation and annihilation as
the expansion coefficients. Geometry realization condition now should be satisfied for each ordinary
structure in terms of Gu

θ
F (0) = limθ+→θ− Gu

θ
F (θ+ − θ−) = GηF (0) = limη′f→ηf GηF (η

′
f − ηf ). Then∑

k ψu(θ+k)ψ̄u(θ−k) =
∑

k ψu
′(θ′+k)ψ̄u

′
(θ′−k) = · · · = inv. Namely, the distorted ordinary structures

emerge in geometry only in permissible combinations forming a stable system. Below, in simpli-
fied schematic way we exploit the background of the known colour confinement and gauge principles.
Naive version of such construction still should be considered as a preliminary one, which will be further
elaborated to introduce basis for subquarks.

10.3. Quarks and colour confinement

At the very first to avoid irrelevant complications, here, for illustrative purposes, we will attempt
to introduce temporarily skeletonized `quark´ and `antiquark´ fields emerged in confined phase in the
simplified geometry with the one-u channel given in the previous subsections. The complete picture of
such a dynamics is beyond the scope of this subsection, but some relevant discussions on this subject
will also be presented. We may think of the function ψu

λ(θ+k) at fixed (k) as being u-component
of bispinor field of ”quark” qk, and of ψ̄uλ(θ−k) - an u-component of conjugated bispinor field of
”antiquark” q̄k. The index (k) refers to colour degree of freedom in the case of rotations through the
angles θ+k and anticolour degree of freedom in the case of θ−k. The η-components of quark fields
are plane waves. There are exactly three colours. The rotation through the angle θ+k yields a total
quark field qk(θ) = Ψ(θ+k) = ψη

0ψu(θ+k) where ψη
0 is a plane wave defined on Gη. This allows an

other interpretation of quarks, which is absolutely equivalent to the former one and will be widely
used throughout this article, i.e., qk(θ) = ψη

0quk(θ) = qηk(θ)ψu
0, qηk(θ) ≡ f(+)(θ+k)ψη

0, where ψu
0

is a plane wave, quk(θ) and qηk(θ) may be considered as the quark fields with the same quantum
numbers defined respectively on flat manifolds Gu and Gη. Making use of the rules stated one may
readily return to Minkowski space Gη → M4. In the sequel, a conventional quark fields defined on
M4 will be ensued qηk(θ) → qk(x), x ∈ M4. They imply

∑
k qkpq̄kp =

∑
k q

′
kpq̄

′
kp = · · · = inv. It

utilizes the idea of colour confinement principle: the quarks emerge in the geometry only in special
combinations of colour singlets. Only two colour singlets are available (qq̄) = 1√

3
δkk′ q̂k ¯̂qk′ = inv,

(qqq) = 1√
6
εklmq̂kq̂lq̂m = inv.
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10.4. Gauge principle-internal symmetries

Each regular structure in the lowest state can be regarded as a result of transition from an ar-
bitrary state, in which they assumed to be distorted. Hence, the following transformations may be

implemented upon distorted ordinary structures ψu
′λ(θ′+l) = f

(+)
lk ψu

λ(θ+k) = f(θ′+l, θ−k)ψu
λ(θ+k),

f(θ′+l, θ−k) = f(+)(θ
′
l)f(−)(θk). The transformation functions are the operators in the space of internal

degrees of freedom labeled by (±k) corresponding to distortion rotations around the axes (±k) by the
angles θ±k. We make proposition that the distortion rotations are incompatible, namely the transfor-

mation operators f
(±)
lk obey the incompatibility relations f

(+)
lk f

(+)
cd − f

(+)
ld f

(+)
ck = ∥f (+)∥εlcmεkdnf

(−)
nm ,

f
(−)
kl f

(−)
dc − f

(−)
dl f

(−)
kc = ∥f (−)∥εlcmεkdnf

(+)
mn , where l, k, c, d,m, n = 1, 2, 3. This relations hold in gen-

eral for both local and global rotations. Then one gets the transformations implemented upon the
quark field, which in matrix notation take the form q′(ζ) = U(θ(ζ))q(ζ), q̄′(ζ) = q̄(ζ)U+(θ(ζ)), where

q = {qk}, U(θ) = {f (+)
lk }. Due to the incompatibility commutation relations the transformation ma-

trices {U} generate the unitary groups of internal symmetries U(1), SU(2), SU(3) corresponding to
one-, two- and three-dimensional rotations through the angles θ±k, while an action of physical system
must be invariant under such transformations (gauge principle).

11. Operator Multimanifold ĜN

In the second part, we generalized the knowledge gained in outlined mathematical framework via
the concept of operator multimanifold (OMM), which yields the multiworld (MW)-geometry. The
latter involves the spacetime continuum and internal worlds of the given number.

11.1. Operator Vector and Covector Fields

The OM formalism of Ĝ = Ĝη⊕Ĝu is built up by assuming an existence only of ordinary primordial
structures of one sort (one u-channel). Being confronted by our major goal to develop the microscopic
approach to field theory based on multiworld geometry, henceforth we generalize the OM formalism
via the concept of the OMM. Then, instead of one sort of ordinary structures we are going to deal
with different species of ordinary structures. But before proceeding further and to enlarge the previous
model it is profitable to assume an existence of infinite number of iu-type ordinary structures of differ-
ent species i = 1, 2, . . . , N (multi-u channel). These structures will be specified by the superscript i to
the left. This hypothesis, as it will be seen in the subsequent part II, leads to the substantial progress
of understanding of the properties of particles. At the very outset we consider the processes of creation
and annihilation of regular structures of η- and iu-types in the lowest state (s0). The general rules
stated in subsec 2.1 regarding to this change apply a substitution of operator basis pseudo vectors and
covectors by a new ones (i = 1, 2, . . . , N): iÔr1r2λ,µ = iÔr1λ ⊗

iÔr2µ ≡ iÔrλ,µ = iOrλ,µ(αλ⊗αµ), provided by

r ≡ (r1, r2) and
iOr1,1 = 1√

2
(νiOη

r
+ + iOu

r
+),

iOr2,1 = 1√
2
(νiOη

r
+ − iOu

r
+),

iOr1,2 = 1√
2
(νiOη

r
− + iOu

r
−),

iOr2,2 =
1√
2
(νiOη

r
−−iOur−), where < νi, νj >= δij , <

iOu
r
λ,

jOu
r′
τ >= −δijδrr′∗δλτ , < Oη

r
λ,

iOu
r′
τ >= 0.

We consider then the operators iγ̂r(λ,µ,α) = iÔr1r2λ,µ ⊗ σ̂r3α . and calculate nonzero matrix elements

< λ, µ | iγ̂r(τ,ν,α) | τ, ν >= ∗δλτ
∗δµ,ν

ier(τ,ν,α), where
ier(λ,µ,α) = iOrλ,µ ⊗ σα. The operators

{
iγ̂r
}

are the basis for all the operator vectors Φ̂(ζ) = iγ̂r iΦr(ζ) of tangent section of principle bundle with
the base of operator multimanifold ĜN = (

∑N
i ⊕∗R̂4

i )⊗ R̂3. Here ∗R̂i
4 is the 2× 2 dimensional linear

pseudo operator space, with the set of the linear unit operator pseudo vectors as the basis of tangent
vector section, and R̂3 is the three dimensional real linear operator space with the basis consisted of
the ordinary unit operator vectors {σ̂rα}. The ĜN decomposes as follows: ĜN = Ĝη⊕ Ĝu1⊕· · ·⊕ ĜuN ,
where Ĝui is the six dimensional operator manifold of the given species (i) with the basis{
iγ̂u

r
(λα) =

iÔu
r
λ ⊗ σ̂rα

}
. The expansions of operator vectors and covectors are written Ψ̂η = γ̂rηΨηr,

Ψ̂u = iγ̂u
r iΨur,

¯̂
Ψη = γ̂ηrΨη

r,
¯̂
Ψu = iγ̂ur

iΨu
r, where the components Ψηr(η) and

iΨur(u) are respec-
tively the link functions of η-type and iu-type structures.
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11.2. Realization of the Multimanifold GN

Now, we consider the special system of the regular structures, which is made of one fundamental
structure of η-type and infinite number of iu-type ordinary structures of different species (i = 1, . . . , N).
The primordial structures establish the stable linkage to form the stable system p2 = p2η−

∑N
i=1 p

2
ui = 0.

The free field defined on the multimanifold GN = Gη ⊕Gu1 ⊕ · · · ⊕GuN is written Ψ = Ψη(η)Ψu(u),
Ψu(u) = Ψu1(u1) · · ·ΨuN (uN ), where Ψui is the bispinor defined on the internal manifoldGui . On anal-
ogy to above, we make use of localized wave packets by means of superposition of plane wave solutions
furnished by creation and annihilation operators in agreement with Pauli’s principle. Straightforward

calculations now give
∑

λ=± < χλ | Φ̂(ζ) ¯̂Φ(ζ) | χλ >=
∑

λ=± < χλ | ¯̂Φ(ζ)Φ̂(ζ) | χλ >= −i ζ2Gζ(0) =
−i (η2Gη(0) −

∑N
i=1 ui

2Gui(0)). Along the same line the realization of the multimanifold stems from

the condition as alluded to above. Let denote u2Gu(0) ≡ limui→u′i

∑N
i=1(uiu

′
i)Gui(ui − u′i) and con-

sider a stable system. Hence GuF (0) = GηF (0) = GζF (0), where GηF , GuF and GζF are the causal

Green’s functions of the η−, u− and ζ-type structures, and m ≡ |pu| = (
∑N

i=1 pui
2)1/2 = |pη| . In the

aftermath, the length of each vector ζ = ie iζ ∈ GN should be equaled zero (subsec.2.2) ζ2 = η2−u2 =
η2 −

∑N
i=1(u

G
i )

2 = 0, where use is made of (uGi )
2 ≡ u2i lim

ui → u′i
η → η′

GuiF (ui − u′i) /GηF (η − η′) and

uGi = iêu(λ,α) u
G (λ,α)
i . Thus, the multimanifold GN comes into being, which decomposes as follows:

GN = Gη ⊕ Gu1 ⊕ · · · Meanwhile, the Minkowski flat space M4 stems from the flat submanifold Gη
, in which the line element turned out to be invariant. That is, the principle of relativity comes into
being with the M4 ensued from the MW geometry GN . In the following we shall use a notion of the
i-th internal world for the submanifold Gui .

11.3. The subquark algebra and supercharges

The following transformations are implemented upon the subquarks (antisubquarks) on the given

(i) internal world: q′l = f
(+)
lk qk, q̄

′
l = q̄k f

(−)
kl , where as well for the next section we left implicit the MW-

superscript (i) to the left. Then, the following composition rules hold for the transformation functions

f
(+)
lk = fl ◦ f−1

k , f
(−)
lk = f̄l ◦ f̄−1

k , (fl ◦ f−1
k )(fc ◦ f−1

d ) = (fl fc) ◦ (f−1
k f−1

d ), where l, k, c, d = 1, 2, 3, the
transformation functions fk ≡ f(+)(θ+k) and f̄l ≡ f(−)(θ−k) are the operators in the space of internal
degrees of freedom labeled by the subcolour index (±k) such that the rotation through the angle θ±k
yields the subquark (antisubquark) field qk = fk q0, q̄k = q̄0 f̄k. The incompatibility commutation rela-
tions with the composition rule lead to the following commutation relations [fl, fk] = ϵlkm f̄m.Whence,
the subquarks imply [ql, qk] = Q0 ϵlkm q̄m, Q0 ≡ q20 /q̄0 . The symmetries of the C− (C ≡ s, c, b, t) and
Q− worlds are assumed to be respectively global and local unitary diag(SU(3)) symmetries, for
which ql qk = Q′

0 ϵlkm q̄m, while for the W−world with the unified symmetry SU(2)L ⊗ U(1) it re-
duced to [q1L, q2L] = Q0 q̄2R, [q2L, q2R] = Q0 q̄1L, [q2R, q1L] = Q0 q̄2L, where the subcolour singlets are
Q2R, [q1L, q2L] and (q q̄). Hence, for the electron and corresponding neutrino one gets [νL, eL] = Q0 ēR,
[eL, eR] = Q0 ν̄L, [eR, νL] = Q0 ēL. The important relation between the fermionic (F ) and bosonic
(B) subcolour singlets reads (qqq) ≡ 1√

6
ϵlkm qlqkqm = Q0u (q q̄) ≡ Q0u

1√
3
(qk q̄k), F → Q0uB,

and vice versa, where F ≡ (qqq), B ≡ (q q̄), Q0u ≡ 1√
2
Q0. It means that considered physical

system must respect the invariance under a symmetry group of the fermion-boson transformations
occurred in the internal worlds. The latter is known as a “supersymmetry”. It is why the basis
vectors in the Hilbert space H have taken to be in the form | nBnF >, where the boson and fermion
occupation numbers respectively are nB = 1, 2, ...,∞ and nF = 0, 1. It is convenient, then, to de-
scribe such a quantum mechanical system as the spin-1/2 like supersymmetric particle with mass

m =
(

ℏ
Q0u

)2
moving along the one-dimensional Euclidean line R. Therefore, one introduces a gen-

eralized bosonic operator b and a fermionic operator f acting on the Hilbert space H = L2(R) ⊗ C2:

b : L2(R) → L2(R), b = 1
2(

∂
∂ u +W (u)), f : C2 → C2, f =

(
0 0
1 0

)
, where the supersymmetric

potential W (u) : R → R defined on the given (i) internal world is assumed to be piecewise contin-
uously differentiable function. The commutation and anticommutation relations for these operators
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read [b, b+] = W ′(u), {f, f+} = 1. Employing standard technique, next we define the nilpotent

supercharge operators Qu = Q0u b⊗ f+ = Q0u

(
0 b
0 0

)
, Qu

+ = Q0u b
+ ⊗ f = Q0u

(
0 0
b+ 0

)
, which

obey the anticommutation relations {Qu, Qu} = {Qu+, Qu+} = 0, and act as follows: Qu | nB, nF >
∝ | nB − 1, nF + 1 >, Qu

+ | nB, nF > ∝ | nB + 1, nF − 1 > .

11.4. The Primary Field

As alluded to above, we have chosen a simple setting and considered the `primordial´ structures,
which are designed to posses certain physical properties satisfying the stated in (Ter-Kazarian, 1884,
1996, 1999a) general rules and have involved in the linkage establishing processes. The processes of
their creation and annihilation in the lowest state (the `regular structures´) just are described by
the OM formalism. In all the higher states the `primordial structures´ are distorted ones, namely
they have undergone the distortion transformations. These transformations yield the `quark´ and
‘`antiquark´ fields defined on the simplified geometry (one u-channel), and skeletonized for illustrative
purposes. Due to geometry realization conditions held in the stable systems of `primordial structures´
they emerge in confined phase. This scheme still should be considered as the preliminary one, which
is further elaborated in this subsection to get the physically more realistic picture. The distortion
transformation functions are the operators acting in the space of the internal degrees of freedom
(colours) and imply the incompatibility relations (Ter-Kazarian, 1884, 1996, 1999a), which hold for
both the local and the global distortion rotations. They underly the most important symmetries such
as the internal symmetries U(1), SU(2), SU(3), the SU(2)⊗U(1) symmetry of electroweak interactions,
etc.

On these premises, in the enlarged framework of the OMM we define and clarify the fundamental
conceptual basis of subquarks (instead of quarks) and their characteristics stemming from the various
symmetries of the internal worlds. By this we have arrived at an entirely satisfactory answer to the
question of the physical origin of the geometry and fields, the internal symmetries and interactions, as
well the principles of relativity, quantum, gauge and subcolour confinement. The OMM formalism has
the following features: All the fields including the leptons and quarks, along with the spacetime com-
ponents have also the MW internal components made of the various constituent subquarks defined on
the given internal worlds, such that the internal components are consisted of `distorted ordinary struc-
tures´: Ψ(θ) = Ψη(η)ΨQ(θQ)ΨW (θW )ΨB(θB)ΨC(θ

c). The components ΨQ(θQ),ΨW (θW ),ΨB(θB) are
primary massless bare Fermi fields. We assume that this field has arisen from primary field in the
lowest state (s0) with the same field components consisted of `regular ordinary structures´, sub-
ject to certain rules (Ter-Kazarian, 1884, 1996, 1999a). Therefore, the primary field defined on GN
Ψ(0) = Ψη(η)ΨQ(0)ΨW (0)ΨB(0)ΨC(0) serves as the ready made frame into which the distorted ordi-
nary structures of the same species should be involved. We apply the Lagrangian of this field possessed
local gauge invariance written in the notations L̃0(D) = i

2{Ψ̄e(ζ)
iγDiΨe(ζ)−DiΨ̄e(ζ)

iγΨe(ζ)}, with
the vector indices contracted to form scalars, where Di = ∂i − igBi(ζ), Bi are gauge fields. Since
the components ΨB and ΨC will be of no consequence for a discussion, then we temporarily leave
them implicit, namely i = η,Q,W . The equation of primary field of the MW- structure with non-
linear fermion interactions of the components may be derived from an invariant action in terms of
local gauge invariant Lagrangian, which looks like Heisenberg theory: L̃(D) = L̃0(D) + L̃I + L̃B,
provided by the Lagrangians of nonlinear fermion interactions of the components L̃I =

√
2Õ1 ⊗ LI ,

and gauge field L̃B =
√
2Õ1 ⊗ LB. The binding interactions are in the form LI = LQI + LWI , LQI =

λ
4 (JQLJQ

+
R+JQRJQ

+
L ), LWI =

λ
2SWS

+
W , LB = −1

2Tr(BB̄) = −1
2Tr (BiBi) , where JQL,R = VQ∓AQ,

VQ(λα) = Ψ̄Qγ(λα)ΨQ, VQ
+
(λα) = VQ

(λα) = Ψ̄Qγ
(λα)ΨQAQ(λα) = Ψ̄Qγ(λα)γ5ΨQ, AQ

+
(λα) = AQ

(λα) =

Ψ̄Qγ
5γ(λα)ΨQ, SW = Ψ̄WΨW , γµ and γ5 = iγ0γ1γ2γ3 are Dirac matrices. According to Fiertz theorem

the interaction Lagrangian LQI =
λ
2 (V V

+−AA+) may be written LQI = −λ(SQS+
Q−PQP

+
Q ), provided

by SQ = Ψ̄QΨQ, PQ = Ψ̄Qγ5ΨQ. Hence L̃(D) =
√
2Õ1⊗L(D), L(D) = Lη(Dη)−LQ(DQ)−LW (DW ),

where Lη(Dη) = Lη
′ (0)
0 (Dη)− 1

2Tr(BηB̄η), LQ(DQ) = LQ
′ (0)
0 (DQ)−LQI − 1

2Tr(BQB̄Q), LW (DW ) =

LW
′ (0)
0 (DW ) − LWI − 1

2Tr(BWB̄W). Here Lη
′ (0)
0 = i

2{Ψ̄
⌢
γDη Ψ − Ψ̄

⌢

γ
←−
Dη Ψ} = Ψu

+Lη
(0)
0 Ψu,
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Lu
′ (0)
0 = i

2{Ψ̄
⌢
γDu Ψ − Ψ̄

⌢

γ
←−
Du Ψ} = Ψη

+Lu
(0)
0 Ψη, and Lη

(0)
0 = i

2{Ψ̄η

⌢
γDη Ψη − Ψ̄η

⌢

γ
←−
Dη Ψη},

Lu
(0)
0 = i

2{Ψ̄u

⌢
γDu Ψu − Ψ̄u

⌢

γ
←−
Du Ψu}. The total Lagrangian has the global γ5 and local gauge

symmetries. We consider only γ5 symmetry in Q-world, namely BQ ≡ 0. According to the OMM for-
malism, it is important to fix the mass shell of the stable MW- structure. It means that we must take
at first the variation of the Lagrangian with respect to primary field, then have switched on nonlinear
fermion interactions of the components. In other words we take the variation of the Lagrangian with
respect to the components on the fixed mass shell.

Reflecting upon the discussed in two previous subsections subject, we conclude that in the frame-
work of MW-geometry, all the fields have composite nontrivial internal structure. The MW structure
of primary field is described by the gauge invariant Lagrangian involving nonlinear fermion interactions
of the internal field components somewhat similar to the theory by Heisenberg and his co-workers, but
still it will be defined on the MW-geometry. This Lagrangian is the whole story since all the complex-
ity of the leptons, quarks and their interactions arises from it. The number of free parameters in this
Lagrangian is reduced to primary coupling constant of the nonlinear interaction and gauge coupling.
All the fields along with the spacetime component have nontrivial composite internal MW structure.
The possible elementary particles are thought to be composite dynamical systems in analogy to quan-
tum mechanical stationary states of compound atom, but, now a dynamical treatment built up on
the MW-geometry is quite different and more amenable to qualitative understanding (Ter-Kazarian,
1884, 1996, 1999a). The microscopic structure of leptons, quarks and other particles will be governed
by the only possible conjunctions of constituent subquarks implying concrete symmetries.

The hypothesis of existence of the MW structures manifests its virtue by solving some key problems
of particle phenomenology, when we attempt to suggest a microscopic approach to the properties of
particles and interactions. We consider further the microscopic theory of the unified electroweak
interactions (Ter-Kazarian, 1884, 1996, 1999a). It follows that contemporary phenomenological SM
is an approximation to the suggested microscopic approach. The condition of realization of the MW
connections is arisen due to the symmetry of Q-world of electric charge and embodied in the Gell-
Mann-Nishijima relation. During the realization of the MW-structure the symmetries of corresponding
internal worlds are unified into more higher symmetry including also the operators of isospin and
hypercharge. Such approach enables to conclude that only possible at low-energy the three lepton
generations consist of six lepton fields with integer electric and leptonic charges and being free of
confinement. Also the three quark generations exist composed of six possible quark fields. They carry
fractional electric and baryonic charges and obey confinement condition. The global group unifying
all global symmetries of the internal worlds of quarks is the flavour group SUf (6). The Lagrangian of
primary field contains only two free parameters, which are the coupling constants of nonlinear fermion
and gauge interactions.

Hence, the OMM formalism provides a natural unification of the geometry - yielding the 1) Special
and 2) General relativity principles, and the fermion fields serving as the basis for the constituent
subquarks.

It has cleared up the physical conditions in which the geometry and particles come into being.
The subquarks emerge in the geometry only in certain permissible combinations utilizing the idea of

the 3) Subcolour (subquark) confinement principle, and have undergone the transformations yielding
the Internal symmetries and 4) Gauge principle.

Although within considered schemes the subquarks are defined on the internal worlds, however the
resulting spacetime components of particles, which we are going to deal with to describe the leptons
and quarks defined on the spacetime continuum, are affected by them in such a way that they carry
exactly all the quantum numbers of the various constituent subquarks of the given composition. We
discussed a class of models of internal symmetries, which reproduce the known phenomenology of
electromagnetic, weak and strong interactions (Ter-Kazarian, 1884, 1996, 1999a). In order to save
writing we guess it worthwhile to leave the other concepts such as the flavors and so forth with
associated fundamental aspects of particle physics for an other treatment. It will not concern us here
and must be further discussed. Surely this is an important subject for separate research.
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12. Microscopic theory of the Standard Model of elementary parti-
cles

We attempt to develop, further, the microscopic theory of the Standard Model of elementary par-
ticles (Ter-Kazarian, 1999b, 2001b), which enables an insight to the key problems of particle phe-
nomenology.

12.1. Objectives of MTSM

The most important open questions of the SM are as follows: We have no understanding why
the SM is as it is? Why is the gauge symmetry? Why is this the particle spectrum? Why the
electroweak symmetry breaking sector consists of just one SU(2)L doublet of Higgs bosons as it is
in SM? The untested aspects of SM are the mass spectrum of the particles, the mixing patterns and
the CP violation. The latter is introduced through complex Yukawa couplings of fermions to Higgs
bosons, resulting in complex parameters in the CKM matrix. The SM contains a large number of
arbitrary parameters, while a consistent complete theory would not have so many free parameters.

To address to some of these nagging questions of the SM, the MTSM is developed, wherein the
proliferation of lepton and quark flavours prompts us to consider the fields as composites. Certainly, it
may seem foolhardy to set up such a picture in the spacetime continuum. The difficulties arisen here
are well-known. The first problem is closely related to the expected mass differences of particles, which
in this case would be too large (≥ 1TeV ). Another problem concerns the transformations of particles.
Our idea is to remove these difficulties by employing MTSM, which is based on the MW-geometry.
This theory attempts to answer to some of the above mentioned questions of particle phenomenology.
The MTSM enables an insight to the key concepts of particle physics, and to conclude that the leptons
are particles with integer electric and leptonic charges and free of confinement, while the quarks carry
fractional electric and baryonic charges and imply the confinement. The theoretical significance of the
MTSM resides in the microscopic interpretation of all physical parameters. We derive the Gell-Mann-
Nishijima relation and the flavour group. The testable implications of the MTSM are given. Finally,
we derive a physically more realistic mass spectrum of the leptons and quarks instead of the former
one inferred within the simplified scheme.

A theoretical significance of the MTSM, first of all, resides in the microscopic interpretation of
all physical parameters. Due to specific structure of the W-world of weak interactions implying
the condition of realization of the MW-connections, the spanning takes place, which underlies the
P-violation in W-world. It is expressed in the reduction of initial symmetry of the right-handed
subquarks. Such reduction is characterized by the Weinberg mixing angle with the value fixed at 300.
It gives rise to the expanded local symmetry SU(2) ⊗ U(1), under which the left-handed fermions
transform as six independent SU(2) doublets, while the right-handed fermions transform as twelve
independent singlets. Due to vacuum rearrangement in Q-world the Yukawa couplings arise between
the fermion fields and corresponding isospinor-scalar φ-meson in conventional form.

12.2. Higgs bosons and Electroweak symmetry breaking

We suggest the microscopic approach to Higgs bosons with self-interaction and Yukawa couplings.
It involves the Higgs bosons as the collective excitations of bound quasi-particle iso-pairs. To obtain
some feeling about this statement, below we give more detailed explanation.

Tracing a resemblance with the Cooper pairs, within the framework of local gauge invariance of
the theory incorporated with the phenomenon of P-violation in weak interactions we suggest a mecha-
nism providing the Bose-condensation of relativistic fermion pairs, which is due to effective attraction
between the relativistic fermions caused by the exchange of the mediating induced gauge quanta in
the W-world. The rationale for this approach is readily forthcoming from the consideration of gauge
transformations of the fields under the P-violation in the W-world Ψ′

L(x) = UL(x)ΨL(x), Ψ′
R(x) =

UR(x)ΨR(x), where the Fourier expansions carried out over corresponding gauge quanta with wave

fourvectors qL and qR UL(x) =
∫ d4qL

(2π)4
eiqLx UL(qL), UR(x) =

∫ d4qR
(2π)4

eiqRx UL(qR), and UL(x) ̸=
UR(x). They induce the gauge transformations implemented upon the φ-field φ′(x) = U(x)φ(x).
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The matrix of induced gauge transformations may be written down in terms of induced gauge quanta

U(x) ≡ U+
L (x)UR(x) =

∫ d4q
(2π)4

eiqx U(q), where q = −qL + qR, q(q0, q⃗). In momentum space one

gets φ′(k′) =
∫ d4q

(2π)4
U(q)φ(k′ − q) =

∫
d4k
(2π)4

U(k′ − k)φ(k). Conservation of the fourmomentum re-

quires that k′ = k + q. Accordingly, we have −p′L + p′R = −pL + pR + q = −p′′L + pR = −pL + p′′R,
where p′′L = pL − q, p′′R = pR + q. Whence the wave vectors of fermions imply the conservation
law p⃗L + p⃗R = p⃗′′L + p⃗′′R, characterizing the scattering process of two fermions with effective inter-
action caused by the mediating induced gauge quanta. We suggest the mechanism for the effective
attraction between the fermions in the following manner: Among all induced gauge transformations
with miscellaneous gauge quanta we distinguish a special subset with the induced gauge quanta of
the frequencies belonged to finite region characterized by the maximum frequency q̃

ℏ (q̃ = max{q0})
greater than the frequency of inducing oscillations fermion force

ĒL−Ē′′
L

ℏ < q̃
ℏ . To the extent that this

is a general phenomenon, we can expect under this condition the effective attraction (negative inter-
action) arisen between the fermions caused by exchange of virtual induced gauge quanta if only the
forced oscillations of these quanta occur in the same phase with the oscillations of inducing force (the
oscillations of fermion density). In view of this we may think of isospinor ΨL and isoscalar ΨR fields
as the fermion fields composing the iso-pairs with the same conserving net momentum p⃗ = p⃗L + p⃗R
and opposite spin, for which the maximum number of negative matrix elements of operators composed
by corresponding creation and annihilation operators a+

p⃗′′R
ap⃗R a+

p⃗′′L
ap⃗L (designated by the pair wave

vector p⃗) may be obtained for coherent ground state with p⃗ = p⃗L + p⃗R = 0. In the mean time the
interaction potential reads V =

∑
p⃗′′R, p⃗

′′
L, p⃗R, p⃗L

(a+p⃗L)
+a+

p⃗′′R
(a+
p⃗′′L
)ap⃗R =

∑
p⃗′′R, p⃗

′′
L, p⃗R, p⃗L

a+
p⃗′′R

a+
p⃗′′L
ap⃗R ap⃗L ,

implying the attraction between the fermions situated in the spherical thin shall near the Fermi surface

Vp⃗p⃗′′ = {
−V at | Ep⃗ − EF |≤ q̃, | Ep⃗′′ − EF |≤ q̃,
0 otherwise

. The fermions filled up the Fermi sea block

the levels below Fermi surface. Hence, the fermions are in superconducting state if this condition
holds. Otherwise, they are in normal state described by Bloch individual particle model. Hence, the
Bose-condensate arises in the W-world as the collective mode of excitations of bound quasi-particle
iso-pairs described by the same wave function in the superconducting phase Ψ =< ΨLΨR >, where
< · · · > is taken to denote the vacuum averaging. The vacuum of the W-world is filled up by such
iso-pairs at absolute zero T = 0. We make a final observation that ΨRΨ

+
R = nR is a scalar den-

sity number of right-handed particles. It readily follows that: (ΨLΨR)
+(ΨLΨR) = Ψ+

RΨ
+
LΨLΨR =

1
nR

Ψ+
Rγ

0(γ0Ψ+
LΨR)(Ψ

+
RΨLγ

0)γ0ΨR = φφ+, where | Ψ |2=< φφ+ >=|< φ >|2≡| φ |2 . It is convenient
to abbreviate the < φ > by the symbol φ. Hence the φ-meson actually arises as the collective mode
of excitations of bound quasi-particle iso-pairs.

12.3. The Non-Relativistic Approximation

In the approximation to non-relativistic limit (β ≪ 1, ΨL ≃ ΨR, γ
0 → 1) by making use of

Ginzburg-Landau’s (GL) phenomenological theory, it is straightforward to write down the free-energy
functional for the order parameter in equilibrium superconducting phase in presence of magnetic field.
The self-consistent coupled GL-equations are differential equations like Schrödinger and Maxwell equa-
tions, which relate the spatial variation of the order parameter Ψ to the vector potential A⃗ and the
current j⃗s. By means of thermodynamic Green’s functions in well defined limit, it is shown that
GL-equations are a consequence of the BCS-Bogoliubov microscopic theory of superconductivity. The
theoretical significance of these works resides in the microscopic interpretation of all physical parame-
ters of GL-theory. Subsequently these ideas were extended to lower temperatures using a requirement
that the order parameter and vector potential vary slowly over distances of the order of the coher-
ence length and that the electrodynamics be local (London limit). Namely, the validity of derived
GLG-equations is restricted to the temperature T , such Tc−T ≪ Tc and to the local electrodynamics
region qξ0 ≪ 1, where Tc is transition temperature, ξ0 is coherent length characterizing the spatial
extent of the electron pair correlations, q are the wave numbers of magnetic field A⃗. The most impor-
tant order parameter Ψ, the mass mΨ and the coupling constant λΨ figured in GLG-equations read

Ψ(r⃗) = (7ζ(3)N)1/2

4πkBTc
∆(r⃗), ∆(T ) =≃ 3.1kBTc

(
1− T

Tc

)1/2
, ξ0 =≃ 0.18 ℏvF

kBTc
, m2

Ψ = 1.83ℏ2
m

1
ξ20

(
1− T

Tc

)
,
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λ2Ψ = 1.4 1
N(0)

(
ℏ2

2mξ20

)2
1

(kBTc)2
. Reviewing the notation ∆(r⃗) is the energy gap, e∗ = 2e is the effective

charge, N(0) is the state density at Fermi surface, N is the number of particles per unit volume in
normal mode, vF is the Fermi velocity, m ≡ ΣQ = fQ is the mass of fermion field. The transition tem-
perature relates to gap at absolute zero ∆0. The estimate for the pair size at vF ∼ 108cm/s, Tc ∼ 1
gives ξ0 ≃ 10−4cm.

12.4. The Relativistic Treatment

We start with the Lagrangian of self-interacting fermion field in W-world, which is arisen from
the Lagrangian of primary fundamental field after the rearrangement of the vacuum of the Q-world

LW (x) = i
2{Ψ̄W (x)γµ∂WµΨW (x)− Ψ̄W (x)γµ

←−
∂ WµΨW (x)} −mΨ̄W (x)ΨW (x)−

λ
2 Ψ̄W (x)

(
Ψ̄W (x)ΨW (x)

)
ΨW (x). Here, m = ΣQ is the self-energy operator of the fermion field compo-

nent in Q-world, the suffix (W ) just was put forth in illustration of a point at issue. For the sake of sim-
plicity, we also admit BW(x) = 0, but, of course, one is free to restore the gauge field BW(x) whenever
it will be needed. In lowest order the relationm ≡ mQ ≪ λ−1/2 holds. The Lagrangian LW (x) leads to
the field equations (γp−m)Ψ(x)− λ

(
Ψ̄(x)Ψ(x)

)
Ψ(x) = 0, Ψ̄(x)(γ←−p +m) + λΨ̄(x)

(
Ψ̄(x)Ψ(x)

)
= 0,

where the indices have been suppressed as usual. At non-relativistic limit the function Ψ reads
Ψ → eimc

2tΨ. In the following, we make use of conventional technique and evaluate the equations.
The spirit of the calculation will be to treat interaction between the particles as being absent every-
where except the thin spherical shell 2q̃ near the Fermi surface. The Bose condensate of bound particle
iso-pairs occurred at zero momentum. The scattering processes between the particles are absent. This
method allows oneself to extend the study up to limit of temperatures, such that Tc − T ≪ Tc, by
making use of thermodynamic Green’s function.

12.5. Lagrangian of Electroweak Interactions; The Transmission of the Electroweak
Symmetry Breaking From the W -World to Spacetime Continuum

The results obtained within the previous subsections enable us to trace unambiguously rather
general scheme of unified electroweak interactions, where the self-interacting isospinor scalar Higgs
bosons have arisen as the collective modes of excitations of bound quasi-particle iso-pairs on the
internal W -world. But, at the very first we remind some features allowing us to write down the final
Lagrangian of electroweak interactions.

1. During the realization of the MW connections of weak interacting fermions under the action
of the Q-world the P-violation compulsory occurred in the W-world incorporated with the symmetry
reduction characterized by the Weinberg mixing angle with the fixed value at 300. This gives rise to the
local symmetry SU(2)⊗ U(1), under which the left-handed fermions transformed as six independent
doublets, while the right-handed fermions transformed as twelve independent singlets.

2. Due to vacuum rearrangement in Q-world the Yukawa couplings arise between the fermion fields
and corresponding isospinor-scalar φ- meson in conventional form.

3. In the framework of suggested mechanism providing the effective attraction between the rel-
ativistic fermions caused by the exchange of the mediating induced gauge quanta in W-world, the
self-interacting isospinor-scalar Higgs bosons arise as Bose-condensate, namely the SU(2) multiplets
of spinless φ-meson fields coupled to the gauge fields in a gauge invariant way. Thus, in the Lagrangian
of φ-meson with the degenerate vacuum of the W-world the symmetry-breaking Higgs boson is counted
off from the gap symmetry restoring value as the point of origin.

In view of this the total Lagrangian ensues, and it is now invariant under the local symmetry
SU(2) ⊗ U(1), where a set of gauge fields are coupled to various multiplets of fields among which
is also a multiplet of Higgs boson. Subsequently, we separate a piece of Lagrangian containing only
the fields defined on four dimensional Minkowski flat spacetime continuum M4. To facilitate writing
we shall forbear here to write out the piece of Lagrangian containing the terms of other fermion
generations than one, as it is a somewhat lengthy and so standard. But, in the mean time, we
shall retain the explicit terms of Higgs bosons arisen on the internal W−world to emphasize the
specific mechanism of the electroweak symmetry breakdown discussed below. The resulting Lagrangian
reads L = −1

2TrGµνG
µν − 1

4FµνF
µν + iL̄D̂L+ iēRD̂eR + iν̄RD̂νR + |DWµφ|2 − 1

2λ
2
φ

(
|φ|2 − 1

2η
2
φ

)2 −
G.Ter-Kazarian
doi: https://doi.org/10.52526/25792776-2021.68.2-311

349

https://doi.org/10.52526/25792776-2021.68.2-311


A new look at some aspects of geometry, particle physics, inertia, radiation and cosmology

fe
(
L̄φeR + ēRφ

+L
)
− fν

(
L̄φcνR + ν̄Rφ

+
c L
)
+ similar terms for other fermion generations. The gauge

fields Aµ(x) and Bµ(x) associate respectively with the groups SU(2) and U(1), where the gauge
covariant curls are Fµν , Gµν . The corresponding gauge covariant derivatives are in standard form.
One took into account corresponding values of the operators T and Y for left- and right-handed fields,
and for isospinor φ-meson. The Yukawa coupling constants fe and fν are inserted in subsec.6.10.
Since the electroweak symmetry is at any rate only approximate, the test of the theory will depend
on its ability to account for its breaking as well. here the MSM creates a particular incentive for
the study of such a breaking. Then, just it remains to see how can such Higgs bosons arisen on
the internal W -world break the gauge symmetry down in M4 and lead to masses of the spacetime-
components of the MW-fields? It is remarkable to see that the suggested MSM, in contrast to the SM,
predicts the transmission of electroweak symmetry breaking from the W−world to the M4 spacetime
continuum. Actually, in standard scenario for the simplest Higgs sector, a gauge invariance of the
Lagrangian is broken when the φ-meson fields acquire a VEV ηφ ̸= 0 in the W -world. While the
massmφ and coupling constant λφ are in the standard form. The spontaneous breakdown of symmetry
is vanished at η2φ(λ, T > Tcµ) < 0. When this doublet obtains a VEV, three of the gauge fields
ZW

0
µ, WW

±
µ acquire masses. These fields are the W -components of the mesons mediating the weak

interactions. This mechanism does not disturb the renormalizability of the theory . In approximation

to lowest order f = ΣQ ≃ mQ ≪ λ−1/2
(
λ−1 = mp0

2π2 ln 2ω̃
∆0

)
, the Lagrangian produce the Lagrangian

of phenomenological SM, where at f ∼ 10−6 one gets λ ≪ 1012. In standard scenario the lowest
pole mQ of the self-energy operator ΣQ has fixed the whole mass spectrum of the SM particles.
But, in general, one must also take into account the mass spectrum of expected various collective
excitations of bound quasi-particle pairs produced by higher-order interactions as a `superconductive´
solution obtained from a nonlinear spinor field Lagrangian of the Q-component possessed γ5 invariance.
These states must be considered as a direct effect of the same primary nonlinear fermion interaction
which provides the mass of the Q-component of Fermi field, which itself is a collective effect. They
would manifest themselves as stable or unstable states. The general features of mass spectrum of the
collective excitations and their coupling with the fermions are discussed through the use of the Bethe-
Salpeter equation handled in the simplest ladder approximation incorporated with the self-consistency
conditions, when one is still left with unresolved divergence problem. One can reasonably expect that
these results for the bosons of small masses at low energy compared to the unbound fermion states
are essentially correct in spite of the very simple approximations. Therein, some bound states are
predicted too the obtained mass values of which are rather high, and these states should decay very
quickly. The high-energy poles may in turn determine the low-energy resonances. All this prompt us
to expect that the other poles different from those of lowest one in turn will produce the new heavy
SM family partners. Hence one would expect a second important phenomenological implication of the
MSM.

12.6. Quark flavour mixing and the Cabibbo angles

An implication of quark generations into general scheme will be carried out in the same way of the
leptons. But before proceeding further that it is profitable to enlarge it by the additional assumption
without asking the reason behind it:

The MW components imply iψ̄u
A
(· · · , θi1 , · · · θin , · · · ) jψuB(· · · , θi1 , · · · θin , · · · ) =

δij
∑

l=i1,...,in
fABil

i(q̄lql), namely, the contribution of each individual subquark iql, into the component

of given world (i) is determined by the partial formfactor fABil . Under the group SU(2)⊗U(1) the left-
handed quarks transform as three doublets, while the right-handed quarks transform as independent
singlets except of following differences:
1. The values of weak-hypercharge of quarks are changed due to their fractional electric charges
qL : Y w = 1

3 , uR : Y w = 4
3 , dR : Y w = −2

3 etc.
2. All Yukawa coupling constants have nonzero values.
3. An appearance of quark mixing and Cabibbo angle, which is unknown in the scope of standard
model.
4. An existence of CP-violating phase in unitary matrix of quark mixing. We shall discuss it in the
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next section.
In previous section we attempt to give an explanation to quark mixing and Cabibbo angle. We
consider this problem, for simplicity, on the example of four quarks u, d, s, c. The further implication
of all quarks would complicate the problem only in algebraic sense. Instead of mixing of the d′ and
s′ it is convenient to consider a quite equivalent mixing of u′ and c′. Similar formulas can be worked
out for the other mixings. Hence, the nonzero value of Cabibbo angle arises due to nonzero coupling
constant fu′c′ . The problem is to calculate all coupling constants fu′c′ ,fc′t′ , and ft′u′ generating three
Cabibbo angles tan 2θ3 =

2fu′c′
fc′−fu′

, tan 2θ1 =
2fc′t′
ft′−fc′

, tan 2θ2 =
2ft′u′
fu′−ft′

. Since the Q-components of

the quark fields u′, c′ and t′ contain at least one identical subquark, the partial formfactors f̄i, as
well then all coupling constants, acquire nonzero values causing a quark mixing with the Cabibbo
angles. Therefore, the unimodular orthogonal group of global rotations arises, and the quarks u′, c′

and t′ come up in doublets (u′, c′),(c′, t′), and (t′, u′). For the leptons these formfactors equal zero

f̄ lepti ≡ 0, namely the lepton mixing is absent. In conventional notation

(
u′

d

)
L

,

(
c′

s

)
L

,

(
t′

b

)
L

→(
u
d′

)
L

,

(
c
s′

)
L

,

(
t
b′

)
L

, which gives rise to fu′c′ → fd′s′ , fc′t′ → fs′b′ , ft′u′ → fb′d′ , fu′ → fd′ ,

fc′ → fs′ , ft′ → fb′ , fd → fu, fs → fc, fb → ft.

12.7. The CP-violating phase

The required magnitude of the CP-violating complex parameter ε depends upon the specific choice
of theoretical model for explaining the K0

2 → 2π decay. From the experimental data it is somewhere
|ε| ≃ 2.3× 10−3. In the framework of Kobayashi-Maskawa (KM) parametrization of unitary matrix of
quark mixing, this parameter may be expressed in terms of three Eulerian angles of global rotations
in the three dimensional quark space and one phase parameter. We attempt to derive the KM-
matrix with an explanation given to an appearance of the CP-violating phase. Recall that during the
realization of MW- structure the P-violation compulsory occurred in the W-world provided by the
spanning. The three dimensional effective space W loc

v (3) arises as follows:

W loc
v (3) ∋ q(3)v =

(
qwR(T⃗ = 0)

qwL (T⃗ = 1
2)

)
≡ uR, dR(

u′

d

)
L

 ,

 cR, sR(
c′

s

)
L

 ,

 tR, bR(
t′

b

)
L

 ≡
 qw3(

qw1
qw2

)  ,

 qw1(
qw2
qw3

)  ,

 qw2(
qw3
qw1

)  ,

where the subscript (v) formally specifies a vertical direction of multiplet, the subquarks qwα (α = 1, 2, 3)
associate with the local rotations around corresponding axes of three dimensional effective space

W loc
v (3). The local gauge transformations fvexp are implemented upon the multiplet q′(3)v = fvexpq

(3)
v ,

where fvexp ∈ SU loc(2)⊗ U loc(1). If for the moment we leave it intact and make a closer examination
of the content of the middle row, then we distinguish the other symmetry arisen along the horizontal
line (h). Hence, we may expect a situation similar to those of previous section will be held in present
case. The procedure just explained therein can be followed again. We have to realize that due to
the specific structure of W-world implying the condition of realization of the MW connections with
T⃗ ̸= 0, Y w ̸= 0, the subquarks qwα tend to be compulsory involved into triplet. They form one
“doublet” T⃗ ̸= 0 and one singlet Y w ̸= 0. Then the quarks u′L, c

′
L and t′L form a SOgl(2) “doublet”

and a Ugl(1) singlet ((u′L, c
′
L) t

′
L) ≡ ((qw1 , q

w
2 ) q

w
3 ) ≡ q

(3)
h ∈ W gl

h (3), (u′L, (c
′
L, t

′
L)) ≡ (qw1 , (q

w
2 , q

w
3 )) ,

((t′L, u
′
L) c

′
L) ≡ ((qw3 , q

w
1 ) , q

w
2 ) . Here W

gl
h (3) is the three dimensional effective space in which the global

rotations occur. They are implemented upon the triplets through the transformation matrix fhexp:

q′
(3)
h = fhexpq

(3)
h , which reads fhexp =

 f33 0 0
0 c s
0 −s c

 in the notation c = cos θ, s = sin θ. This

implies the incompatibility relation ∥fhexp∥ = f33(f11f22 − f12f21) = f33ε123ε123∥fhexp∥f∗33. That is

f33f
∗
33 = 1, or f33 = eiδ and ∥fhexp∥ = 1. The general rotation in W gl

h (3) is described by Eulerian three
angles θ1, θ2, θ3. If we put the arisen phase only in the physical sector then a final KM-matrix of quark
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flavour mixing would result. The CP-violating parameter ε approximately is written ε ∼ s1s2s3 sin δ ̸=
0. Thus, while the spanning W loc

v (2)→W loc
v (3) underlies the P-violation and the expanded symmetry

Glocv (3) = SU loc(2)⊗U loc(1), the CP-violation stems from the similar spanningW gl
h (2)→W gl

h (3) with
the expanded global symmetry group.

12.8. Result

The testable solid implications. If the MTSM proves viable it becomes an crucial issue to hold
in experiments the testable solid implications given in, which are drastically different from those of
conventional models. Actually, the MTSM rejects drastically any expectation of discovery of any Higgs
boson as an elementary particle in M4, but in the same time it expects to include a rich spectrum of
new particles at higher energies. Namely, if the MTSM proves viable it becomes an crucial issue to
hold in experiments the following two solid tests:

1) The Higgs bosons never could emerge as an `elementary´ (apart the pole of composite structure)
particle at experiments in spacetime continuum M4, nor at any energy range, since these bosons have
to arise only on the internal W -world and ,thus, they produced the electroweak symmetry breakdown
in the W -world with the subsequent transmission of it to M4.

2) For each of the three SM families of quarks and leptons there are corresponding heavy family
partners with the same quantum numbers and common mass-shift coefficients (1+k) given for the low-
energy poles at k1 >

√
2, k2 =

√
8/3 and k3 = 2, lying far above the electroweak scale, respectively,

at the energy threshold values: E1 > (419.6± 12.0)GeV, E2 = (457.6± 13.2)GeV and E3 = (521.4±
15.0)GeV.

To see its nature, now we may estimate the energy threshold of creation of such heavy family
partners using the results far obtained (Nambu & Jona-Lasinio, 1961). It is therefore necessary under
the simplifying assumption to consider in the Q-world a composite system of dressed fermion (N∗)
made of the unbound fermion (N) coupled with the different kind two-fermion bound states (N N̄)
at low energy, which all together represent the primary manifestation of the fundamental interaction.
Such a dressed fermion would have a total mass m∗ ≃ mQ + µ, where mQ and µ are the masses,
respectively, of the unbound fermion and the bound state. According to the general discussion of
the mass spectrum of the collective excitations given in (Nambu & Jona-Lasinio, 1961), here we are
interested only in the following low-energy bound states written explicitly in spectroscopic notation

(1S0)N=0, (1S0)N=±2, (3P1)N=0 and (3P0)N=0 with the expected masses µ = 0, >
√
2mQ,

√
8
3mQ

and 2mQ, respectively, where the subscript N indicates the nucleon number. One notes the peculiar
symmetry existing between the pseudoscalar and the scalar states that the first has zero mass and
binding energy 2mQ, while the opposite holds for the scalar state. When the next pole m∗ to the
lowest one mQ will be switched on, then due to the Yukawa couplings the all fermions will acquire the
new masses with their common shift m∗

mQ
≡ 1+k held upwards along the energy scale. To fix the energy

threshold value all we have to do then is choose the heaviest member among the SM fermions, which
is the top quark, and to set up the quite obvious formula E ≥ E0 ≡ mt′ c

2 = (1+k)mt c
2, where mt is

the mass of the top quark. The top quark observed firstly in the two FNAL p p̄ collider experiments
in 1995, has the mass turned out to be startlingly large mt = (173.8 ± 5.0)GeV/c2 compared to all
the other SM fermion masses [125]. Thus, we get the most important energy threshold scale estimate
where the heavy partners of the SM extra families of quarks and leptons likely would reside at:
E1 > (419.6± 12.0)GeV, E2 = (457.6± 13.2)GeV and E3 = (521.4± 15.0)GeV, corresponded to the
next nontrivial poles are written: k1 >

√
2, k2 =

√
8/3 and k3 = 2, respectively. We recognize well

that the general results obtained in [95], however, model-dependent and may be considerably altered,
especially in the high energy range by using better approximation. In present state of the theory it
seemed to be a bit premature to get exact high energy results, which will be important subject for
the future investigations. But, in the same time we believe that the approximation used in (Nambu &
Jona-Lasinio, 1961) has enough accuracy for the low-energy estimate made above . Anyhow, it is for
one thing, the new scale where the family partners reside will be much higher than the electroweak
scale and thus these heavy partners lie far above the electroweak scale.

Remarks: As alluded to above, the Higgs boson does its work of breaking of the electroweak
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symmetry in theW -world. The physical pole of formation of such a process, produced by compositeness
of this boson inW−world, has afterwards transmitted to theM4. Then, at the well known experiments
performed by ATLAS and CMS Collaborations, announcing the discovery of Higgs boson in 2011- 2013
based on the finding of the excess of events over the background prediction around 125 GeV, one has
just detected only this pole (maybe of composite structure) with the measurements of its subsequent
decay to vector bosons in M4, but not the Higgs as the elementary particle at all. It is similar to the
case when quarks produced the reactions of elementary particles in M4, but in the same time they
obeyed Color Confinement principle, and that they appeared in spacetime continuum only in singlet
combinations.

Regarding to the last phenomenological implication of the MTSM, it is remarkable that the similar
in many respects prediction is made in somewhat different context by Adler (Adler, 2021) within a
phenomenological scheme of a compositeness of the quarks and leptons. It based on the generic group
theoretical framework of rishon type models exploring the preon constituents. But, therein a present,
a bit premature, state of the theory does not allow the exact estimate of this scale. Although one
admits that such a scale could be much higher than electroweak scale, however, it is also necessary
special argumentations in support of validity of this prediction in the case if this scale has turned out
to be low enough, namely, if these heavy partners lie not too far above the electroweak scale. Even
thus, one must not worry for the existence of 6 heavy flavors, which is then marginally compatible
with the current LEP data. Thus, which of these schemes above, if any, is realized either exactly or
at least approximately in nature remains to be seen in the years to come.

Our approach still should be considered as a preliminary one, wherein we have contended ourselves
with a rather modest task and do not profess to have any clear-cut answers to all the problems of
particle physics, the complete picture of which is largely beyond the scope of the present paper.
The only argument that prompts us to consider present approach seriously is the remarkable feature
that the most important properties of particle phenomenology can be derived naturally within its
framework. Therefore we hope that it will be an attractive basis for the future theory. Although
many key problems are elucidated within outlined approach, nevertheless some issues still remain to
be solved. For the details of theoretical apparatus of MTSM, see (Ter-Kazarian, 1999b, 2001b).

13. Supersymmetric Extension of MTSM

13.1. Objectives

There is an important line of reasoning which supports the side of supersymmetrization of the SM,
i.e., there are two well known principal issues which remain open in the SM. The first is the vacuum
zero point energy problem standing before any quantum field theory. Second is often referred to as the
problem of quadratic divergences or the hierarchy and naturalness problem (the dimensional analysis
problem) arisen as the quadratic growth of the Higgs boson mass beyond tree level in perturbation
theory, namely, the extreme difference in energy scales in the theory is inconsistent in the fundamental
scalar sector. This is strong indication for the physics beyond SM. These last two problems can be
solved by extending the symmetry of the theory to supersymmetry, which is believed in conventional
physics to be manifest at energies in the TeV range. Given the SUSY requiring doubling the number
of all the particles by their SUSY partners (sparticles), the quantum radiative corrections may cancel
because some loop diagrams vanish due to cancellation between bosons and fermions since they have
opposite signs. Then, if the SUSY is present in the TeV range, the masses of the Higgs bosons are
no more unstable than fermion masses, whose smallness is natural and hold due to the approximate
chiral symmetries. In this manner, its simplest form, SUSY solves the technical aspects of the hierarchy
problem as well as the zero point energy problem, when due to power of the boson-fermion cancellation
the zero point energy of the fermions exactly cancels that of the bosons and the degeneracy is not
arisen. Therefore, in usual, the SM should be regarded as an effective low energy field theory valid up
to the energy range smaller than a few hundred GeVs.

However, the SUSY in turn introduces its own set of difficulties. Despite the beautiful mathematical
features of SUSY theories and that the SUSY has been theoretically invented almost three decades ago,
but a physically realistic realization of SUSY had not been achieved yet and this principal problem was
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ever since much the same as now. In all suggested SUSY theories the supercharges have been inserted
in ad hoc manner directly into the four-dimensional spacetime continuum adding a new structure, i.e.,
a new four odd fermionic dimensions. In fact, a physical essence of the basic concept of supercharge
remains unknown and, therefore, the physical theory is beset by various difficulties. Perhaps the most
discouraging and disturbing feature of the general class of proposed SUSY theories is the absence at the
moment of a solid experimental motivation of supersymmetry, i.e., there is not a direct experimental
evidence for the existence of any of the numerous new sparticles predicted by such theories. It is
clear, then, that SUSY cannot be an exact symmetry in nature but has to be realized at least in
broken phase. The last one is the least understood aspect of such theories. The spontaneously broken
SUSY should be ruled out at once since it runs into phenomenological difficulties. One of the viable
way out from this situation is an explicit breaking of the global SUSY. A generic parametrization of
this phenomenon introduces the much larger free parameter space (≃ 124) in the models of minimal
supersymmetric extension of the SM (MSSM-124). Thus, it is important to develop the other schemes
that attempt to reduce the number of free parameters. The conventional SUSY theories predict that
the sparticles must reside in the TeV range. All such arguments that nature is supersymmetric,
and that SUSY is broken at scales not too different than the weak scale, are theoretical. The next
generation of experiments at Fermilab and CERN will explore this energy range, where at least some
of sparticles are expected to be found. All this variety prompts us, further, to adopt the idea that
perhaps a more deeper level of organization of physical world may be existed. In the light of current
status of particle physics, any new more elaborated outlook seems worthy of investigation.

13.2. The superfield content of MSMSM and the resulting SUSY Lagrangian

The results obtained in the previous sections enable us to trace unambiguously rather general
scheme of MSMSM, which is essentially a straightforward and viable supersymmetrization of the
MSM where we want to keep the number of superfields and interactions as small as possible. To build
up the MSMSM the major point is to define its superfield content. Below we recall some important
features allowing us to write the resulting Lagrangian of MSMSM.
• Within the MSM, during the realization of MW connections of weak interacting fermions the

P-violation compulsory occurred in W-world incorporated with the symmetry reduction. It has charac-
terized by the Weinberg mixing angle with the fixed value at 300. This gives rise to the local symmetry
SU(2) ⊗ U(1), under which the left-handed fermions transformed as six independent doublets, while
the right-handed fermions transformed as twelve independent singlets.
• Due to vacuum rearrangement in Q-world the Yukawa couplings arise between the fermion fields

and corresponding isospinor-scalar H-mesons in conventional form.
• In the framework of suggested mechanism, providing the effective attraction between the rel-

ativistic fermions caused by the exchange of the mediating induced gauge quanta in W-world, the
two complex self-interacting isospinor-scalar Higgs doublets (Hu, Hd) as well as their spin-12 SUSY

partners (H̃u, H̃d) Higgsinos arise as the Bose-condensate. Taking into account this slight difference
from the MSM arisen in the field content of MSMSM in the Higgs sector, we must explicitly write
in the supersymmetric Lagrangian also the piece containing these fields coupled to the gauge fields
in a gauge invariant way, when the symmetry-breaking Higgs bosons are counted off from the gap
symmetry-restoring value as the point of origin.
• The gauge group of MSMSM is the same SUc(3)⊗SU(2)L⊗U(1) as in the MSM, which requires a

colour octet of vector superfields V a, a weak triplet V (δ) and a hypercharge singlet V . Thus, the kinetic
terms of all the fields now fixed by gauge invariance L =

∫
d4 θ Φ̃+

ch (e
g1 V T+g2 V (δ) T (δ)+g3 V a Ta

) Φ̃ch +

[
∫
d2 θ 1

4 (W W +W (δ)W (δ) +W aW a) + h.c.], where Φ̃ch is the matter superfields, T, T (δ), T a are
the generators of appropriate representations of the gauge group. The superpotential determines the
scalar potential V (A, A∗) = 1

2 g
2
1D

2 + 1
2 g

2
2D

δ2 + 1
2 g

2
2D

a2 + |P |2, where the functions D and P are
given above.
• By the index I = 1, 2, 3 in the MW-SUSY Lagrangian will be labeled the three families of chiral

quarks qIL, u
I
R, d

I
R, and chiral leptons lIL, e

I
R, where all of them are Weyl fermions. A SUSY requires

the presence of supersymmetric partners which form supermultiplets with known particles, i.e., for
every field of SM there is a superpartner with the exact same gauge quantum numbers. Then, the
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quarks and leptons are promoted to chiral multiplets by adding scalar (spin-0) squarks (q̃IL, ũ
I
R, d̃

I
R)

and sleptons (l̃IL, ẽ
I
R) to the spectrum. The gauge bosons are promoted to vector supermultiplet by

adding their SUSY partners gauginos (spin-12) (G̃, W̃ B̃) to the spectrum. A content of superfields of
MSMSM presents in Table 1:

supermultiplet F B SUc(3) SU(2)L U(1)Y U(1)em

quarks QIL = (
U IL
DI
L

) qIL q̃IL 3 2 1/6 (
2/3
−1/3 )

U IR uIR ũIR 3̄ 1 − 2/3 −2/3
DI
R dIR d̃IR 3̄ 1 1/3 1/3

leptons LIL = (
N I
L

EIL
) lIL l̃IL 1 2 − 1/2 (

0
−1 )

EIR eIR ẽIR 1 1 1 1

Higgs Hd = (
H0
d

H−
d

) (
h̃0

h̃−
) (

h0d
h−d

) 1 2 − 1/2 (
0
−1 )

Hu = (
H+
u

H0
u

) (
h̃+

h̃0
) (

h+u
h0u

) 1 2 1/2 (
1
0
)

gauge G G̃ G 8 1 0 0

bosons W W̃ W 1 3 0 (0, ±1)
B B̃ B 1 1 0 0

Table 1. Field content of MSMSM. The column below F(B) denotes its fermionic (bosonic) content.

Once the field content is fixed, putting it all together the most generic renormalizable MW-SUSY
Lagrangian of MSMSM, defined on the SMM (SGN ), is now invariant under local gauge symmetry
SUc(3)⊗ SU(2)L ⊗ U(1), where a set of gauge fields are coupled to various superfields among which
is also Higgs supermultiplets. Furthermore, we especially separated from the rest the piece contain-
ing only the η-components of the particles defined on the supermanifold SGη, which is important
for the further discussion of a realistic realization of the MSMSM (next subsec.). Whereas, χI runs
over all the particles, while AJ runs over all the sparticles, the index (a) labels the 3 different fea-
tures in the gauge group, Vd(H, H

∗) is the scalar potential for each Higgs doublet Vu(Hu, Hu
∗) =

−1
2 m

2
u |Hu|2 + 1

4 λ
2
u |Hu|4 Vd(Hd, Hd

∗) = −1
2 m

2
d |Hd|2 + 1

4 λ
2
d |Hd|4 . A contribution of the “D” term

to the Higgs potential has also taken into account VD = 1
2 D

(a)D(a), D(a) = −g AI∗ T aIJ AJ , or
VD = g2+g′2

8 (|Hu| 2 − |Hd| 2
⊕

)2 + 1
2 g

2 |HuHd
∗|2 . The number of major free parameters in the La-

grangian are the primary coupling constants λQ and λW of nonlinear fermion interaction of the internal
MW-components i = Q,W and gauge couplings g1, g2, g3. The SM relation Qe = g1 cos θW holds,
where θW is the weak mixing angle cos2 θW = g2

/
(g2 + g′2) . The Yukawa couplings (Yl Y

′
l ) are given:

Y = fQ = ZQ.

G.Ter-Kazarian
doi: https://doi.org/10.52526/25792776-2021.68.2-311

355

https://doi.org/10.52526/25792776-2021.68.2-311


A new look at some aspects of geometry, particle physics, inertia, radiation and cosmology

13.3. Higgs doublets in MW-SUSY and Higgs mechanism

Due to vacuum rearrangement in Q-world the Yukawa couplings arise between the fermion fields
and corresponding isospinor-scalar H-mesons in conventional form. In the framework of suggested
specific mechanism providing the effective attraction between the relativistic fermions caused by the
exchange of the mediating induced gauge quanta in the W-world, the two complex self-interacting
isospinor-scalar Higgs doublets (Hu, Hd) as well as their spin-12 SUSY partners (H̃u, H̃d) Higgsinos
arise as the Bose-condensate. Taking into account this slight difference from the MTSM arisen in the
field content of SuMTSM in the Higgs sector the supersymmetric Lagrangian now also contains these
fields coupled to the gauge fields in a gauge invariant way, when the symmetry-breaking Higgs bosons
are counted off from the gap symmetry-restoring value as the point of origin.

The Higgs mechanism does work in the following way: Before the symmetry was broken in the
W -world, the 2 complex SU(2)L Higgs doublets had 8 degrees of freedom. Three of them were the
would-be Nambu-Goldstone bosons G0, G±, which were absorbed to give rise the longitudinal modes
of the massive W -components of the Z0 and W± vector bosons, which simultaneously give rise the
corresponding x- components too, leaving 5 physical degrees of freedom. The latter consists of a
charged Higgs boson pairs H±, a CP-odd neutral Higgs boson A0, and CP-even neutral Higgs bosons
h0 and H0. The mass eigenstates and would-be Nambu-Goldstone bosons are made of the original
gauge-eigenstate fields, where the physical pseudoscalar Higgs boson A0 is made of from the imaginary
parts of h0u and h0d, and is orthogonal to G0; while the neutral scalar Higgs bosons are mixtures of the
real parts of h0u and h0d. The mass of any physical Higgs boson that is SM-like is strictly limited, as are
the radiative corrections to the quartic potential terms. We calculated the tree-level masses for these
Higgs states (sec.16) and shown that the h0 Higgs boson arisen in the internalW -world is much heavier
of that Z0 boson. In contrast to the SM, the suggested microscopic approach predicts the electroweak
symmetry breakdown in the W -world by the VEV of spin zero Higgs bosons and the transmission of
electroweak symmetry breaking from the W−world to the M4 spacetime continuum. The resulting
Lagrangian of unified electroweak interactions of leptons and quarks ensues, which in lowest order
approximation leads to the Lagrangian of phenomenological SM. In general, the self-energy operator
underlies the Yukawa coupling constant, which takes into account a mass-spectrum of all expected
collective excitations of bound quasi-particle pairs. If the MSM proves viable it becomes an crucial
issue to hold in experiments the two testable predictions.

13.4. Realistic realization of the MW-SUSY: M/SMSM

The MW-SUSY cannot be an exact symmetry of nature and has to be realized in its broken phase.
The major point of our strategy is a realistic realization of the supersymmetric extension of the MSM.
Thus, the test of the theory will depend on its ability to account for the breaking of the MW-SUSY as
well. Here, suggested approach creates a particular incentive for its study. In previous sections we have
made a headway of reasonable framework of exact MW-SUSY defined on the exact MW-supermanifold
SGN . Therefore, one will be able to verify its virtues manifested, first of all, in the power of boson-
fermion cancellations. One of the two principal offshoots of the supersymmetrization of the MSM is
the solution of the zero point energy problem. Also, in its unbroken form it solves the technical aspects
of the naturalness and hierarchy problem, when in non-SUSY theories scalar fields receive large mass
corrections even if the bare mass is set to zero, and small masses are `unnatural´. This applied to the
Higgs bosons of the SM (as well as MSM) yields a difficulty in understanding of the smallness of MZ

and how it can be kept stable against quantum corrections in some extensions of the SM containing
apart from the weak scale MZ also a second larger scale MGUT >> MZ [126,127], which holds in
Grand Unified theories. The cancellation of quadratic divergences in SUSY theories is a consequence
of general non-renormalization theorem, or the `taming´ of the quantum corrections, which stabilizes
the Higgs mass and thus weak scale MZ without fine-tuning. It is remarkable that these attractive
features of the unbroken MSMSM can be maintained as well in the broken M/SMSM. Achieving it one
should perform an inverse passage (SGη → Gη) to the /SMM: /SGN . It is due to the fact that the most
powerful boson-fermion cancellation can be regarded as a direct consequence of a constraint stemming
from holomorphy, therefore, it should be held even in the M/SMSM . Then the Lagrangian L/SGN

of
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the M/SMSM ensues from the Lagrangian LSGN
of the MSMSM: L/SGN

= LSGN
+Lsoft, where, one has

Lsoft = (−m2
IJ A

I AJ− 1
2 m̃ab λ

a λa− 1
2 mu H̃u H̃u− 1

2 md H̃d H̃d+h.c.)+b ϵij (Hu
iHd

j+h.c.). Here m2
IJ

is the mass matrix for all the scalars of the chiral multiplets, m ≡ (m̃ab, mu, md) is the mass matrix
respectively for the gauginos of each factor of the gauge group, and Higgsinos. The last term of the
interaction is induced because these doublets above in free states imply m̂2

u = −m2
u+λ

2
u v

2
u,= 0, m̂2

d =
−m2

d+λ
2
d v

2
d = 0, where m2, λ2, v2 are respectively the mass, the coupling constant and VEV of given

doublet. In the case at hand, certainly, there is an interaction between the bosonsHu andHd, when the
strength of interaction b will be fixed through the minimization conditions of the total Higgs potential.
This can be used to derive a more physical relationship among the physical parameters. The case
m̂2
u = −m̂2

d ̸= 0 corresponds to the situation when the axion A0 (m2
A0 = 0) has arisen after the breaking

of electroweak gauge symmetry. But the other case of (m̂2
u > 0, m̂2

d > 0) or (m̂2
u < 0, m̂2

d < 0),
implies an existence of the neutral physical particle of the mass m2

A0 = m̂2
u + m̂2

d ̸= 0. Note that such
Higgs doublets arisen on equal footing have counted off from the same point of origin for the same
vacuum, then we will be interested physically in the most important simplest case when the electroweak
symmetry breaking is parametrized just only by the single Higgs VEV vu = vd , m̂2

u = m̂2
d > 0. Of

course, we shall carry out a computation in the generic case, but in the aftermath we shall turn to this
case. The non-supersymmetric breaking terms do not spoil a condition of cancellation of quadratic
divergences, i.e., a mass-squared sum rule StrM2 ≡

∑1
J=0(−1)2J(2J + 1)TrM2

J = const. where J⃗ is
the spin of the particles. It holds independently of the values of the scalar fields. Eventually the mass
terms for the scalars contribute a constant, field independent piece, while a generic mass matrix for the
fermions reads M1/2 =MS

1/2+δM1/2, where M
S
1/2 is the supersymmetric part of M1/2, when δM1/2 is

given δM1/2 =

(
δ PIJ δ Db

I

δ Da
J δ m̃

)
. A computation for the considered fields gives δ P = 0 = δ D, while

δ m̃ can be arbitrary.

13.5. The viable SUSY-MTSM

The realistic generating functional should be derived by passing back to the physical limit. Such
a breaking of the MW-SUSY can be implemented by subtracting back all the explicit soft mass
terms formerly introduced for the sparticles. These terms do not reintroduced the quadratic diagrams
which motivated the introduction of SUSY framework. Therewith, the boson-fermion cancellation
in the above-mentioned problems can be regarded as a consequence of a constraint stemming from
holomorphy of the observables, therefore it will be held at the limit too. Thus, we extract the pertinent
piece containing only the η-field components and then in afterwards pass to M4 to get the final viable
SUSY-MTSM (VMSM) yielding the realistic particle spectrum. Thus, if the VMSM proves viable it
becomes an crucial issue to hold in the experiments at LEP2 and at the Tevatron three testable solid
implications, which are drastically different from those of conventional MSSM models. The implication
of quarks into the VMSM is carried out in the same way of leptons except that of appearance of quark
mixing with Cabibbo angle and the existence of CP-violating complex phase in unitary matrix of
quark mixing. The Q-components of the quarks contain at least one identical subquark, due to which
the partial formfactors gain nonzero values. This underlies the quark mixing with Cabibbo angles.
In lepton’s case these formfactors are vanished and lepton mixing is absent. The CP-violation stems
from the spanning. Adopting a simple viewpoint on Higgs sector the masses of leptons and quarks are
obtained. We hope that the outlined VMSM, if it proves viable in the experiments at LEP2 and at the
Tevatron, will be an attractive basis for the future theories. As yet no direct signal has been found in
them, the absent of which has been cleared up the lower limits on Higgs bosons and sparticles masses.
Furthermore, there is a tight upper limit (mh0 < 150GeV ) on the mass of the lightest Higgs boson h0

among the 5 physical Higgs bosons predicted by the MSSM models. The current direct search limits
from LEP2 give mh0 > 75GeV. Therefore, the future searches for this boson (if the mass is below 150
GeV or so) would be a crucial point in testing the efforts made in the conventional models building as
well in the present MTSM based on a quite different approaches. The testable prediction of MTSM
above together with a new one that the sparticles could never emerge in spacetime continuum since
they have arisen only on the internal worlds, thus, they cannot be discovered in experiments nor at
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any energy range,
are the solid implications of the resulting VMSM for the experiments at LEP2, at the Tevatron and
at LHC, which are drastically different from those of MSSM models. Which of these schemes, if any,
is realized either exactly or at least approximately in nature remains to be seen in the years to come.
For the theoretical apparatus of SUSY-MTSM, see (Ter-Kazarian, 2001c).

13.6. Three solid testable predictions of VMSM

Discussing now the relevance of our present approach to the physical realities we should attempt
to provide some ground for checking the predictions of the VMSM against experimental evidence. It
is remarkable that the resulting theory makes plausible following three testable implications for the
current experiments, which are drastically different from the predictions of conventional models:

(1,2). The two important phenomenological implication of the MSM, given above, just are the
first two testable predictions of the VMSM for the current experiments.

3. It is well known that once SU(2)L ⊗ U(1)Y is broken, the fields with different SU(2)L ⊗
U(1)Y quantum numbers can mix if they have the same SU(3)c ⊗ U(1)em quantum numbers. Such a
phenomenon occurs in the sfermion sector of the M/SMSM. If one ignore mixing between sfermions of
different generations but will include the mixing between SU(2) doublet and singlet sfermions then
the sfermion mass matrix decomposes into a series of 2×2 matrices of the sfermions of a given flavour.
The charginos are mixtures of the charged Higgsinos and the charged gauginos, and neutralinos are
the mixture of neutral Higgsinos and the neutral gauginos, etc.. We can readily obtain the resulting
explicit forms of corresponding mass matrices within standard technique. But shall forbear to write
them out here as the sfermions are no longer of consequence for discussion of the final fields defined
on M4. The sparticles could never emerge in M4 and will be of no interest for the future experiments.
By this we arrived to the second principle point of drastic deviation of M/SMSM from the conventional
MSSM models. In MSSM models as well in any conventional SUSY theory the supersymmetry was
implemented in the Minkowski space M4 by adding a new four odd dimensions, and there are two
major motivation for SUSY to be realized in the TeV range, i.e., the masses of sparticles are of the
order of a few TeV or less. First one is a solution of the hierarchy problem, when in order to introduce
no new fine-tunning all soft terms should be of the same order of magnitude at most in the TeV
range-weak scale. The second motivation for low energy SUSY comes from the view point of gauge
unification (a supersymmetric GUT). Since the current experiments will explore this energy range,
then, the second great expectation of such theories arise that at least some of the sparticles can be
found and their parameters like masses and coupling constants will also be measured (the precise
measurements). Reflecting upon the results far obtained here, in a strong contrast to such theories
the unbroken MW-SUSY is implemented on the MW-SMM: SGN by, at first, lifting up Gη → SGη
and consequently making an inverse passage to the /SGN (SGη → Gη) on which the resulting theory
M/SMSM is defined. Applying the final passage (Gη →M4) we arrive to the final VMSM, where only
the particles will survive on the M4 at the real physical limit under the R-parity conservation. Thus,
• all the sparticles never could emerge in the M4 neither at TeV range nor at any energy range at

all.
From the view point of achieving the final potentially realistic supersymmetric field theory this

will be third crucial test in experiments above for verifying the efforts made either in MSSM model
building (the conventional SUSY theories) or in suggested VMSM (the MW-SUSY), which are based
on two quite different approaches. To sum up the discussion thus far, we have argued that, in strong
contrast to conventional SUSY theories, if the VMSM given here proves viable it becomes an crucial
issue to hold in experiments the above-mentioned three tests.

13.7. A brief outlook

Let us give a brief outlook on the key points of physical picture described in this subsection.
We derive the MW-SUSY, which has an algebraic origin in the sense that it has arisen from the
subquark algebra defined on the internal worlds, while the nilpotent supercharge operators are derived.
Therefore, the MW-SUSY realized only on the internal worlds but not on the spacetime continuum.
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Thus, it cannot be an exact symmetry of nature and has to be realized in its broken phase. Our
purpose above is much easier to handle, by restoring in the first the `exact´ MW-SUSY. It can be
achieved by lifting up each sparticle to corresponding particle state. This enables the sparticle to be
included in the same supermultiplet with corresponding particle. Due to different features of particles
and sparticles when passing back to physically realistic limit, one must have always to distinguish
them by introducing an additional discrete internal symmetry, i.e., the multiplicative Z2 R-parity.

We write then the most generic renormalizable MW-SUSY action involving gauge and supersym-
metric matter frame fields, and, thus, the corresponding generating functional. Therein, we are led
to the principal point of drastic change of the standard SUSY scheme to specialize the superpoten-
tial to be in such a form, which enables the microscopic approach to the key problems of particle
phenomenology.

The realistic generating functional should be derived by passing back to the physical limit. Such
a breaking of the MW-SUSY can be implemented by subtracting back all the explicit soft mass
terms formerly introduced for the sparticles. These terms do not reintroduced the quadratic diagrams
which motivated the introduction of SUSY framework. Therewith, the boson-fermion cancellation
in the above-mentioned problems can be regarded as a consequence of a constraint stemming from
holomorphy of the observables, therefore it will be held at the realistic physical limit too. Thus, we
extract the pertinent piece containing only the η-field components and then in afterwards pass to M4

to get the final VMSM yielding the realistic particle spectrum.
Thus, if the VMSM proves viable it becomes an crucial issue to hold in the current experiments

three testable solid implications, which are drastically different from those of conventional MSSM
models.

The implication of quarks into the VMSM is carried out in the same way of leptons except that
of appearance of quark mixing with Cabibbo angle and the existence of CP-violating complex phase
in unitary matrix of quark mixing. The Q-components of the quarks contain at least one identical
subquark, due to which the partial formfactors gain nonzero values. This underlies the quark mixing
with Cabibbo angles. In lepton’s case these formfactors are vanished and lepton mixing is absent.
The CP-violation stems from the spanning. Adopting a simple viewpoint on Higgs sector the masses
of leptons and quarks are given.

We hope that the outlined VMSM, if it proves viable in the current experiments, will be an
attractive basis for the future theories. As yet no direct signal has been found in them, the absent of
which has been cleared up the lower limits on Higgs bosons and sparticles masses.

14. Spacetime deformation induced inertia effects

The principle of inertia, whose origin can be traced back to the works developed by Galileo and
Newton, is one of the fundamental principles of the classical mechanics. This governs the uniform
motion of a body and describes how it is affected by applied forces. The universality of gravitation and
inertia attribute to the geometry but as having a different natures. However, despite the advocated
success of general relativity (GR), the problem of inertia stood open and that this is still an unknown
exciting problem to be challenged. The inertia effects cannot be in full generality identified with
gravity within GR as it was proposed by Einstein in 1918, because there are many experimental
controversies to question the validity of such a description, for details see e.g. (Ter-Kazarian, 2012)
and references therein. The universality of the gravitation and inertia attributes to the weak principle
of equivalence (WPE), which establishes the independence of free-fall trajectories of the internal
composition and structure of bodies. Currently, the observations performed in the Earth-Moon-Sun
system, or at galactic and cosmological scales, make it possible to probe the fundamental issue of
gravitation/inertia more deeply by imposing the constraints of various analyses. The inertia effects
in fact are of vital interest also for the phenomenological aspects of the long-standing problem of
neutrino oscillations. All this variety has evoked the study of the inertial effects in an accelerated
and rotated frame of stationary laboratories on Earth, relative to the local inertial frames. The
standard extension of Lorentz invariance to accelerated observers in Minkowski spacetime is based on
the hypothesis of locality, which in effect replaces the accelerated observer by a continuous infinity of
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hypothetical momentarily comoving inertial observers along its wordline. This assumption, as well as
its restricted version, so-called, clock hypothesis, which is a hypothesis of locality only concerned about
the measurement of time, are reasonable only if the curvature of the wordline could be ignored. This
question has become a major preoccupation of physicists. As long as all relevant length scales in feasible
experiments are very small in relation to the huge acceleration lengths of the tiny accelerations we
usually experience, the differences between observations by accelerated and comoving inertial observers
will also be very small. However this works out, it is still reminds us of a puzzling underlying reality
of the phenomenon of inertia. Beyond the WPE, there is nothing convincing in the basic postulates
of physics for the origin and nature of inertia to decide on the issue.

On the other hand it seems that the inertia effects display no any physical characteristics of
gravitation, because there are important reasons to question the validity of such a description. For
example, there are a few experiments which tested the key question of anisotropy of inertia stemming
from the idea that the matter in our galaxy is not distributed isotropically with respect to the earth,
and hence if the inertia is due to gravitational interactions, then the inertial mass of a body will
depend on the direction of its acceleration with respect to the direction towards the center of our
galaxy. If the nuclear structure of Li7 is treated as a single P3/2 proton in a central nuclear potential,

the variation ∆m of mass with direction, if it exists, was found to satisfy ∆m
m ≤ 10−20. This proves

that there is no anisotropy of mass which is due to the effects of mass in our galaxy. Moreover, unlike
gravitation, a curvature arisen due to acceleration of coordinate frame of interest, i.e. a `fictitious
gravitation´ which can be globally removed by appropriate coordinate transformations, relates to this
coordinate system itself and does not affect at once all the other systems or matter fields. Despite our
best efforts, all attempts to obtain a true knowledge of the inertial effects and the geometry related
to the noninertial reference frames of an arbitrary observer seem doomed, unless we find a physical
principle the inertia might refer to, and construct the relativistic theory of inertia. Otherwise one
wanders in a darkness.

It is the purpose of present section to carry out some details of the program of spacetime defor-
mation theory to probe the origin and nature of the phenomenon of inertia. We ascribe the inertia
effects to the geometry itself but as having a nature other than gravitation. To this aim, we propose
a hypothetical space-companion to every particle. We explore the 2D, so-called, master-space (MS),
subject to certain rules. The MS, embedded in the background 4D-space, is an indispensable individ-
ual companion to the particle of interest, without relation to the other matter. This notion is quite
intuitive; in essence, it says that the particle apparently just has to live with MS-companion as an
intrinsic property. This together with the heuristic idea that the inertia effects arise as a deforma-
tion/(distortion of local internal properties) of MS, are the highlights of the present paper. We will be
brief and often ruthlessly suppress the indices without notice. Unless otherwise stated we take natural
units, h = c = 1.

14.1. The hypothetical flat MS-companion: a toy model

As a preliminary step we now conceive of two different spaces, one would be 4D background
Minkowski space, M4, and another one should be MS embedded in the M4, which is an indispensable
individual companion to the particle, without relation to the other matter. The flat MS in suggested
model is assumed to be 2D Minkowski space, M2: M2 = R1

(+) ⊕R
1
(−). The ingredient 1D-space R1

A is

spanned by the coordinates ηA, where we use the naked capital Latin letters A,B, ... = (±) to denote

the world indices related to M2. The metric in M2 is g = g(eA, eB)ϑ
A ⊗ ϑB, where ϑA = dηA is the

infinitesimal displacement. The basis eA at the point of interest inM2 consists of two real null vectors:

g(eA, eB) ≡< eA, eB >= ∗oAB. The norm, id ≡ dη̂, given in this basis reads id = eϑ = eA ⊗ ϑ
A
,

where id is the tautological tensor field of type (1,1), e is a shorthand for the collection of the 2-
tuplet (e(+), e(−)). We may equivalently use a temporal q0 ∈ T 1 and a spatial q1 ∈ R1 variables

qr(q0, q1)(r = 0, 1), such that M2 = R1 ⊕ T 1. The norm, id, now can be rewritten in terms of
displacement, dqr, as id = dq̂ = e0 ⊗ dq0 + e1 ⊗ dq1, where e0 and e1 are, respectively, the temporal
and spatial basis vectors. Then, a smooth map f : M2 → M4 is defined to be an immersion - an
embedding is a function that is a homeomorphism onto its image. In fact, we assume the particle has
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to be moving simultaneously in the parallel individualM2 space and the ordinary 4D background space
(either Minkowskian or Riemannian). Let the non-accelerated observer uses the inertial coordinate
frame S(2) for the position qr of a free test particle in the flat M2. We may choose the system S(2)
in such a way as the time axis e0 lies along the time axis of a comoving inertial frame S4, such that
the time coordinates in the two systems are taken the same, q0 = t. Hence, given the inertial frames
S(4), S

′
(4), S

′′
(4),... in the M4, in this manner we may define the corresponding inertial frames S(2),

S′
(2), S

′′
(2),... in the M2. Continuing on our quest, we next define the concepts of absolute and relative

states of the ingredient spaces R1
A. The measure for these states is the very magnitude of the velocity

components vA of the particle: Definition: The ingredient spaceR1
A of the individual MS-companion of

the particle is said to be in absolute (abs) state if vA = 0, and in relative (rel) state if vA ̸= 0. Therefore,
the MS can be realized either in the semi-absolute state (rel, abs), or (abs, rel), or in the total relative
state (rel, rel). It is remarkable that the total-absolute state, (abs, abs), which is equivalent to the
unobservable Newtonian absolute two-dimensional spacetime, cannot be realized because of the relation
v(+) + v(−) =

√
2. An existence of the absolute state of the R1

A is an immediate cause of the light
traveling in empty space R1 along the q-axis with a maximal velocity vq = c (we re-instate the factor
(c)) in the (+)−direction corresponding to the state (v(+), 0)⇔ (rel, abs), and in the (−)−direction
corresponding to the state (0, v(−)) ⇔ (abs, rel). The absolute state of R1

A manifests its absolute
character in the important for SR fact that the resulting velocity of light in the empty space R1 is the
same in all inertial frames S(2), S

′
(2), S

′′
(2),..., i.e., in empty space light propagates independently of the

state of motion of the source - if vA = 0 then vA′ = vA′′ = ... = 0. This observation allows us to lay
forth the RLI-Conjecture: The non-zero local rate ϱ(η,m, f) of instantaneously change of a constant
velocity vA (both magnitude and direction) of a massive (m) test particle under the unbalanced net
force (f⃗) is the immediate cause of a deformation/(distortion of the local internal properties) of MS:

M2 → M̃2. The MS-companion is not measurable directly, but in going into practical details, we will
determine the function ϱ(η,m, f⃗) and show that a deformation/(distortion of local internal properties)
of MS is the origin of inertia effects that can be observed by us.

14.2. Model building in the 4D background Minkowski spacetime

At first, we construct the RTI when the relativistic test particle accelerated in the Minkowski
4D background flat space, M4, under an unbalanced net force other than gravitational. It proves
necessary to provide, further, a constitutive ansatz of simple, yet tentative, linear distortion trans-
formations, which, according to RLI-Conjecture, can be written in terms of local rate ϱ(η,m, f)
of instantaneously change of the measure vA of massive (m) test particle under the unbalanced
net force (f): e ˜(+)

(ϱ) = D B
˜(+)
(ϱ) eB = e(+) − ϱ(η,m, f) v(−) e(−), and e ˜(−)

(ϱ) = D B
˜(−)
(ϱ) eB =

e(−) + ϱ(η,m, f) v(+) e(+). Clearly, these transformations imply a violation of the relation e2
Ã
(ϱ) ̸= 0

for the null vectors eA. We parameterize the deformation tensor Ω A
B in terms of the parameters τ1

and τ2 as Ω
(+)

(+) = Ω
(−)

(−) = τ1(1+ τ2 ϱ
2), Ω

(−)
(+) = −τ1(1− τ2)ϱv(−), Ω

(+)
(−) = τ1(1− τ2)ϱv(+), where

ϱ2 = v2ϱ2, v2 = v(+)v(−) = 1/2γ2q and γq = (1 − v2q )−1/2. Suppose a second observer, who makes

measurements using a frame of reference S̃(2) which is held stationary in deformed/distorted space

M̃2, uses for the test particle the corresponding spacetime coordinates q̃r̃((q̃0̃, q̃1̃) ≡ (t̃, q̃)). This gives
the general transformation equations for spatial and temporal coordinates as follows (e⃗q ≡ e1, q ≡ q1):
dt̃ = τ1 dt, dq̃ = τ1

[
dq(1 +

τ2ϱvq√
2
)− τ2ϱ√

2
dt
]
= τ1 (dq− τ2ϱ√

2γ2q
dt). The difference of the vector, dq̂ ∈M2,

and the vector, d˜̂q ∈ M̃2, can be interpreted by the second observer as being due to the deforma-
tion/distortion of flat space M2. However, this difference with equal justice can be interpreted by him
as a definite criterion for the absolute character of his own state of acceleration inM2, rather than to any
absolute quality of a deformation/distortion of M2. To prove this assertion, note that the transforma-
tion equations give a reasonable change at low velocities vq ≃ 0, as dt̃ = τ1 dt, dq̃ ≃ τ1 (dq − τ2ϱ√

2
dt).

This becomes conventional transformation equations to accelerated (anet ̸= 0) axes if we assume
d(τ2ϱ)/

√
2dt = anet and τ1(vq ≃ 0) = 1, where anet is a magnitude of proper net acceleration. In high

velocity limit vq ≃ 1, ϱ ≃ 0, (dη(−) = v(−)dt ≃ 0, v(+) ≃ v ≃
√
2), we have dt̃ = τ1 dt ≃ τ1 dq ≃ dq̃.
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To this end, the inertial effects become zero. Let a⃗net be a local net 3-acceleration of an arbitrary ob-
server with proper linear 3-acceleration a⃗ and proper 3-angular velocity ω⃗ measured in the rest frame:
a⃗net =

du⃗
ds = a⃗ ∧ u⃗+ ω⃗× u⃗, where u is the 4-velocity. A magnitude of a⃗net can be computed as the sim-

ple invariant of the absolute value |duds | as measured in rest frame: |a| = |duds | = (du
l

ds ,
dul
ds )

1/2. We may
introduce the very concept of the local absolute acceleration (in Newton’s terminology) brought about

via the Fermi-Walker transported frames as a⃗abs ≡ e⃗q
d(τ2ϱ)√
2dsq

= e⃗q |
de0̂
ds | = e⃗q |a|, where we choose the

system S(2) in such a way as the axis e⃗q lies along the net 3-acceleration (e⃗q || e⃗a), (e⃗a = a⃗net/|⃗anet|).
Hereinafter, we may simplify the flat-deformation tensor Ω B

A by setting τ2 = 1, such that Ω
(+)

(+) =

Ω
(−)

(−) ≡ Ω(ϱ) = 1 + ϱ2, Ω
(−)

(+) = Ω
(+)

(−) = 0, and the general metric in M̃2 reads ds̃2q = Ω2(ϱ) ds2q .

Hence ϱ =
√
2
∫ sq
0 |a|ds

′
q. Then we obtain the key relation between a so-called inertial acceleration,

arisen due to the curvature of MS, a⃗in = e⃗a ain, ain = d2q̃
ds̃2q

= −Γ1
r̃s̃(ϱ)

dq̃r̃

ds̃q
dq̃s̃

ds̃q
= 1√

2
(d

2η̃(+)

ds̃2q
− d2η̃(−)

ds̃2q
),

and a local absolute acceleration as follows: Ω2(ϱ) γq a⃗in = −a⃗abs, where Γ1
r̃s̃(ϱ) are the Christoffel

symbols constructed by the metric. This provides a quantitative means for the inertial force f⃗(in):

f⃗(in) = ma⃗in = −mΓ1
r̃s̃(ϱ)

dq̃r̃

ds̃q
dq̃s̃

ds̃q
= − ma⃗abs

Ω2(ϱ) γq
. Thus, it takes force to disturb an inertia state, i.e.

to make the absolute acceleration (⃗aabs ̸= 0). The absolute acceleration is due to the real deforma-
tion/distortion of the space M2. The relative (d(τ2ϱ)/dsq = 0) acceleration (in Newton’s terminology)
(both magnitude and direction), to the contrary, has nothing to do with the deformation/distortion
of the space M2 and, thus, it cannot produce an inertia effects.

14.3. Beyond the hypothesis of locality

The hypothesis of locality represents strict restrictions, because in other words, it approximately
replaces a noninertial frame of reference S̃(2), which is held stationary in the deformed/distorted

space M̃2 ≡ V
(ϱ)
2 (ϱ ̸= 0), with a continuous infinity set of the inertial frames {S(2), S′

(2), S
′′
(2), ...}

given in the flat M2 (ϱ = 0). In this situation the use of the hypothesis of locality is physically
unjustifiable. Therefore, it is worthwhile to go beyond the hypothesis of locality with special emphasis
on distortion of MS, which we might expect will essentially improve the standard results. Therefore,
our strategy now is to deform the metric by carrying out an additional deformation of semi-Riemannian

4D background space V
(0)
4 → M̃4 ≡ V

(ϱ)
4 , which, as a corollary, will recover the complete metric

g (ϱ ̸= 0) of the distorted MS - V
(ϱ)
2 . The resulting deformed metric of the space V

(ϱ)
4 can be split

as gµν(ϱ) = Υ2(ϱ) ğµν + γµν(ϱ), provided γµν(ϱ) = [γâb̂ −Υ2(ϱ) oâb̂] ĕ
â
µ ĕ

b̂
ν , γĉd̂ = oâb̂ π

â
ĉ π b̂

d̂
, where

Υ(ϱ) = πââ(ϱ) and γâb̂(x̆) are the second deformation matrices. Hence, in general, the metric g(ϱ) is
decomposed in the form g(ϱ) = π2(ϱ) ğ+γ(ϱ), where γ(ϱ) = γµν(ϱ) dx̆

µ⊗dx̆ν and Υ(ϱ) = πââ(ϱ) = π(ϱ).
A generalized transport for deformed frame eâ, which includes both the Fermi-Walker transport and

distortion of MS, can be written in the form
deµ

â
ds = Φ̃ b

a eµ
b̂
, where a deformed acceleration tensor Φ̃ b

a

concisely is given by Φ̃ = (d lnπ/ds) + πΦπ−1.

14.4. Involving the background semi-Riemann space V4

We can always choose natural coordinates Xα(T,X, Y, Z) = (T, X⃗) with respect to the axes of

the local free-fall coordinate frame S
(l)
4 in an immediate neighbourhood of any spacetime point (x̆p) ∈

V4 in question of the background semi- Riemann space, V4, over a differential region taken small
enough so that we can neglect the spatial and temporal variations of gravity for the range involved.
The values of the metric tensor ğµν and the affine connection Γ̆λµν at the point (x̆p) are necessarily
sufficient information for determination of the natural coordinates Xα(x̆µ) in the small region of the
neighbourhood of the selected point. Then the whole scheme outlined above should hold in the frame

S
(l)
4 . The relativistic gravitational force f̆µg (x̆) exerted on the test particle of the mass (m) is given by

f̆µg (x̆) = md2x̆µ

ds̆2
= −mΓ̆µνλ(a)

dx̆ν

ds̆
dx̆λ

ds̆ . The frame S
(l)
4 will be valid if only the gravitational force given

in this coordinate frame fαg(l) =
∂Xα

∂x̃µ f
µ
g , could be removed by the inertial force. Whereas, as before,

the two systems S2 and S
(l)
4 can be chosen in such a way as the axis e⃗q of S(2) lies (e⃗q = e⃗f ) along the
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acting net force f⃗ = f⃗(l) + f⃗g(l), where f⃗(l) is the SR value of the unbalanced relativistic force other

than gravitational in the frame S
(l)
4 , while the time coordinates in the two systems are taken the same,

q0 = t = X0 = T. We now may write 1√
2

d(τ2ϱ)
dsq

= 1
m |f

α
(l) + fαg(l)|, such that the general inertial force

reads
˘⃗
f(in) = ma⃗in = − ma⃗abs

Ω2(ϱ) γq
= − e⃗f

Ω2(ϱ) γq
|fα(l) − m

∂Xα

∂x̆σ Γ̆σµν
dx̆µ

dS
dx̆ν

dS |. Despite of totally different and

independent sources of gravitation and inertia, at fα(l) = 0, this establishes independence of free-fall

(vq = 0) trajectories of the mass, internal composition and structure of bodies. This furnishes a
justification for the introduction of the WPE. A remarkable feature is that, although the inertial force
has a nature different than the gravitational force, nevertheless both are due to a distortion of the
local inertial properties of, respectively, 2D MS and 4D-background space.

14.5. The principle of equivalence in the RC space

The RC manifold, U4, is a particular case of general metric-affine manifold M̃4, restricted by
the metricity condition Nab = 0, when a nonsymmetric linear connection, Γ, is said to be metric
compatible. To avoid any possibility of confusion, here and throughout we again use the first half of
Latin alphabet (a, b, c, ... = 0, 1, 2, 3 rather than (±)) now to denote the anholonomic indices referred to
the tangent space, which is endowed with the Lorentzian metric oab : = diag(+−−−). The space, U4,
also locally has the structure ofM4. In the case of the RC space there also exist orthonormal reference
frames which realize an `anholonomic´ free-fall elevator. That is, for any single point P ∈ U4, there
exist coordinates {xµ} and an orthonormal frame {ea} in a neighborhood of P such that ea = δµa ∂xµ ,
and Γ b

a = 0 at P , where Γ b
a are the connection 1-forms referred to the frame {ea}. Therefore the

existence of torsion does not violate the PE. Suppose that we have a tetrad {ea(x)} at the point P ,
and a tetrad {ea(x + d x)} at another point in a neighbourhood of P ; then, we can apply a suitable
Lorentz rotation to ea(x+ d x), so that it becomes parallel to ea(x) . Given a vector v at P , it follows
that the components vc = v · ec do not change under parallel transport from x to x+d x, provided the
metricity condition holds. Hence, the connection coefficients ωabµ(x) at P , defined with respect to this

particular tetrad field, vanish: ωabµ(P ) = 0. This property is compatible with g′ab = oab, since Lorentz
rotation does not influence the value of the metric at a given point. In more general geometries, where
the symmetry of the tangent space is higher than the Poincare group, the usual form of the PE is
violated and local physics differs from SR. Taking this into account, we derive a general expression
of the relativistic inertial force exerted on the extended spinning body moving in the Rieman-Cartan
space (Ter-Kazarian, 2012).

15. Probing the inertia behind SUSY

The model discussed in previous section illustrates the problems of inertia effects described in the
framework of classical physics, but it also hints at a possible complete solution. We will use this
model as a backdrop to explore first the SLC in a new perspective of rigid double transformations of,
so-called, master space-induced supersymmetry (MS-SUSY), subject to certain rules (Ter-Kazarian,
2013b). The theories with extended Nmax = 4 supersymmetries, namely N = 4 super-Yang-Mills
theories, if only such symmetries are fundamental to nature, lead to the model of ELC in case of the
apparent violations of SLC, the possible manifestations of which arise in a similar way in all particle
sectors. We show that in the ELC-framework the propagation of the superluminal particle could
be consistent with causality, and give a justification of forbiddance of Vavilov-Cherenkov radiation/or
analog processes in vacuum. However, we must be careful about the physical relevance of the standard
theory of extended supersymmetry which does not allow for chiral fermions, and that its spectrum
in no way resembles that of the observed in nature. Consequently, in the framework of local MS-
SUSY, we address the accelerated motion, while, unlike gravitation, a curvature of space-time now
arises entirely due to the inertial properties of the Lorentz-rotated frame of interest, i.e. a fictitious
gravitation which can be globally removed by appropriate coordinate transformations. The only source
of graviton and gravitino, therefore, is the acceleration of a particle.
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15.1. A background `motion´ space M

With regard now to our original question as to the understanding of the physical processes that
underly the motion, we tackle the problem in the framework of quantum field theory (Ter-Kazarian,
2013b). Let us consider functional integrals for a quantum-mechanical system with one degree of
freedom. Denote by x(t) the position operator in the Heisenberg picture, and by |x, t > its eigenstates.
The probability amplitude that a particle which was at x at time t will be at point x′ at time t′,
also called the Schwinger transformation function for these points, is F (x′t′;xt) =< x′t′ |xt >. For a
particle moving through the two infinitesimally closed points of original space, this in somehow or other
implies the elementary act consisting of the annihilation of a particle at the point x and time t and,
subsequently, its creation at the point x′ and time t′. The particle can move with different velocities
which indicates to existence of the intermediate, so-called, motion state. Then the annihilation of a
particle at point x and time t can intuitively be understood as the transition from the initial state |x, t >
to the intermediatemotion state, |x, t >, yet unknown, where x(t) represent atomic element of idealized
motion point event. Meanwhile, the creation of a particle at infinitesimally closed final point x′ and
time t′ means the subsequent transition from the intermediate motion state, |x, t >, to the final state,
|x′, t′ >. So, the Schwinger transformation function for two infinitesimally closed points is written in
terms of annihilation and creation processes of a particle as F (x′t′;xt) =

∫
dx < x′t′ |x t >< x t |xt > .

It should be emphasized that since we do not understand the phenomenon of motion, then here it
must suffice to expect that the state functions |x, t > and |x, t > are quite different. Therefore, the
intermediate motion state, |x, t >, can be defined on say motion space,M , the points x(t) of which are
all the motion atomic elements, (x(t) ∈ M). To express Schwinger transformation function, F , as a
path integral, we divide the finite time interval into n+1 intervals: t = t0, t1, . . . , tn+1 = t′; tk = t0+kε,
where ε can be made arbitrarily small by increasing n. In the limit n→∞, F becomes an operational
definition of the path integral. Hence, in general, in addition to background 4D Minkowski space
M4, also a background motion space M , or say master space, MS (≡ M) is required. So, we now
conceive of the two different spaces M4 and MS, where the geometry of MS is a new physical entity,
with degrees of freedom and a dynamics of its own. The above example imposes a constraint upon
MS that it was embedded in M4 as an indispensable individual companion to the particle, without
relation to the other matter. In going into practical details, we further adopt the model discussed
in previous section, which illustrates the problems of inertia effects, but it also hints at a possible
solution. In accord, MS is not measurable directly, but it was argued that a deformation of MS is the
origin of inertia effects that can be observed by us. We will not be concerned with the actual details
of this model here, but only use it as a backdrop to study the motion of a particle. In general case
of 3D motion in M4, a flat MS is the 2D Minkowski space M 2. In deriving the final step, we should
compare and contrast the particle states of quantum fields defined on the background spaces M4 and
M 2, forming a basis in the Hilbert space. It is quite clear that the following properties, being the
essence of the chain of transformations for the finite time interval, hold:

1. There should be a particular way of going from each point xi−1(ti−1) ∈M4 to the intermediate
motion point x i−1(t i−1) ∈ M 2 and back xi(ti) ∈ M4, such that the net result of each atomic double
transformations is as if we had operated with a space-time translation on the original space M4. So,
the symmetry we are looking for must mix the particle quantum states during the motion in order to
reproduce the central relationship between the two successive transformations of this symmetry and the
generators of space-time translations. Namely, the subsequent operation of two finite transformations
will induce a translation in space and time of the states on which they operate.

2. These successive transformations induce in M4 the inhomogeneous Lorentz group, or Poincaré
group, and that an unitary linear transformation |x, t >→ U(Λ, a)|x, t > on vectors in the physical
Hilbert space.

Thus, the underlying algebraic structure of this symmetry generators closes with the algebra of
translations on the original space M4 in a way that it can then be summarized as a non-trivial
extension of the Poincaré group algebra, including the generators of translations. The only symmetry
possessing such properties is the SUSY, which is accepted as a legitimate feature of nature, although
it has never been experimentally observed. Certainly we now need to modify the standard theory
to have MS-SUSY, involving a superspace which is an enlargement of a direct sum of background
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spaces M4 ⊕ M 2 by the inclusion of additional fermion coordinates. Thereby an attempt will be
made to treat the uniform motion of a particle as a complex process of the global (or rigid) MS-
SUSY double transformations (Ter-Kazarian, 2013b). Namely a particle undergoes to an infinite
number of successive transitions from M4 to M 2 and back going permanently through fermion-boson
transformations, which can be interpreted as its creation and annihilation processes occurring in M4

or M 2. We derive the Lorentz code of motion in terms of spinors referred to MS. This allows to
introduce the physical finite time interval between two events, as integer number of the duration time
of atomic double transition of a particle from M4 and back. While all the particles are living on M4,
their superpartners can be viewed as living on M 2.

15.2. MS revisited

According to previous section, we assume that a flat MS is the 2D Minkowski space: M 2 =
R1

(+) ⊕ R1
(−). The ingredient 1D-space R1

m is spanned by the coordinates ηm. The following nota-
tional conventions are used throughout this paper: all magnitudes related to the space M 2 will be
underlined. In particular, the underlined lower case Latin letters m,n, ... = (±) denote the world
indices related to M 2. The metric in M 2 is g = g(em, en)ϑ

m ⊗ ϑn, where ϑm = dηm is the in-
finitesimal displacement. The basis em at the point of interest in M 2 is consisted of the two real

null vectors: g(em, en) ≡< em, en >= ∗omn, (∗omn) = (
0 1
1 0

). The norm, id ≡ dη̂, given in

the basis reads id = eϑ = em ⊗ ϑm, where id is the tautological tensor field of type (1,1), e is a

shorthand for the collection of the 2-tuplet (e(+), e(−)), and ϑ = (
ϑ(+)

ϑ(−) ). We may equivalently use

a temporal q0 ∈ T 1 and a spatial q1 ∈ R1 variables qr(q0, q1)(r = 0, 1), such that M 2 = R1 ⊕ T 1.
The norm, id, now can be rewritten in terms of displacement, dqr, as id = dq̂ = e0 ⊗ dq0 + e1 ⊗ dq1,
where e0 and e1 are, respectively, the temporal and spatial basis vectors: e0 = 1√

2
(e(+) + e(−)),

e1 = 1√
2
(e(+) − e(−)), g(er, es) ≡< er, es >= ors, (ors) = (

1 0
0 −1 ). The M 2-companion is smoothly

(injective and continuous) embedded in theM4. Suppose the position of the particle in the background
M4 space is specified by the coordinates xm(s) (m = 0, 1, 2, 3)(x0 = t) with respect to the axes of
the inertial system S(4). Then, a smooth map f : M2 −→ M4 is defined to be an immersion - an

embedding which is a function that is a homeomorphism onto its image: q0 = 1√
2
(η(+) + η(−)) = t,

q1 = 1√
2
(η(+) − η(−)) = |x⃗|. To motivate why is the MS two dimensional, we note that only two

dimensional constructions of real null vectors are allowed as the basis at given point in MS, which can
be embedded in the (3+1)-dimensional spacetime. This theory is mathematically somewhat similar
to the more recent membrane theory, so the M 2 can be viewed as 2D space living on the 4D world
sheet. Given the inertial frame S(4) in M4, we may define the corresponding inertial frame S(2) used
by the non-accelerated observer for the position qr of a free particle in flat M 2. Thereby the time
axes of the two systems S(2) and S4 coincide in direction and that the time coordinates are taken the

same, q0 = t. For the case at hand, v(±) = dη(±)

dq0
= 1√

2
(1 ± vq), vq = dq1

dq0
= |v⃗| = |dx⃗dt |. So the particle

may be viewed as moving simultaneously in M4 and M 2. Hence, given the inertial frames S(4), S
′
(4),

S′′
(4),... in M4, in this manner we may define the corresponding inertial frames S(2), S

′
(2), S

′′
(2),... in

M 2. Suppose the elements of the Hilbert space can be generated by the action of field-valued oper-
ators ϕ(x) (χ(x), A(x)) (x ∈ M4), where χ(x) is the Weyl fermion and A(x) is the complex scalar
bosonic field defined on M4, and accordingly, of field-valued operators ϕ(η) (χ(η), A(η)) (η ∈ M2),
where χ(η) is the Weyl fermion and A(η) is the complex scalar bosonic field defined on M 2, on a
translationally invariant vacuum: |x >= ϕ(x)|0 >, |x1, x2 >= ϕ(x1)ϕ(x2)|0 > referring to M4,
|η >= ϕ(η)|0 >, |η1, η2 >= ϕ(η1)ϕ(η2)|0 > referring to M 2, etc. The displacement of the

field takes the form ϕ(x1 + x2) = eix
m
2 Pm ϕ(x1) e

−ixm
2 Pm , ϕ(η1 + η2) = eiη

m
2 Pm ϕ(η1) e

−iηm
2 Pm , where

Pm = i∂m is the generator of translations on quantum fields ϕ(x), and P m = i∂m is the generator of

translations on quantum fields ϕ(η) ≡ ϕ(t, q1). According to the embedding map, the relation between
the fields ϕ(x) and ϕ(η) can be given by the a proper orthochronous Lorentz transformation. For a

G.Ter-Kazarian
doi: https://doi.org/10.52526/25792776-2021.68.2-311

365

https://doi.org/10.52526/25792776-2021.68.2-311


A new look at some aspects of geometry, particle physics, inertia, radiation and cosmology

field of spin-S⃗, the general transformation law reads ϕ′α(x
′) =M β

α ϕβ(x) = exp(−1
2θ
mnSmn)

β
α ϕβ(x) =

exp(−iθ⃗ · S⃗ − iζ⃗ · K⃗) β
α ϕβ(x), where θ⃗ is the rotation angle about an axis n⃗ (θ⃗ ≡ θn⃗), and ζ⃗ is the

boost vector ζ⃗ ≡ e⃗v · tanh−1 β, provided e⃗v ≡ v⃗/|v⃗|, β ≡ |v⃗|/c, θi ≡ (1/2)εijk θk (i, j, k = 1, 2, 3), and
ζi ≡ θi0 = −θ0i. The antisymmetric tensor Smn = −Snm, satisfying the commutation relations of the
SL(2.C), is the (finite-dimensional) irreducible matrix representations of the Lie algebra of the Lorentz
group, and α and β label the components of the matrix representation space, the dimension of which is
related to the spin Si ≡ (1/2)εijk Sk of the particle. The spin S⃗ generates three-dimensional rotations
in space and the Ki ≡ S0i generate the Lorentz-boosts. The fields of spin-zero (S⃗ = K⃗ = 0) scalar
field A(x) and spin-one An(x), corresponding to the (1/2.1/2) representation, transform under a gen-
eral Lorentz transformation as A(η) = A(x), spin 0; Am(η) = ΛmnA

n(x), spin 1, where the
Lorentz transformation is written as Λmn(M) ≡ 1

2 Tr(σmMσnM
†), provided, σm ≡ (I2, σ⃗), σ⃗ are Pauli

spin matrices. A two-component (1/2, 0) Weyl fermion χβ(x) transforms under Lorentz transforma-

tion, in accord to embedding map, as χβ(x) −→ χ
α
(η) = (MR)

β
α χβ(x), α, β = 1, 2 where the rotation

matrix is given asMR = ei
1
2
σ2θ2ei

1
2
σ3θ3 . The matrixMR corresponds to the rotation of an hermitian 2×2

matrix pnσn: p
m
q σm = MR p

nσnM
†
R, by the angles θ3 and θ2 about the axes n3 and n2, respectively,

where the standard momentum is pn ≡ m(chβ, shβ sin θ2 cos θ3, shβ sin θ2 sin θ3, shβ cos θ2), and p
m
q

is pmq ≡ m(chβ, 0, 0, shβ). The two-component (0, 1/2) Weyl spinor field is denoted by χ̄β̇(x), and

transforms as χ̄β̇(x) −→ χ̄α̇(η) = (M−1
R )†α̇

β̇
χ̄β̇(x), α̇, β̇ = 1, 2 where we have used (M †)β̇α̇ = (M∗) β̇

α̇ .

The so-called `dotted´ indices have been introduced to distinguish the (0, 1/2) representation from
the (1/2, 0) representation. The “bar” over the spinor is a convention that this is the (0, 1/2)-
representation. The infinitesimal Lorentz transformation matrices for the (1/2, 0) and (0, 1/2) repre-
sentations,M ≃ I2− i

2 θ⃗ · σ⃗−
1
2 ζ⃗ · σ⃗, for (12 , 0); (M−1)† ≃ I2− i

2 θ⃗ · σ⃗+
1
2 ζ⃗ · σ⃗, for (0, 12) give S

mn =
σmn for the (1/2, 0) representation and Smn = σ̄mn for the (0, 1/2) representation, where the bilinear

covariants that transform as a Lorentz second-rank tensor read (σmn) β
α ≡ i

4(σ
m
αα̇ σ̄

nα̇β − σnαα̇ σ̄mα̇β),
(σ̄mn)α̇

β̇
≡ i

4(σ̄
mα̇α σn

αβ̇
− σ̄nα̇α σm

αβ̇
), provided σ̄m ≡ (I2; −σ⃗), (σm ∗)αβ̇ = σmβα̇ and (σ̄m ∗)α̇β = σ̄mβ̇α.

15.3. MS-SUSY

As alluded to above (Ter-Kazarian, 2013b), a creation of a particle in M 2 means its transition
from M4 to M 2, while an annihilation of a particle in M 2 means vice versa. The same interpretation
holds for the creation and annihilation processes in M4. Since all fermionic and bosonic states, taken
together, form a basis in the Hilbert space, the basis vectors in the Hilbert space, therefore, can be
written in the form |n b, nf > or |nb, n f >, where the boson and fermion occupation numbers are

nb or n b (= 0, 1, ...,∞) and nf or n f (= 0, 1). So, we may construct the quantum operators, (q†, q†)

and (q, q), which replace bosons by fermions and fermions by bosons, respectively, q† |n b, nf >−→
|n b − 1, nf + 1 >, q |n b, nf >−→ |n b + 1, nf − 1 >, and that q† |nb, n f >−→ |nb − 1, n f + 1 >,
q |nb, n f >−→ |nb+1, n f −1 > . This framework combines bosonic and fermionic states on the same
footing, rotating them into each other under the action of operators q and q. Consider two pairs of

creation and annihilation operators (b†, b) and (f †, f) for bosons and fermions, respectively, referred
to the background space M4, as well as (b†, b) and (f †, f) for bosons and fermions, respectively,
related to the background master space M 2. Putting two operators in one B = (b or b) and F = (f
or f), the canonical quantization rules can be written most elegantly as [B, B†] = 1; {F, F †} = 1;

[B, B] = [B†, B†] = {F, F} = {F †, F †} = [B, F ] = [B, F †] = [B†, F ] = [B†, F †] = 0, where we
note that δijδ

3(p⃗ − p⃗′) and δijδ
3(p⃗q − p⃗′q) are the unit element 1 of the convolution product *, and

according to embedding map we have pq = ±|p⃗| and p′q = ±|p⃗′|. The operators q and q can be

constructed as q† = q0 b f
†, q = q0, b

†f, q† = q0 b f
†, q = q0 b

†f. So, we may refer the action of the

supercharge operators q and q† to the background space M4, having applied in the chain of following
transformations of fermion χ (accompanied with the auxiliary field F as it will be seen later on) to
boson A, defined on M 2: · · · −→ χ(F ) −→ A −→ χ(F ) −→ A −→ χ(F ) −→ · · · Respectively, we
may refer the action of the supercharge operators q and q† to the M 2, having applied in the chain of
following transformations of fermion χ (accompanied with the auxiliary field F ) to boson A, defined
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on the background space M4: · · · −→ χ(F ) −→ A −→ χ(F ) −→ A −→ χ(F ) −→ · · · Written in

one notation, Q = (q or q), the operators become Q = q0B
†F = (q or q), Q† = q0BF

† = (q† or q†).

Due to nilpotent fermionic operators F 2 = (F †)2 = 0, the operators Q and Q† also are nilpotent:
Q2 = (Q†)2 = 0. Hence, the quantum system can be described in one notation by the selfadjoint
Hamiltonian H = (Hq ≡ {q†, q} or Hq ≡ {q†, q}), and that the generators Q and Q† satisfy an

algebra of anticommutation and commutation relations: H = {Q†, Q} ≥ 0; [H, Q] = [H, Q†] = 0.
This is a sum of Hamiltonian of bosonic and fermionic noninteracting oscillators, which decouples,
for Q = q, into Hq = q20 (b

†b + f †f) = q20 (b
†b + 1

2) + q20 (f
†f − 1

2) ≡ Hb + Hf , or, for Q = q, into

Hq = q20 (b
†b + f †f) = q20 (b

†b + 1
2) + q20 (f

†f − 1
2) ≡ Hb + Hf , with the corresponding energies:

Eq = q20 (nb +
1
2) + q20 (nf − 1

2), Eq = q20 (nb +
1
2) + q20 (nf − 1

2). This formalism manifests its practical

and technical virtue in the proposed algebra, which becomes more clear in a normalization q0 =
√
m:

{Q†, Q} = 2m; {Q, Q} = {Q†, Q†} = 0. The latter has underlying algebraic structure of the
superalgebra for massive one-particle states in the rest frame of N = 1 SUSY theory without central
charges. This is rather technical topic, and it requires care to do correctly. In what follows we only give
a brief sketch. The extension of the MS-SUSY superalgebra in general case when p⃗ = i∂⃗ ̸= 0 in M4 or
pq = i∂q ̸= 0 in M 2, and assuming that the resulting motion of a particle in M4 is governed by the
Lorentz symmetries, the MS-SUSY algebra can then be summarized as a non-trivial extension of the
Poincaré group algebra thus of the commutation relations of the bosonic generators of four momenta
and six Lorentz generators referred to M4. Moreover, if there are several spinor generators Q i

α with
i = 1, ..., N - theory with N−extended supersymmetry, can be written as a graded Lie algebra (GLA)
of SUSY field theories, with commuting and anticommuting generators: {Q i

α , Q̄
j
α̇} = 2δij σm̂αα̇ pm̂;

[pm̂, Q
i
α ] = [pm̂, Q̄

j
α̇] = 0, {Q i

α , Q
j
β } = {Q̄

i
α̇, Q̄

j

β̇
} = 0; [pm̂, pn̂] = 0. Here σ(±) = (1/2)(σo ± σ3),

and in order to trace a maximal resemblance in outward appearance to the standard SUSY theories, we
set one notation m̂ = (m if Q = q, or m if Q = q), no sum over m̂, and as before the indices α
and α̇ go over 1 and 2. So for both supercharges, q and q, we get a supersymmetric models, respectively:

{q i
α , q̄

j
α̇} = 2δij σmαα̇ pm; [pm, q

i
α ] = [pm, q̄

j
α̇] = 0, {q i

α , q
j
β } = {q̄

i
α̇, q̄

j

β̇
} = 0; [pm, pn] = 0. and

{q i
α
, q̄j α̇} = 2δij σ

m
αα̇ pm; [pm, q

i
α
] = [pm, q̄

j
α̇] = 0, {q i

α
, q j

β } = {q̄
i
α̇, q̄

j

β̇
} = 0; [pm, pn] = 0. For the

self-contained arguments, we should emphasize the crucial differences between the MS-induced SUSY
and the standard theories as follows:
1) The standard theory can be realized only as a spontaneously broken symmetry since the experiments
do not show elementary particles to be accompanied by superpartners with different spin but identical
mass. The MS-SUSY, in contrary, can only be realized as an unbroken SUSY.
2) In the standard theory, the Q’s operate on the fields defined on the single M4 space. It is why the
result of a Lorentz transformation inM4 followed by a supersymmetry transformation is different from
that when the order of the transformations is reversed. But, in the MS-SUSY theory, the Q-operators
operate on the fields defined on both M4 and M 2 spaces, fulfilling a transition of a particle between
these spaces (M4 ⇌ M 2). So after a Lorentz transformation in M4 followed by a supersymmetry
transformation (which, as we shall see below, now results to uniform motion of a particle with initial
constant velocity) we have a particle moving with changed constant velocity. We obtain the same
result if we reverse the order of the transformations, namely a Lorentz transformation changes the
initial velocity and a supersymmetry transformation followed by a Lorentz transformation just keep
the uniform motion with the changed velocity.

We shall forbear to write out further the unitary representations of supersymmetry, giving rise to
the notion of supermultiplets, as they are so well known. Also, unless otherwise stated we will not
discuss the theories with N > 1, because it is unlikely that they play any role in low-energy physics.

15.4. Wess-Zumino model

To obtain a feeling for this model we may consider first example of non-trivial linear repre-
sentation of the MS-SUSY algebra in analogy of the Wess-Zumino toy model, which has N = 1
and s0 = 0, and contains two spin states of a massive Majorana spinor ψ(χ, χ) and two com-
plex scalar fields A(A, A) and auxiliary fields F(F, F ), which provide in supersymmetry theory the
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fermionic and bosonic degrees of freedom to be equal. This model is instructive because it con-
tains the essential elements of the MS-induced SUSY. Let us first introduce four additional, anti-
commuting (Grassmann) parameters ϵα(ξα, ξα) and ϵ̄α(ξ̄α, ξ̄

α
): {ϵα, ϵβ} = {ϵ̄α, ϵ̄β} = {ϵα, ϵ̄β} = 0,

{ϵα, Qβ} = · · · = [pm̂, ϵ
α] = 0, which allow to write the algebra (??) (N = 1) in terms of commu-

tators only: [ϵQ, Q̄ϵ̄] = 2ϵσm̂ϵ̄pm̂, [ϵQ, ϵQ] = [Q̄ϵ̄, Q̄ϵ̄] = [pm̂, ϵQ] = [pm̂, Q̄ϵ̄] = 0. Here we have
dropped the indices ϵQ = ϵαQα and ϵ̄Q̄ = ϵ̄α̇Q̄

α̇. The infinitesimal supersymmetry transforma-
tions for Q = q read δξA = (ξq + ξ̄q̄) × A =

√
2ξχ, δξχ = (ξq + ξ̄q̄) × χ = i

√
2σmξ̄∂mA +

√
2ξF,

δξF = (ξq + ξ̄q̄) × F = i
√
2ξ̄σ̄m∂mχ; and for Q = q are in the form δ ξA = (ξ q + ξ̄ q̄) × A =

√
2 ξ χ,

δ ξ χ = (ξ q + ξ̄ q̄) × χ = i
√
2σm ξ̄ ∂mA +

√
2ξ F , δ ξ F = (ξ q + ξ̄ q̄) × F = i

√
2 ξ̄ σ̄m ∂m χ, where

A = A. The first relation means that there should be a particular way of going from one subspace
(bosonic/fermionic) to the other and back, such that the net result is as if we had operator of translation
pm̂ on the original subspace. Actually, it can be checked that the supersymmetry transformations close
supersymmetry algebra: [δϵ1 , δϵ2 ]A = −2i(ϵ1σm̂ϵ̄2 − ϵ2σm̂ϵ̄1) ∂m̂A, and likewise for ψ and F . In the
framework of MS-SUSY theory, the Wess-Zumino model has the following Lagrangians: LQ=q = L0+
mLm, LQ=q = L0+mLm, provided, L0 = i∂mχ̄σ̄

mχ+A∗□A+F ∗F, Lm = AF+A∗ F ∗− 1
2χχ−

1
2 χ̄χ̄,

L0 = i∂m χ̄σ̄
mχ+A∗□A+F ∗F , Lm = AF +A∗ F ∗− 1

2χχ−
1
2 χ̄ χ̄, where according to the embedding

map, □ = □ and A = A. Whereupon, the equations of motion for the Weyl spinor ψ and complex
scalar A of the same mass m, are (a)

[
iσ̄m ∂m χ+mχ̄ = 0, iσ̄m ∂m χ+mχ̄ = 0, F +mA∗ = 0

]
, or

(b) [F +mA∗ = 0, □A+mF ∗ = 0, □A+mF ∗ = 0] . Respectively, (a) stands for Q = q (referring
to the motion of a fermion, χ, in M4) and (b) stands for Q = q (so, of a boson, A, in M4). Finally, the

algebraic auxiliary field F can be eliminated to find LQ=q = i∂mχ̄σ̄
mχ− 1

2(χχ+χ̄χ̄)+A
∗□A−m2A∗A,

LQ=q = i∂m χ̄σ̄
mχ− 1

2(χχ+ χ̄ χ̄) +A∗□A−m2A∗A.

15.5. General superfields

In the framework of standard generalization of the coset construction, we will take G = Gq ×Gq
to be the supergroup generated by the MS-SUSY algebra (??). Let the stability group H = Hq ×Hq

be the Lorentz group (as to M4 and M 2), and we choose to keep all of G unbroken. Given G and H,
we can construct the coset, G/H, by an equivalence relation on the elements of G: Ω ∼ Ωh, where
Ω = Ωq × Ωq ∈ G and h = hq × hq ∈ H, so that the coset can be pictured as a section of a fiber

bundle with total space, G, and fiber, H. So, the Maurer-Cartan form, Ω−1dΩ, is valued in the Lie
algebra of G, and transforms as follows under a rigid G transformation, Ω −→ gΩh−1, Ω−1dΩ −→
h(Ω−1dΩ)h−1 − dhh−1, with g ∈ G. Also we consider a superspace which is an enlargement of
M4 ⊕M 2 (spanned by the coordinates Xm̂ = (xm, ηm) by the inclusion of additional fermion co-
ordinates Θα = (θα, θα) and Θ̄α̇ = (θ̄α̇, θ̄ α̇), as to (q, q), respectively. But note that the relation
between the two spinors θ and θ should be derived further from the embedding map (see next sub-
section). These spinors satisfy the following relations: {Θα, Θβ} = {Θ̄α̇, Θ̄β̇} = {Θα, Θ̄β̇} = 0,

[xm, θα] = [xm, θ̄α̇] = 0, [ηm, θα] = [ηm, θ̄α̇] = 0. and Θα∗ = Θ̄α̇. Points in superspace are
then identified by the generalized coordinates zM = (Xm̂, Θα, Θ̄α̇). In case at hand we have then

Ω(X, Θ, Θ̄) = ei(−X
m̂pm̂+ΘαQα+Θ̄α̇Q̄

α̇) = Ωq(x, θ, θ̄) × Ωq(η, θ, θ̄), where we now imply a summation

over m̂, etc., such that Ωq(x, θ, θ̄) = ei(−x
mpm+θαqα+θ̄α̇q̄

α̇), Ωq(η, θ, θ̄) = ei(−η
mpm+θαq

α
+θ̄ α̇q̄

α̇). Super-
symmetry transformation will be defined as a translation in superspace, specified by the group element

g(0, ϵ, ϵ̄) = ei(ϵ
αQα+ϵ̄α̇Q̄

α̇) = gq(0, ξ, ξ̄) × gq(0, ξ, ξ̄) = ei(ξ
αqα+ξ̄α̇q̄

α̇) × ei(ξ
αq

α
+ξ̄

α̇
q̄α̇), with correspond-

ing anticommuting parameters ϵ = (ξ or ξ). To study the effect of supersymmetry transformations

and h = 1, we consider g(0, ϵ, ϵ̄) Ω(X, Θ, Θ̄) = ei(ϵ
αQα+ϵ̄α̇Q̄

α̇) ei(−X
m̂pm̂+ΘαQα+Θ̄α̇Q̄

α̇). The multipli-
cation of two successive transformations can be computed with the help of the Baker-Campbell-
Hausdorf formula eAeB = eA+B+(1/2)[A,B]+···. Hence the transformation above induces the motion
g(0, ϵ, ϵ̄) Ω(Xm̂, Θ, Θ̄) −→ (Xm̂+iΘσm̂ ϵ̄−i ϵ σm̂ Θ̄, Θ+ϵ, Θ̄+ ϵ̄), namely, gq(0, ξ, ξ̄) Ωq(x, θ, θ̄) −→
(xm+ i θ σm ξ̄− i ξ σm θ̄, θ+ ξ, θ̄+ ξ̄), gq(0, ξ, ξ̄) Ωq(η, θ, θ̄) −→ (ηm+ i θ σm ξ̄− i ξ σm θ̄, θ+ ξ, θ̄+ ξ̄).
The superfield Φ(zM ), which has a finite number of terms in its expansion in terms of Θ and Θ̄ owing
to their anticommuting property, can be considered as the generator of the various components of the
supermultiplets. We will consider only a scalar superfield Φ′(zM

′
) = Φ(zM ), an infinitesimal super-
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symmetry transformation of which is given as δϵΦ(z
M ) = (ϵαQα + ϵ̄α̇Q̄

α̇) × Φ(zM ). Acting on this
space of functions, the Q and Q̄ can be represented as differential operators: Qα = ∂

∂Θα − iσm̂αα̇Θ̄α̇∂m̂,

Q̄α̇ = ∂
∂Θ̄α̇
− iΘασm̂

αβ̇
εβ̇α̇∂m̂, where, as usual, the undotted/dotted spinor indices can be raised and

lowered with a two dimensional undotted/dotted ε−tensors, and the anticommuting derivatives obey

the relations ∂
∂Θα Θβ = δβα,

∂
∂Θα ΘβΘγ = δβαΘγ − δγαΘβ, and similarly for Θ̄. In order to write the ex-

terior product in terms of differential operators, one induces a new basis as eA(z) = dZM e A
M (z), and

that DA = e N
A (z) ∂

∂zN
, where to be brief we left implicit the symbol ∧ in writing of exterior product.

The covariant derivative operators Dm̂ = ∂m̂, Dα = ∂
∂Θα + iσm̂αα̇Θ̄

α̇∂m̂, D̄
α̇ = ∂

∂Θ̄α̇
+ iΘασm̂

αβ̇
εβ̇α̇∂m̂,

anticommute with the Q and Q̄ {Qα, Dβ} = {Q̄α̇, D̄β̇} = {Qα, D̄β̇} = {Q̄α̇, Dβ} = 0, and satisfy the

following structure relations: {Dα, Dα̇} = −2iσm̂αα̇∂m̂, {Dα, Dβ} = {D̄α̇, D̄β̇} = 0. Then we obtain

e M
A =

 e m̂
â = δm̂â e µ

â = 0 eâ µ̇ = 0
e m̂
α = iσm̂αα̇Θ̄

α̇ e µ
α = δµα eα µ̇ = 0

eα̇ m̂ = iΘασm̂
αβ̇
εβ̇α̇ eα̇ µ = 0 eα̇µ̇ = δα̇µ̇

 , where â = (a or a), a = 0, 1, 2, 3; a = (+), (−).

The supersymmetry transformations of the component fields can be found using the differential op-
erators. The covariant constraint D̄α̇Φ(z

M ) = 0, which does not impose equations of motion on the
component fields, defines the chiral superfield, Φ. Under the supersymmetry transformation the chiral
field transforms as follows: δξΦ = (ξq + ξ̄q̄) × Φ = δξ A(η) +

√
2θδξχ(x) + θθδξF (x) + · · · in case of

Q = q, and δ ξ Φ = (ξq + ξ̄ q̄)× Φ = δ ξ A(x) +
√
2θδ ξ χ(η) + θ θδ ξ F (η) + · · · in case of Q = q, where

as before A(x) = A(η). The chiral superfield contains the same component fields as the Wess-Zumino
model for MS-SUSY theory. The supervolume integrals of products of superfields constructed in
the superspace (xm, θ, θ̄) will lead to the supersymmetric kinetic energy for the Wess-Zumino model∫
d4x d4θΦ†Φ, where the superspace Lagrangian reads Φ†Φ = A∗A+ · · ·+ θθθ̄θ̄[14A

∗□A+ 1
4□A∗A−

1
2∂mA

∗ ∂mA+F ∗F + i
2∂mχ̄σ̄

mχ− i
2 χ̄σ̄

m∂mχ], where □A = □A and ∂mA
∗ ∂mA = ∂mA

∗ ∂mA. Sim-
ilarly, the supersymmetric kinetic energy for the Wess-Zumino model constructed in the superspace
(ηm, θ, θ̄) for MS-SUSY theory is

∫
d2η d4θΦ†Φ, where the superspace Lagrangian is written down

Φ†Φ = A∗A + · · · + θθθ̄θ̄ [14A
∗□A + 1

4□A∗A − 1
2∂mA

∗ ∂mA + F ∗F + i
2∂mχ̄σ̄

mχ − i
2 χ̄σ̄

m∂mχ], To
complete the model, we also need superspace expressions for the masses and couplings, which can be
easily found in analogy of the standard theory, namely: 1) fermion masses and Yukawa couplings,
(∂2P/∂A2)ψψ; and 2) the scalar potential, V(A, A∗) = |∂P/∂A|2; where P = (1/2)mΦ2+(1/3)λΦ3

is the most general renormalizable interaction for a single chiral superfield. Thereby, the auxiliary
field equation of motion reads F∗ + (∂P/∂A) = 0. Similarly, we can treat the vector superfields, etc.
Here we shall forbear to write them out as the standard theory is so well known.

15.6. Unaccelerated uniform motion; a foundation of SR

Let impose peculiar constraints upon the anticommuting spinors (ξ, ξ̄) and (ξ, ξ̄): ξα = i τ√
2
θα, ξ̄

α̇
=

−i τ
∗

√
2
θ̄α̇, ξ

α = i τ√
2
θα, ξ̄α̇ = −i τ∗√

2
θ̄α̇, and write down the infinitesimal displacement arisen in M 2 as

∆ηm = vm τ = θ σm ξ̄ − ξ σm θ̄, where the parameter τ (= τ∗) can physically be interpreted as

the duration time of atomic double transition of a particle from M4 to M 2 and back. So, v(+)τ =
i(θ1 ξ̄1− ξ1 θ̄1), v

(−)τ = i(θ2 ξ̄2− ξ2 θ̄2), and that v2τ2 = v(+)v(−)τ2 = −(θ1 ξ̄1− ξ1 θ̄1)(θ2 ξ̄2− ξ2 θ̄2) =
4θ1 θ̄1θ2 θ̄2 ≥ 0. Hance v(+) =

√
2 θ1 θ̄1 ≥ 0, v(−) =

√
2 θ2 θ̄2 ≥ 0. According to embedding map,

therefore, we may introduce the velocity of light (c) in vacuum as maximum attainable velocity for
uniform motions of all the particles in the Minkowski background space, M4: c =

1√
2
(v(+) + v(−)) =

√
2 (θ1 θ̄1 + θ2 θ̄2) =

√
2 θ θ̄ = const, vq = 1√

2
(v(+) − v(−)) =

√
2 (θ1 θ̄1 − θ2 θ̄2) = ±|v⃗| = const,

|v⃗| ≤ c. The spinors θ(θ, ξ) and ξ(θ, ξ) satisfy the embedding map (??), namely ∆q0 = ∆x0 and
∆q2 = (∆x⃗)2, so we have θ σ0 ξ̄ − ξ σ0 θ̄ = θ σ0 ξ̄ − ξ σ0 θ̄, (θ σ3 ξ̄ − ξ σ3 θ̄)2 = (θ σ⃗ ξ̄ − ξ σ⃗ θ̄)2, such

that θ1 θ̄1 + θ2 θ̄2 = θ θ̄ = θθ̄, θ1 θ̄1 − θ2 θ̄2 = ±
√

3
2(−θθθ̄θ̄)

1/2 = ±
√

3
2 θθ̄, where we use the follow-

ing relations: (θσm θ̄)(θσn θ̄) = 1
2 θθθ̄θ̄ η

mn, (−θθθ̄θ̄)1/2 = (θθ̄θθ̄)1/2 = θθ̄.So, θ1 θ̄1 = 1
2(1 ±

√
3
2) θθ̄,

θ2 θ̄2 = 1
2(1 ∓

√
3
2) θθ̄. Hence we conclude that the unaccelerated uniform motion of a particle in M4
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is encoded in the spinors θ and θ̄ referred to the master space M 2, which is an individual companion
to the particle of interest. Therefore, to account for the most important two postulates constituting
a foundation of SR, it would be necessary further to impose certain constraints upon the constant
Lorentz spinors θ. Lorentz invariance is a fundamental symmetry and refers to measurements of ideal
inertial observers that move uniformly forever on rectilinear timelike worldlines. In view of relativity
of velocity of a particle, we are of course not limited to any particular spinor θ(v⃗), but can choose at
will any other spinors θ′(v⃗′), θ′′(v⃗′′), . . . relating respectively to velocities v⃗′, v⃗′′, . . . , whose functional
dependence (transformational law) on the original spinor θ(v⃗) is known. Of the various possible trans-
formations, we must consider for a validity of SR only those which obey the following constraints:
1. θ θ̄ = θ′ θ̄

′
= θ′′ θ̄

′′
= · · · = c√

2
= const; 2. θ 1 ζ̄ 1

θ 2 ζ̄ 2
= θ′1 ζ̄

′
1
θ′2 ζ̄

′
2
= · · · = inv. According to

first relation, we may introduce a notion of time, for the all inertial frames of reference S, S’, S”,...,
we have then standard Lorentz code (SLC)-relations: x0 = ct, x0

′
= ct′, x0” = ct”, . . . . This is

a second postulate of SR (Einstein’s postulate) that the velocity of light (c) in free space appears
the same to all observers regardless the relative motion of the source of light and the observer. By
virtue of second relation and equations above, we may derive the invariant interval between the two
events defined in Minkowski spacetime: 8θ 1 θ̄ 1θ 2 θ̄ 2∆t

2 = 2v2∆t2 = (c2 − v2q )∆t2 = (c2 − v⃗2)∆t2 =

c2∆t2 −∆x⃗2 ≡ ∆s2 = 8θ′1 θ̄
′
1θ

′
2 θ̄

′
2∆t

′2 = c2∆t′2 −∆x⃗′2 ≡ ∆s′2 = · · · = inv, where we introduce the
physical finite time interval, ∆t = kτ , between two events as integer number of the duration time, τ ,
of atomic double transition of a particle from M4 to M 2 and back, where k is the number of double
transformations. Hence, an unaccelerated uniform motion, for example, of spin-0 particle in M4 can
be described by the chiral superfield Φ(ηm̂, θ, θ̄), while a similar motion of spin-1/2 particle in M4

can be described by the chiral superfield Φ(xm, θ, θ̄), etc. So, we may refer to all constant Lorentz
spinors as the SLC-spinors, which constitute a foundation of SR. Hence, in view of the MS-SUSY
mechanism of motion, the uniform motion of a particle in M4 is encoded in the spinors θ and θ̄, which
refer to M 2. This will call for a complete reconsideration of our ideas of Lorentz motion code, to be
now referred to as the individual code of a particle, defined as its intrinsic property.

15.7. Extended supersymmetry and ELC

In four dimensions, it is possible to have as many as eight supersymmetries: Nmax = 4 for renor-
malizable flat-space field theories; Nmax = 8 for consistent theories of supergravity. It has been shown
that the N = 4 theory is not only renormalizable but actually finite. So, the theories with N > 1
may play a key role in high-energy physics. These models explore more than one distinct copy of the
supersymmetry generators, Qαi, therefore, this perspective ultimately requires to relax the Einstein’s
postulate, because it is natural now to circumvent the limitations to any particular spinor θ, instead,
considering i(= 1, . . . , 4)-th (Nmax = 4) copy of the spinors Θαi ≡ (θαi or θαi). Therefore, we now have
a straightforward generalization: 1. θi θ̄i = θi′ θ̄i′ = θi′′ θ̄i′′ = · · · = ci√

2
= const; (no sum over i),

2. θi1 ζ̄
i

1
θi2 ζ̄

i

2
= θi′1 ζ̄

i′
1θ
i′
2 ζ̄

i′
2 = · · · = inv. This observation allows us to lay forth the extension of

Lorentz code, at which SLC violating new physics appears. We may now consider the particles of
i(= 1, . . . , 4)-th type (Nmax = 4). That is to say, the i-th type particle in free Minkowski space carries
an individual Lorentz motion code with its own maximum attainable velocity ci, i.e., its own velocity

of ’light-like’ state: ci =
1√
2
(v

(+)
i + v

(−)
i ) =

√
2 (θ1i θ̄ 1i + θ 2i θ̄ 2i) =

√
2 θ i θ̄ i = const, (no sum over i),

vqi =
1√
2
(v

(+)
i − v(−)

i ) =
√
2 (θ 1i θ̄1 i − θ 2i θ̄ 2) = ±|v⃗i| = const, |v⃗i| ≤ ci. A general solution to the

Lorentz covariance in the theory can be easily accommodated if the `time´ at which event occurs is
extended by allowing an extra dependence on `different type´ readings ti referred to the particles of
different type. They satisfy for all inertial frames of reference S, S’, S”,..., so-called ’ELC-relations’:
x0 ≡ c1t1 = · · · = citi = . . . , x0

′ ≡ c1t′1 = · · · = cit
′
i = . . . , where c1 ≡ c is the speed of light in vacuum,

and ci > c1, (i = 2, 3, 4) are speeds of the additional `light-like´ states, higher than that of light. The
clock reading ti can be used for the i−th type particle, the velocity of which reads vi = x/ti = cix/x

0,
so β = v1/c1 = . . . vi/ci = · · · ≡ v/c = x/x0. If vi = ci then v1 = c1, and the proper time of
`light-like´ states are described by the null vectors ds21 = . . . ds2i = · · · = 0. The extended Lorentz
transformation equations for given i-th and j-th type clock readings can be written then in the form
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x′ = γ(x− vt), t′i = γ
cj
ci
(tj − vj

c2j
x), y′ = y, z′ = z, γ ≡ 1/

√
1− β2. Hence, like the standard SR

theory, regardless the type of clock, a metre stick traveling with system S measures shorter in the same
ratio, when the simultaneous positions of its ends are observed in the other system S’: dx′ = dx/γ.
Furthermore, a time interval dti specified by the i−th type readings, which occur at the same point
in system S (dx = 0), will be specified with the j−th type readings of system S’ as dt′j = γ(ci/cj)dti.
Here we have called attention to the fact that the mere composition of velocities which are not them-
selves greater than that of ci will never lead to a speed that is greater than that of ci. Inevitably in
the ELC-framework a specific task is arisen then to distinguish the type of particles. This evidently
cannot be done when the velocity ranges of different type particles intersect. To reconcile this situa-
tion, we note that, we may freely interchange the types of particles in the intersection. Therefore, we
adopt following convention. With no loss of generality, we may re-arrange a general solution that the
particles with velocities v1 < c1, regardless their type, will be treated as the 1-th type particles and,
thus, a common clock reading for them and light will be set as t1. This part of a formalism is com-
pletely equivalent to the SLC-framework. Successively, the particles, other than `light-like´ ones, with
velocities in the range ci−1 ≤ vi < ci, regardless their type, will be treated as the i-th type particles
and, thus, a common clock reading for them and `light-like´ state (i) will be set as ti. The invariant
momentum p2i = pµip

µ
i = (Ei

ci
)2− p⃗2i = m2

0 ic
2
i = p21 = pµ1p

µ
1 = (E1

c1
)2− p⃗21 = m2

0c
2
1, introduces a modified

dispersion relation for i−th type particle: E2
i = p⃗2i c

2
i +m

2
0ic

4
i = p⃗2i c

2
i +m

2
01c

2
1c

2
i , where the mass of i−th

type particle has the value m0 i, when at rest, the positive energy is Ei = mic
2
i = γm0ic

2
i = γm01c1ci,

and p⃗i = miv⃗i = γm0iv⃗i is the momentum. This relation modifies the well-known Einstein’s equation
that energy E always has immediately associated with it a positive mass mi = γm0i, when moving
with the velocity v⃗i. Having set this theoretical background, one may find some consequences for
the superluminal propagation of particles. In particular, in the ELC-framework of uniform motion,
the time elapsing between the cause tiA and its effect tiB as measured for the i−th type superluminal
particle is ∆ti = tiB−tiA = xB−xA

vi
, where xA and xB are the coordinates of the two points A and B. In

another system S’, which is chosen as before and has the arbitrary velocity V ≡ Vj with respect to S,

the time elapsing between cause and effect would be ∆t′i =
1−

Vj
cj

vi
ci√

1−
V 2
j

c2
j

∆ti ≥ 0, where tiB = (cj/ci)tjB and

tiA = (cj/ci)tjA. That is, the ELC-framework recovers the causality for a superluminal propagation, so
the starting of the superluminal impulse at A and the resulting phenomenon at B are being connected
by the relation of cause and effect in arbitrary inertial frames. Furthermore, in this framework, we
may give a justification of forbiddance of Vavilov-Cherenkov radiation/or analog processes in vacuum.
Thereby, in this framework we have to set, for example, k1 = ( ωc1 , k⃗1) for the 1-th type γ1 photon,

provided k⃗1 = e⃗k
ω
c1
, and p2 = (E2

c2
, p⃗2) for the 2-nd type superluminal particle. Then the process

(l2 → l2 + γ1) becomes kinematically permitted if and only if k1p2 =
ω
c1
E2
c2
(1− e⃗k v⃗2c2 ) = 0, which yields

ω ≡ 0 because of (1− e⃗k v⃗ν2c2 ) ̸= 0. This evades constraints due to VC-like processes since the superlumi-
nal particle νµ2 does not actually travel faster than the speed c2. Finally, in ELC-framework we discuss
the VC-radiation of the charged superluminal particle propagating in vacuum with a constant speed
v2 > c1 higher than that of light. Recall that, for a charged particle (e ̸= 0) moving in a transpar-
ent, isotropic and non-magnetic medium with a constant velocity higher than velocity of light in this
medium the VC radiation is allowed. The energy loss per frequency is dF = −dω ie22π

∑
ω( 1

c2
− 1
εv2

)
∫ dζ

ζ ,
where the direction of the velocity v⃗ is chosen to be x−direction: kx = k cos θ = ω/v, k = nω/c is
the wave number n =

√
ε is the real refractive index, ε is the permittivity. The summation is over

terms with ω = ±|ω|, and a variable ζ = q2 − ω2( ε
c2
− 1

v2
) is introduced, provided q =

√
k2y + k2z . The

integrand is strongly peaked near the singular point ζ = 0, for which q2 + k2x = k2. Using standard
technique, it can be easily transformed to be applicable in ELC-framework for the charged superlu-
minal particle of 2-nd type propagating in vacuum (i.e. if ε = 1) with a constant speed v2 higher

than that of light (c1 ≤ v2 < c2): dF = −dω ie22π

∑
ω( 1

c22
− 1

v22
)
∫ dζ

ζ . Hence ζ = q21 − ω2( 1
c22
− 1

v22
), where

q1 =
√
k2y1 + k2z1, q

2
1 + k2x1 = k21 = ω2/c21, and now kx1v2 = ω. We have then ζ = ω2

c22
(

c22
v22 cos2 θ

− 1) ̸= 0,

because of v2 < c2, and that the integral is zero, since the integrand has no poles. Hence, as expected,
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the VC-radiation of a charged superluminal particle as it propagates in vacuum is forbidden.

15.8. Accelerated motion and local MS-SUSY

In case of an accelerated (a = |⃗a| ≠ 0) motion of a particle in M4, we have then i√
2
(θ σ3 d

2ξ̄
dt2
−

d2ξ
dt2
σ3θ̄) = d2q

dt2
= a = 1√

2
(d

2η(+)

dt2
− d2η(−)

dt2
) = 1√

2
(a(+) − a(−)), a(±) = dv(±)

dt . So, we may relax

the condition ∂m̂ϵ = 0 and promote this symmetry to a local supersymmetry in which the pa-
rameter ϵ = ϵ(Xm̂) depends explicitly on Xm̂. Such a local SUSY can already be read off from
the considered above algebra in the form [ϵ(X)Q, Q̄ϵ̄(X)] = 2ϵ(X)σm̂ϵ̄(X)pm̂, which says that the
product of two supersymmetry transformations corresponds to a translation in space-time of which
the four momentum pm̂ is the generator. Similar to the results of subsection F, the multiplica-
tion of two local successive transformations induces the motion g(0, ϵ(X), ϵ̄(X)) Ω(Xm̂, Θ, Θ̄) −→
(Xm̂+ iΘσm̂ ϵ̄(X)− i ϵ(X)σm̂ Θ̄, Θ+ ϵ(X), Θ̄+ ϵ̄(X)), and, in accord, the transformation is expected
to be somewhat of the form [δϵ1(X), δϵ2(X)]V ∼ ϵ1(X)σm̂ϵ̄2(X) ∂m̂V, that differ from point to point,
namely this is the notion of a general coordinate transformation. Whereupon we see that for the local
MS-SUSY to exist it requires the background spaces (M̃ 2, M̃4) to be curved. Thereby, the space

M̃4, in order to become on the same footing with the distorted space M̃ 2, refers to the accelerated
proper reference frame of a particle, without relation to other matter fields. A useful guide in the
construction of local superspace is that it should admit rigid superspace as a limit. The reverse is
also expected, since if one starts with a constant parameter ϵ and performs a local Lorentz transfor-
mation, then this parameter will in general become space-time dependent as a result of this Lorentz
transformation. The mathematical structure of the local MS-SUSY theory has much in common with
those used in the geometrical framework of standard supergravity theories. In its simplest version,
supergravity was conceived as a quantum field theory whose action included the Einstein-Hilbert term,
where the graviton coexists with a fermionic field called gravitino, described by the Rarita-Scwinger
kinetic term. The two fields differ in their spin: 2 for the graviton, 3/2 for the gravitino. The differ-
ent 4D N = 1 supergravity multiplets all contain the graviton and the gravitino, but differ by their
systems of auxiliary fields. These fields would transform into each other under local supersymmetry.
We may use the usual language which is almost identical to the vierbien formulation of GR with
some additional input. In this framework supersymmetry and general coordinate transformations
are described in a unified way as certain diffeomorphisms. The motion generates the super-general
coordinate reparametrization zM −→ z′M = zM − ζM (z), where ζM (z) arc arbitrary functions of
z. The dynamical variables of superspace formulation are the frame field EA(z) and connection
Ω. The superspace (zM , Θ, Θ̄) has at each point a tangent superspace spanned by the frame field
EA(z) = dzME A

M (z), defined as a 1-form over superspace, with coefficient superfields, generalizing
the usual frame, namely supervierbien E A

M (z). Here, we use the first half of capital Latin alphabet
A,B, . . . to denote the anholonomic indices related to the tangent superspace structure group, which
is taken to be just the Lorentz group. The formulation of supergravity in superspace provides a unified
description of the vierbein and the Rarita-Schwinger fields. They are identified in a common geomet-
ric object, the local frame EA(z) of superspace. Covariant derivatives with respect to local Lorentz
transformations are constructed by means of the spin connection, which is a 1-form in superspace as
well. Here we shall forbear to write the details out as the standard theory is so well known. The super-
vierbien E A

M and spin- connection Ω contain many degrees of freedom. Although some of these are
removed by the tangent space and supergeneral coordinate transformations, there still remain many
degrees of freedom. There is no general prescription for deducing necessary covariant constraints
which if imposed upon the superfields of super-vierbien and spin-connection will eliminate the com-
ponent fields. However, some usual constraints can be found using tangent space and supergeneral
coordinate transformations of the torsion and curvature covariant tensors, given in appropriate super-
gauge. Together with other details of the theory, they can be seen in the textbooks. The final form of

transformed super-vierbien, can be written as E M
A (z)

∣∣
Θ=Θ̄=0

=

 e â
m̂ (X) 1

2ψ
α
m̂ (X) 1

2 ψ̄m̂α̇(X)
0 δµα 0
0 0 δµα̇

 ,

where the fields of graviton e â
m̂ and gravitino 1

2ψ
α
m̂ , 1

2 ψ̄m̂α̇ cannot be gauged away. Provided, we
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have e m̂
â e b̂

m̂ = δb̂â, ψ
µ
â = e m̂

â ψ α
m̂ δµα, ψ̄âµ̇ = e m̂

â ψ̄m̂α̇δ
α̇
µ . The tetrad field e â

m̂ (X) plays the role of

a gauge field associated with local transformations. The Majorana type field 1
2ψ

α
m̂ is the gauge

field related to local supersymmetry. These two fields belong to the same supergravity multiplet
which also accommodates auxiliary fields so that the local supersymmetry algebra closes. Under in-
finitesimal transformations of local supersymmetry, they transformed as δe â

m̂ = i(ψm̂σ
âζ − ζσâψ̄m̂),

δψm̂ = −2Dm̂ζα+ie ĉ
m̂{

1
3M(εσĉζ̄)

α+bĉζ
α+ 1

3b
d̂(ζσd̂σ̄ĉ)}, etc., whereM4 and bā are the auxiliary fields,

and ζα(z) = ζα(X), ζ̄α(z) = ζ̄α(X) and ζ ā(z) = 2i[Θσâζ̄(X) − ζ(X)σâΘ̄]. The chiral superfields
are defined as D̄α̇Φ = 0, therefore, the components fields are A = Φ|Θ=Θ̄=0 , ψα = 1√

2
Dα Φ|Θ=Θ̄=0 ,

F = −1
4D

αDα Φ|Θ=Θ̄=0 , which carry Lorentz indices. Under infinitesimal transformations of local

supersymmetry, they transformed as δA = −
√
2 ζαψα, δψα = −

√
2 ζαF − i

√
2σ â

αβ̇
ζ̄ β̇D̂âA, δF =

−1
3

√
2M∗ζαψα + ζ̄α̇(16

√
2 bαα̇ψ

α̇ − i
√
2 D̂αα̇ψα), where D̂â is, so-called, super-covariant derivative

D̂âA ≡ e m̂
â (∂m̂A − i√

2
ψ µ
m̂ ψµ), D̂âψα = e m̂

â (Dm̂ψα − 1√
2
ψm̂αF − i√

2
ψ̄ β̇
m̂ D̂αβ̇A). The graviton and

the gravitino form thus the basic multiplet of local MS-SUSY, and one expects the simplest locally
supersymmetric model to contain just this multiplet. The spin 3/2 contact term in total Lagrangian
arises from equations of motion for the torsion tensor, and that the original Lagrangian itself takes
the simpler interpretation of a minimally coupled spin (2, 3/2) theory.

15.9. Inertial effects

We would like to place the emphasis on the essential difference arisen between the standard su-
pergravity theories and some rather unusual properties of local MS-SUSY theory. In the framework
of the standard supergravity theories, as in GR, a curvature of the space-time acts on all the matter
fields. The source of graviton is the energy-momentum tensor of matter fields, while the source of
gravitino is the spin-vector current of supergravity. In the local MS-SUSY theory, unlike the super-
gravity, a curvature of space-time arises entirely due to the inertial properties of the Lorentz-rotated
frame of interest, i.e. a fictitious gravitation which can be globally removed by appropriate coordinate
transformations. This refers to the particle of interest itself, without relation to other matter fields.
The only source of graviton and gravitino, therefore, is the acceleration of a particle, because the
MS-SUSY is so constructed as to make these two particles just as being the two bosonic and fermionic
states of a particle of interest in the curved background spaces M̃4 and M̃ 2, respectively, or vice

versa. Whereas, in order to become on the same footing with the distorted space M̃ 2, the space M̃4

refers only to the accelerated proper reference frame of a particle. With these physical requirements, a
standard Lagrangian consisted of the classical Einstein-Hilbert Lagrangian plus a part which contains
the Rarita-Schwinger field and coupling of supergravity with matter superfields evidently no longer
holds. Instead we are now looking for an alternative way of implications of local MS-SUSY in the
model of accelerated motion and inertial effects. For example, we may with equal justice start from
the reverse, which as we mentioned before is also expected. If one starts with a constant parameter
ϵ and performs a local Lorentz transformation, which can only be implemented if MS and space-time
are curved (deformed/distorted) (M̃2, M̃4), then this parameter will in general become space-time
dependent as a result of this Lorentz transformation, which readily implies local MS-SUSY. In going
into practical details of the realistic local MS-SUSY model, it remains to derive the explicit form of
the vierbien e â

m̂ (ϱ) ≡ (e a
m (ϱ), e

a
m (ϱ)), which describes fictitious graviton as a function of local rate

ϱ(η,m, f) of instantaneously change of the velocity v(±) of massive (m) test particle under the unbal-
anced net force (f). At present, unfortunately, we cannot offer a straightforward recipe for deducing
the alluded vierbien e â

m̂ (ϱ) in the framework of quantum field theory of MS-supergravity. However,
in previous section, it was described in the framework of classical physics. Together with other usual
aspects of the theory, this illustrates a possible solution to the problems of inertia behind spacetime
deformations. Thereby it was argued that a deformation/(distortion of local internal properties) of
M 2 is the origin of inertia effects that can be observed by us. Consequently, the next member of
the basic multiplet of local MS-SUSY -fictitious gravitino, ψ α

m̂ (ϱ), will be arisen under infinitesimal
transformations of local supersymmetry, provided by the local parameters ζM (a).
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Figure 1. The amplitude of Compton scattering of a photon by an electron is represented by the sum
of two amplitudes. The panels (a) and (b) stand for the case of weak and moderate radiation intensity
ξ2i ≪ 1; The panels (c) and (d) stand for the case of intense radiation ξ2i ≳ 1.

16. Einstein’s transition coefficients for Compton scattering

The processes of interaction of electrons with intense radiation are of vital interest for interpretation
of non-stationary phenomena occurring in a number of astrophysical objects. Then it is important to
carry out a detailed analysis of nonlinear processes occurring at intense radiation that play a decisive
role in the formation of the physical characteristics of these phenomena. Recently, with the increasing
interest in non-stationary nonthermal phenomena occurring in recently discovered very interesting
astrophysical objects, the research with the use of mechanisms of electron-photon interaction in cosmic
plasma is being carried out more and more often and intensively. The Compton scattering is the s-
channel of the photon-electron interaction, while the processes of annihilation and creation of electron-
positron pairs is the t-channel. These processes of interactions are met both in weak, moderate, and
in very intense radiation fields with the thermal and relativistic electrons.

The introduction of Einstein’s transition coefficients is one of the outstanding events in the history
of physics. There is no surprise that Milne’s (see e.g. (Mihalas, 1978)) very important generalization of
Einstein’s relations to bound-free processes (photonionization) was dictated by the interests of astro-
physical problems. Later, using the formal introduction of the indicated coefficients, by Pauli (Pauli,
1923) taken into account those quantum-theoretical properties of radiation, which in the wave theory
are manifested in the form of interference fluctuations. A next important step was taken by Einstein
and Ehrenfest (Einstein & Ehrenfest, 1923), by a clear separation of absorption and emission processes
in the Compton scattering of quanta by molecules. However, for a deeper understanding of these pro-
cesses, it needs further detailed analysis. In the papers (Ter-Kazarian, 1984c,e) Einstein’s ideas are
further developed for free-virtual, virtual-free and free-free transitions for electron-photon scattering
at arbitrary intense radiation by splitting Compton scattering into two components.

To start with, we consider at first the case of weak and moderate radiation intensity ξ2i ≪ 1, where

ξi is the parameter of intensity of radiation field of initial photons ξ2i =
e2hnγ

πm2
ec

2νi
, nγ is the density

of photons, and νi is their frequency. Let the electron-photon gas be in thermodynamic equilibrium.
Meanwhile the distribution of electrons will be Maxwellian, and radiation will be Planckian. The
amplitude of scattering of a photon by an electron is represented by the sum of two amplitudes
M = M1 +M2. The amplitude M1 corresponds to the process of scattering of a photon with four
momenta ki by an electron with four momenta pi. After the act, they acquire impulses kf and pf .
This act can be represented as the sum of two constituent processes: 1) the (i → v) transition of an
electron from the initial free state (i) to the virtual (v) by absorbing the initial quantum; and 2) the
transition (v → f) of an electron from the virtual state to the free state (f) by emission of a finite
quantum. The corresponding Feynman diagram will have the form of panels (a, b) in Fig. 1. Note
the following, it is unimportant that an electron can only have discrete states or energy values. If
the density of states is a continuous function in the phase space, then we have the right to replace
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these states with equiprobable, infinitesimal regions of states, between which a radiative transition is
possible. Note also that when considering radiative transitions in molecules (Einstein & Ehrenfest,
1923), the `internal state´ of the molecule itself did not play any role. Although the virtual electron
is `unusual´ (it was located outside the mass shell), without addressing questions about its `internal
state´, we have the right to base this study on two quantum-theoretical hypotheses: 1) electrons can
make free-virtual and virtually-free transitions both under the action of radiation field (induced) and
spontaneous one; 2) at thermodynamic equilibrium, the principle of detailed equilibrium can also be
applied to processes, where one of the states is virtual, i.e. any process, among those in the same
frequency range and direction, is compensated by the opposite process. The simplicity of hypotheses,
generality and ease of further consideration, as well as a natural transition to a well-known Pauli’s
hypothetical statistical law (Pauli, 1923) allows us to judge their correctness. We continue with two
basic equations of the conservation law for the mean transitions for the states (i) and (f). Then,
excluding the populations of the `internal states´, we obtain the conditions of detailed equilibrium for
the transitions (i1 → f1, (i2 → f2 and (i→ f . Through the notation Bif = Bi1v1Bv1f1 + Bi2v2Bv2f2 ,
Bfi = Bf1v1Bv1i1 + Bf2v2Bv2i2 - for induced coefficients; and Aif = Bi1v1Av1f1 + Ai2v2Bv2f2 , Afi =
Bf1v1Av1i1+Af2v2Bv2i2- for spontaneous coefficients, the coefficients of probabilities of `real´ (free-free)
transitions for processes (i→ f are directly introduced, where Ni/2 = Ni1 = Ni2 , Nf/2 = Nf1 = Nf2

(since the weights of the amplitudes M1 and M2 are the same), n(ν) = c2

2hν3
ρ(ν) is the number of

fillings of the quanta of frequency ν. When considering the limiting case T → ∞, it is easy to
obtain relations between the coefficients of induced transitions. Finally, based on the fact that the
energy `absorbed´ during the transition (i → f (in a unit volume of the phase space for the time
△t) can be represented as using the introduced coefficients, and by means of the usual quantum-
mechanical scattering probability W , one can obtain the remaining relations between the coefficients
of the transition probabilities. Similar reasoning for the `radiated´ energy in the transition (f → i
gives additional relations. It should be noted that, in contrast to the coefficients of the probabilities of
atomic transitions, here the values of the introduced coefficients are well defined, since the scattering
probability W is well known.

Radiation transfer equation for nonequilibrium processes. Determining the probability coefficients
of transitions in the state of thermodynamic equilibrium, it is easy to turn to the radiation transfer
equation for nonequilibrium processes. For example, for free-free transitions, the corresponding equa-

tion has the form (1c
∂
∂t +

∂
∂l )Ii =

∫
dτi
∫ dωf

4π δ[−NiIi(BifIf + Aif ) +NfIf (BfiIi + Afi)], where dτi is
the element of the phase volume of the initial electrons.

16.1. Interaction of electrons with the intense radiation: `diagonal´ interaction

Next, we consider the general problem of interaction of electrons with the intense radiation ξ2i ≳ 1
via s-photon Compton scattering sγ + e → γ′ + e′. Here it is necessary to highlight two type of
interaction: c) `diagonal´, when an electron absorbs these s-quanta from one wave; d) `non-diagonal´,
when the absorbed set of s-quanta includes all kinds of combinations of quanta from different waves.
The corresponding diagram for `diagonal´ interaction will have the form of panel (c) in Fig. 1 with

four conservation laws: qi+ shki = qf +hkf , where q
µ
i = pµi +

m2
ec

4ξ2i
2kipi

kµi , and p
µ
i is the four-momentum

of an electron at time t = −∞. If we introduce a new concept of `effective photon´ with four-

momentum k∗is = s∗ki where s
∗ ≡ s +

m2
ec

4ξ2i
2 ( 1

kipi
− 1

kfpf
), then instead of s-photon scattering by

electron with an effective four-momentum qf , with equal footing we should consider the scattering
of one `effective photon´ by free electron. Thereby the diagram (c) should be replaced with the (d)
in Fig. 1. Consequently, the problem is wholly reduced to the above considered case of one-photon
scattering. In this case, it should be assumed that the detailed balance condition is satisfied in the
same frequency range for each fixed value of s, ψi, ψf , where ψi, f is the angle between vectors ki and
pi,f , and the parameters of `electronic medium´ (i.e., the coefficients A and B) will now depend on
the intensity of the initial radiation fields.

Interaction of electrons with the intense radiation: `non-diagonal´ interaction. We now turn to
the case of `non-diagonal´ interaction. Let Ni - electrons carry out the process of pumping between
waves ms (where ms = j1, ..., js, thus

∑∞
ms
≡
∑∞

j1,...,js
). Then it is easy to obtain results for this
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case from the final expressions of the already considered problem of `diagonal´ interaction after
making appropriate replacements k∗s → k∗ms

, Ws(Ii) → Wms(Imsi), etc. But for the probability of
the process we no longer have an explicit expression Wms(Imsi), since the calculation of this quantity
is associated with enormous difficulties. However, the complexity of the situation is to some extent
compensated by the fact that the off-diagonal interaction involves only a tiny fraction of electrons,
since the required conditions for electrons to be in the corresponding physical cones of formation
pumping processes between different waves are very tough. For example, even in the simplest case of
two ms = 2 oncoming waves, the physical cone of the formation of the pumping process is already
delta-shaped, and meets the condition 1− v cos θ

c
ν1+ν2
ν1−ν2 = 0, where angle between vectors is the velocity

of the electron, θ is the angle between this velocity and e1 = −e2, ν1, e1 and ν2, e2 are the frequencies
and the directional unit vectors of these waves. This means that the cone for cases ms > 2 will be
even more narrow and, thus, harder to be satisfied.

16.2. Transition coefficients for annihilation and creation of electron-positron pairs

The above formalism of the probability coefficients transitions can be easily extended to the t-
channel of the photon-electron interaction, namely to processes of annihilation and creation of electron-
positron pairs. Since the Feynman diagram for these processes is topologically identical to the corre-
sponding diagram of the s-channel of the photon-electron interaction, then the probability coefficients
for the t-channel of the photon-electron interaction can be obtained directly from those found above
(in item 1) by performing simple replacements. For example, for the annihilation process we have:
i → −, Ei → E−, νi → −ν1, Ii → I1, and f → +, Ef → −E+, νf → ν2, If → I2, where (−) and
(+) indicate the electronic and positron states. Whereas, depending on the specific problem, for the
probability W of the process one should take the probability of the process of annihilation or pairing.
The interested reader is invited to consult the original papers (Ter-Kazarian, 1984c,e) for a complete
set of derived explicit forms of Einstein’s coefficients and the relations between them.

17. The theory of Multiphoton Comptonization

By means of the concept of `effective photons´, the integral kinetic equation was derived that
describes the time evolution of the distribution function of quanta of non-equilibrium intense radia-
tion for their multiphoton Compton scattering on Maxwellian nonrelativistic electrons (Ter-Kazarian,
1984a,b,d, 1987, 1989a,b). At first glance, it seems that the problem can hardly be reduced to the
Fokker-Planck approximation, since the efficiency of electron acceleration in the field of an intense
wave is large. Whereas, the thermal energy of electrons is much less than the energy acquired in the
field of the intense wave. Therefore, consideration of issues of heat balance, etc. seems useless in
this case. Moreover, one more difficulty arises regarding the distribution function of such electrons,
which is essentially different from Maxwell’s distribution function. To resolve these difficulties, the
fact was used that the electron in both the initial and final states is in the field of initial radiation.
Therefore, in multiphoton scattering, the process of transferring the energy of low-frequency photons
to the short-wavelength part of the spectrum prevails. While the elementary act of stimulated multi-
photon scattering by an electron with an effective four-momentum is replaced by another, completely
equivalent to it, scattering of an `effective photon´ by a free electron, in a nonlinear mode, when
the parameters of the electronic medium depend on the intensity of the initial radiation field. In
the framework of this approach, the initial physical conditions of the problem are already imposed
on the free states of electrons. The resulting Fokker-Planck approximation becomes valid when de-
riving an `intermediate´ kinetic equation for the distribution of `effective photons´. Subsequently,
the transition to the kinetic equation for the distribution of ordinary photons is made. The rear-
rangement of spectrum in case of a wide, in comparison with the Doppler profile, emission spectrum
δ ≫△ω∗

Ds = ω∗
s

√
2kBTe/mec2 is described by means of this differential equation. While the particu-

lar problem of the relaxation of the nonequilibrium isotopic radiation interacting with nondegenerate
nonrelativistic electrons via the multiphoton Compton scattering is studied. Whereas, it is shown
that the kinetic equation satisfies Boltzman’s H−theorem for the coupled electron-photon system.
The equations of heating and cooling of electron gas are derived. In (Ter-Kazarian, 1987, 1989c), we
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study this problem in detail, and make estimate of various physical characteristics of compact objects
of superhigh luminosity, as well as the efficiency of comptonization as an energy exchange process
compared with the bremsstrahlung. In (Ter-Kazarian, 1989a), it was shown that the interpretation
of the observational characteristics of a certain class of astrophysical objects, such as BLL B211308
+ 32, OJ 287, NP 0532 pulsar and radio pulsars, the mechanism of multiphoton stimulated Compton
scattering by electrons plays an important role. However, under real physical conditions occurring
in the compact objects of high luminosity, the radiation is concentrated in the high frequency range
δ ≫ △ωD ≤ ω∗

Ds and solid angle Ω ≪ 1. Since scattering occurs only within the line, then due to
the narrowness of the spectrum, the number of electrons involved in the process decreases and, con-
sequently, the rate of the process decreases in comparison with a wide spectrum of radiation with the
same brightness temperature. That is, with narrowing of the spectrum, both the transfer of radiation
energy to electrons and the multiphoton induced pressure decrease. In (Ter-Kazarian, 1989b), we have
continued the study of the process of relaxation of intense radiation on Maxwellian electrons in the
general case of any spectral widths and any angular aperture of the radiation beam.

18. Unique definition of relative velocity of luminous source

For test particles and observers there is no unique way to compare four-vectors of the velocities
at widely separated space-time events in a curved Riemannian space-time, because general relativity
(GR) provides no a priori definition of relative velocity. This inability to compare vectors at different
points was the fundamental feature of a curved space-time. Keeping in mind aforesaid, below we
restrict our analysis to seeking solution for particular case when a test particle is being a luminous
object. In this case, the problem of a definition of relative velocity can be significantly simplified
because of available spectral shift measured by observer. The hope appears that a relative velocity
of luminous source as measured along the observer’s line-of-sight (speed) can be defined in unique
way straightforwardly from kinematic spectral shift rule, which holds on a generic pseudo-Riemannian
manifold (Synge, 1960). We extend those geometrical ideas developed by Synge, to build a series of
infinitesimally displaced shifts and then sum over them in order to achieve an unique definition of the
so-called kinetic relative velocity of luminous source, without subjecting it to a parallel transport, as
measured along the observer’s line-of-sight in a generic pseudo-Riemannian space-time. This provides
a new perspective to solve startling difficulties of superluminal `proper´ recession velocities, which
the conventional scenario of expanding universe of standard cosmological model presents. In some
instances (in earlier epochs), the distant astronomical objects are observed to exhibit redshifts in
excess of unity, and only a consistent theory could tackle the key problems of a dynamics of such
objects.

18.1. The relative velocity of luminous source as measured along the observer’s
line-of-sight in a generic pseudo-Riemannian space-time

The principle foundation of our setup comprises the following steps. Let (o) and (s) be two world
lines respectively of observer O and source S in the pseudo-Riemannian space-time. Suppose the
passage of light signals from S to O is described by a single infinity of null geodesics Γ(v) connecting
their respective world lines. To clarify the issues further, it should help a few noteworthy points of
Fig. 2. The S(1) and S(2) are two neighboring world points on (s). The parametric values for these
geodesics are v, v+ △ v, respectively, where v = const and △ v is infinitesimally small. Accordingly,
the world line (s) is mapped pointwise on the (o) by a set of null geodesics Γ(v). That is, a set of null
geodesics are joining (s) to (o), each representing the history of a wave crest. The totality of these null
geodesics forms a 2-space with equation xµ = xµ(u, v), which is determined once (s) and (o) are given.
The u denote the affine parameter on each of these geodesics running between fixed end-values u = 0 on
(s) and u = 1 on (o). The O(1) and O(2) are corresponding world points on (o), where the null geodesics
from S(1) and S(2) meet it. Also we will denote by τO and τS the proper times of the observer and the
source, respectively, and △ τO and △ τS are the elements of proper time corresponding to the segments
(the clock measures of) O(1)O(2) and S(1)S(2). Imagine now a dense family of adjacent observers Oj
(j = 1, ..., n − 1) with the world lines (oj) populated between the two world lines (o) and (s). Each
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Figure 2. The infinitesimal spectral shifts as measured locally by emitter and adjacent receivers in a
generic pseudo-Riemannian space-time. The (o) and (s) are two world lines respectively of observer
O and source S. A dense family of adjacent observers Oj (j = 1, ..., n − 1) with the world lines (oj)
populated between the two world lines (o) and (s). A set of null geodesics (the dotted lines) is mapping
(s) on (o), each representing the history of a wave crest. Each line segment li−1 of proper space scale
factor (at the affine parameter ui−1) is identically mapped on the line segment (li − δli−1) of proper
space scale factor (at infinitesimally close affine parameter ui), such that li−1 ≡ (li − δli−1), where δli
denotes infinitesimal segment aiOi(2).

observer Oj measures the frequency of light rays emitted by the source S as it goes by. The Oj(1) and
Oj(2) are two neighboring world points on (oj) where the null geodesics from S(1) and S(2) meet it. The
uj denote the values of affine parameter on each of the null geodesics chosen at equal infinitesimally
small δui, so that u = uj on (oj). The τOj denotes the proper times of the adjacent observers, i.e. △ τOj

are the elements of proper time corresponding to the segment Oj(1)Oj(2). Here and throughout we use
the proper space scale factor li (i = 0, 1, 2, ..., n) which encapsulates the beginning and evolution of
the elements of proper time △ τS of source, namely l0 = c △ τS , l1 = c △ τO(1)

, ... , ln−1 = c △ τOn−1 ,
ln = c △ τO. Each line segment li−1 of proper space scale factor (at the affine parameter ui−1) is
identically mapped on the line segment (li− δli−1) of proper space scale factor (at infinitesimally close
affine parameter ui), such that li−1 ≡ (li − δli−1), where δli denotes infinitesimal segment aiOi(2). If
there are N wave crests of the light, the wavelength of light λOi at the observers Oi (i = 1, ..., n, where
On ≡ O), who measures the wavelength of light ray as it goes by, satisfies the following condition:
N = ln/λn = ln−1/λn−1 = · · · = l1/λ1 = l0/λ0, where λi (≡ λOi). The spectral shift, zi, then reads
zi ≡ λi/λS − 1 = li/l0 − 1 =△ τOi/ △ τS − 1. The spectral shift zi, in general, can be evaluated
straightforwardly in terms of the world function Ω(SOi) for two points S(x′) and Oi(x(i)) (i = 1, ..., n)
through an integral defined along the geodesic ΓSOi(v) joining them (Synge, 1960), taken along any
one of the curves v = const. The world function Ω(SOi) can be defined for any of the geodesics in the
family linking points on (oi) and (s): Ω(SOi) = Ω(x′x(i)) ≡ Ωi(v) = (1/2)(uOi−uS)

∫ uOi

uS
gµνU

µUνdu,

taken along ΓSOi(v) with Uµ = dxµ(i)/du, has a value independent of the particular affine parameter

chosen. The holonomic metric g = gµν ϑµ⊗ϑν = g(eµ, eν)ϑ
µ⊗ϑν , is defined in the Riemannian space-

time, with the components, gµν = g(eµ, eν) (µ = 0, 1, 2, 3) in the dual holonomic base {ϑµ ≡ dxµ}. For
null geodesics ΓS(1)Oi(1)

(v) and ΓS(2)Oi(2)
(v+ △ v), in particular, the world functions Ω(i)(v) does not

change in the interval v and v+ △ v, therefore
∂Ω(i)(v)

∂xµ
dxµ

dv

∣∣∣
Oi

+
∂Ω(i)(v)

∂xµ
dxµ

dv

∣∣∣
S
= 0, which yields 1+ zi =

li/l0 = pµ(S)V
µ
(S)/pµ(i)V

µ
(i), where V

µ
(i) = dxµ/dτOi |Oi(1)

and V µ
(S) = dxµ/dτS |S(1)

are the respective

four-velocity vectors of observer Oi and source S (or world lines (oi) and (s)) at points Oi(1) and S(1),

pµ(i) = dxµ(i)/dui and p
µ
(S) = dx

′µ/du0 are respective four-momenta of light ray (tangent to null geodesic)
at the end points. For i = n, it becomes a well-known generalization of the overall spectral shift rule in
a Riemannian space-time (Synge, 1960). Let us subject the vector V µ

(S) to parallel transport along the

null geodesic ΓS(1)O(1)
(v) to the observer. This yields at O(1) the vector βµ(S1) = gµν

′
(O(1), S(1))V

ν′

(S1),
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where the two point tensor gµν
′
(O(1), S(1)) is the parallel propagator. The latter is determined only

by the points S(1) and O(1). At S(1) → O(1), we have the coincidence limit [gµν
′
](O(1)) = gµν(O(1)).

Then we obtain a relativistically invariant form of global Doppler shift (Synge, 1960): z = 1 − [(1 +

β2(O(1))
)
1
2 + βR(O(1))]

−1, where cβµ(S1) = vµ(S1), cβ(O(1)) = v(O(1)), cβR(O(1)) = vR(O(1)), and v2(O(1))
=

v(α)(O(1))v
(α)
(O(1))

, v(α)(O(1)) = vµ(S1)ξ
µ
(α)(O(1))

, vR(O(1)) = vµ(S1))r
µ
(O(1))

= v(α)(O(1))v
(α)
(O(1))

. Reviewing

notations the three-velocity of (s) relative (o) are defined by the tree invariant components v(α)(O(1)),

v(S1) is the relative speed, vR(O(1)) is the speed of recession of (s). Whereas ξµ(α)(O(1))
is the frame

of reference on world-line (o) with ξµ0(O(1))
= V µ

(O(1))
, the unit vector rµ(O(1)) at O(1) is orthogonal to

world-line (o) (rµ(O(1))V
µ
(O(1))

= 0) and lying in the 2-element which contains the tangent at O(1) to

(o) and S(1)O(1).
In studying further a set of null geodesics Γ(v) with equations xµ(ui, v) (where v = const), we

may deal with the deviation vector ηµ(i) drawn from Oi(1)S(1) to Oi(2)S(2), and that we have along

null geodesic ηµ(i)∂x
µ/∂ui = const. Then the infinitesimal `relative´ spectral shift δzi between the

observers Oi+1 and Oi will be δzi = pµ(i)V
µ
(i)/pµ(i+1)V

µ
(i+1) − 1 = Ωµ(i)V

µ
(i)/Ωµ(i+1)V

µ
(i+1) − 1, where

Ei = pµ(i)V
µ
(i) is the energy of light ray relative to an observer Oi, and Ωµ(i) = (uOi−uS)Uµ. For defi-

niteness, let consider case of ln > l0 (being red-shift, Fig. 1). In similar way, of course, we may treat a
negative case of ln < l0 (being blue-shift), but it goes without saying that in this case a source is moving
towards the observer. In first case, the observers at the points Oi(2) (i = 1, ..., n−1) should observe the
monotonic increments of `relative´ spectral shifts (δz1, δz2, δz3, ..., δzn−1) when light ray passes across
the infinitesimal distances (O1(2), S(2)), (O2(2), O1(2)), ..., (On(2), O(n−1)(2)). Thus, the wavelength of
light emitted at S(2) is stretched out observed at the points Oi(2). While weak, such effects considered
cumulatively over a great number of successive increments of `relative´ spectral shifts could become
significant. The resulting spectral shift is the accumulation of a series of infinitesimal shifts as the light
ray passes from luminous source to adjacent observers along the path of light ray. This interpretation
holds rigorously even for large spectral shifts of order one or more. If this view would prove to be

true, then it would lead to the chain rule for the wavelengths
λO(n2)

λ0
≡ λn

λ1
= λn

λn−1
· λn−1

λn−2
· · · λ2λ1 ·

λ1
λ0

=∏n−1
i=1 (1 + δzi) =

∏n−1
i=1 pµ(i)V

µ
(i)/pµ(i+1)V

µ
(i+1) =

∏n−1
i=1 Ωµ(i)V

µ
(i)/Ωµ(i+1)V

µ
(i+1), where λ0 ≡ λS(2)

. With
no loss of generality, we may of course apply it all the way to n → ∞. Let us view the increment
of the proper space scale factor, li = l(ui), over the affine parameters ui (i = 1, 2, ..., n) as follows:
li = l0+iε, where ε can be made arbitrarily small by increasing n. In the limit n→∞, all the respective
adjacent observers are arbitrarily close to each other, so that δzi = δli/li ≃ ε/l0 → 0. This allows us
to write the following relation for the infinitesimal `relative´ redshifts: (δzn−1 = δzn−2 = · · · = δz1 =

ε/l0)n→∞ = limn→∞ δz
(a)
(n−1) ≡ limn→∞( 1

n−1

∑n−1
i=1 δzi), provided, δz

(a)
(n−1) is the average infinitesimal

increment of spectral shift. Hence, 1 + z = limn→∞(1 + δz
(a)
(n−1))

n−1, where Ωµ(O) = (uO − uS)Uµ(O)

and Ωµ(S) = −(uO − uS)Uµ(S). It should be emphasized that this general equation is the result of a
series of infinitesimal stretching of the proper space scale factor in Riemannian space-time, whereas
the path of a luminous source appears nowhere, thus this equation does not relate to the special
choice of transport path. Then, the transformation of this equation by means of a particular defini-
tion of infinitesimal relative velocity of luminous source to observer in Riemannian space-time cannot
be accepted in general, because in such approach there is no relative velocity without prior choice
of transport paths. The statement attributing frequency shifts to the resulting relative velocity can-
not be accepted either. To overcome the ambiguity of parallel transport of four-vectors in curved
space-time, in what follows we advocate with alternative proposal. The infinitesimal increments of
`relative´ spectral shifts (δz1, δz2, δz3, ..., δzn−1) can be derived from Doppler effect between adjacent
emitter and absorber in relative motion measured in the respective tangent local inertial rest frames
at infinitesimally separated space-time points. To obtain some feeling about this statement, below
we give more detailed explanation. Imagine a family of adjacent observers (Oai(ui)) situated at the
points ai (i = 1, ..., n) on the world lines (oi) at infinitesimal distances from the observers (Oi(2)), who
measure the wavelength of radiation in relative motion which cause a series of infinitesimal stretching
(δl0, ..., δln−1) of the proper space scale factor. Since each line segment li−1 of proper space scale factor
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(at the affine parameter ui−1) is identically mapped on the line segment (li− δli−1) (where δli denotes
infinitesimal segment aiOi(2)) of proper space scale factor (at the affine parameter ui = ui−1 + δui−1),
the relative speed vOi(2)Oai

(ui) of observer (Oi(2)(ui)) to adjacent observer (Oai)(ui) should be the
same as it is relative to observer (O(i−1)(2)(ui−1)), that is vOi(2)O(i−1)

(ui−1) ≡ vOi(2)Oai
(ui). Con-

tinuing along this line, we may commit ourselves in the series of `relative´ spectral shifts, equiva-
lently, a certain substitution of increments of relative speeds. Taking into account that the infinites-
imal speeds of source (S) relative to observers (Oi(2)) arise at a series of infinitesimal stretching
of the proper space scale factor δli (i = 1, 2, ..., n) as it is seen from the Fig. 1, we may fill out
the whole pattern of monotonic increments of `relative´ spectral shifts (δz1, δz2, δz3, ..., δzn−1) by,
equivalently, replacing the respective pairs (O1(2), S(2)), (O2(2), O1(2)), ..., (On(2), O(n−1)(2)) with new
ones (O1(2), Oa1), (O2(2), Oa2), ..., (On(2), Oan), which attribute to the successive increments of rela-
tive speeds vO1(2)S(u1), ..., vOn(2)O(n−1)(2)

(un) of the source (S) away from an observer (On(2)) in the
rest frame of (On(2)), viewed over all the values (i = 1, ..., n). This framework furnishes justifica-
tion for the concept of relative speed cβn ≡ vOn(2)S(2)

, to be now referred to as the kinetic rela-
tive velocity, of the source (S) to observer (On(2)) along the line of sight. At the limit n → ∞,
the relative infinitesimal speeds tends to zero, vOi(2)Oai

(ui) = cδβi = cδzi = cδli/li ≃ cε/l0 → 0,

such that vOi(2)Oai
(ui) = cδβi = cδzi = cδli/li ≃ cε/l0 → 0, such that limn→∞ δβn−1 = δβ(a)(≡

limn→∞(n− 1)−1
∑n−1

i=1 δβi) = limn→∞ n−1βn.
Remark: Although we are free to deal with any infinitesimal `relative´ spectral shift δzi for the

pair (Oi(2)) and (Oai), in local tangent inertial rest frame of an adjacent observer (Oai), where we may
approximate away the curvature of space in the infinitesimally small neighborhood, nevertheless, the
infinitesimal relative velocities generally arise in RW space-time at a series of infinitesimal stretching
of the proper space scale factor as alluded to above, so that the SR law of composition of velocities
cannot be implemented globally along non-null geodesic because these velocities are velocities at the
different events, which should be in a different physical frames, and cannot be added together.

Facilitating further the calculations of recession velocity (βn) in quest, therefore, we may address
the pair of observers at points O(n)2 and an. Suppose V

µ
On(2)

and V µ
Oan

be the unit tangent four-velocity

vectors of observers (On(2)) and (Oan) to the respective world-lines in a general Riemannian space-time,
thus in their respective rest frame we have V 0

On(2)
= 1 and V 0

Oan
= 1, as the only nonzero components of

velocity. For comparing the vectors V µ
On(2)

and V µ
Oan

at different events, it is necessary to seek a useful

definition of the relative velocity by bringing both vectors to a common event by subjecting one of them
to parallel transport. Since all the paths between infinitesimally separated space-time points O(n)2 and
an are coincident at n → ∞, for comparing these velocities there is no need to worry about specific
choice of the path of parallel transport of four-vector. Therefore, we are free to subject further the unit
tangent four-velocity vector V µ

On(2)
to parallel transport along the null geodesic ΓOn(2)an

to the point

an. Thereby, the ray passes an observer Oan(un)(≡ O(n−1)(2)(un−1)) with the proper space scale factor
ln−1 who measures the wavelength to be λn−1. The ray passes next observer On(2)(un) with the proper
space scale factor ln = ln−1+δln−1. The ray’s wavelength measured by observer On(2)(un) is increased
by δλn−1 = λn−λn−1 leading to infinitesimal `relative´ spectral shift δzn−1. A parallel transport yields
at Oan the vector βµ(Oan )

= gµν′(Oan , O(n)2)V
ν′
O(n)2

, where the two point tensor gµν′(Oan , O(n)2) is the

parallel propagator as before, which is now determined by the points O(n)2 and Oan . At O(n)2 → Oan ,
we have the coincidence limit [gµν ](Oan) = gµν(Oan). As we have at point Oan two velocities V µ

Oan

and βµ(Oan )
= gµνβν(Oan )

, we may associate Doppler shift δzn−1 to four-velocity βµ(Oan )
of observer On

observed by an observer Oan with four-velocity V µ
Oan

as measured by the latter. Consequently, the

three-velocity of an observer (On(2)) relative to observer at (Oan) is v(α)(Oan )
, the relative speed is

v(Oan )
, and vR(Oan )

is the speed of recession of (on). In the local inertial rest frame ξµ(α)(Oan )
of an

observer (Oan), the velocity vector βµOan
takes the form (γ, γδβ(Oan )

, 00), where an observer (On(2))

is moving away from the observer (Oan) with the relative infinitesimal three-velocity δβ(Oan )
(in units

of the speed of light) in a direction making an angel θ(Oan )
with the outward direction of line of sight

ΓOn(2)Oan
from O(n)2 to Oan , and γ = (1 − δβ2(Oan )

)−1/2. Hence, δzn−1 = δβ(Oan )
cos θ(Oan )

. Thus, at
n → ∞, the wavelength measured by the observer On(2) is increased by the first-order Doppler shift
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Figure 3. The relative velocity along the line of sight (βr.s.) of luminous source (S) with −1 ≤ z ≤ 4 to
observer (O), the global Doppler velocity (βDop), and their difference (in units of the speed of light).

caused unambiguously by the infinitesimal relative speed δβ
(r)
n−1 ≡ δβ(Oan )

cos θ(Oan )
along the line of

sight with end-points O(n)2 and Oan : δzn−1 = δln−1/ln−1 = δβ
(r)
n−1. The SR law of composition of

velocities along the line of sight can be implemented in the tangent inertial rest frame of an observer

Oan : δβ
(r)
n−1 = (βn − βn−1)/(1 − βnβn−1) ≃ δβn−1/(1 − β2n−1), where vn−1 = cβn−1 and vn = cβn

are, respectively, the three-velocities of observers Oan and On along the line of sight with end-points
Oan and O(n)2. Consequently, the relations presented above result in the straightforward kinematic
relationship of the overall spectral shift, z, and the speed βr.s. (in units of the speed of light) of source
(S) relative to observer (O ≡ On) in its rest frame along the line of sight in a general Riemannian
space-time: 1+z = pµSV

µ
S /pµOV

µ
O = Ωµ(S)V

µ
(S)/Ωµ(O)V

µ
(O) = exp

[
βr.s.)/(1− β2r.s.)

]
, where the relative

speed βr.s. ≡ limn→∞ βn in quest is marked with subscript ()r.s.. The relative speed of luminous source
is plotted on the Fig. 3 for redshifts −1 ≤ z ≤ 4.

18.2. A global Doppler shift along the null geodesic

Suppose the velocities of observers say Oi(2) (i = 1, ..., n − 1), being in free fall, populated along
the null geodesic ΓS(2)O(2)

(v+ △ v) of light ray (Fig. 2), vary smoothly along the line of sight with
the infinitesimal increment of relative velocity δβri . The (i)-th observer situated at the point i(2) of
intersection of the ray’s trajectory ΓS(2)O(2)

(v+ △ v) with the world line (oi) at affine parameter ui,
and measures the frequency of light ray as it goes by. According to the equivalence principle, we may
approximate away the curvature of space in the infinitesimally small neighborhood of two adjacent
observers. We should emphasize that if we approximate an infinitesimally small neighborhood of a
curved space as flat, the resulting errors are of order (δli/ln)

2 in the metric. If we regard such errors
as negligible, then we can legitimately approximate space-time as flat. The infinitesimal increment
of spectral shift δzi is not approximated away in this limit because it is in that neighborhood of
leading order (δli/li). That is, approximating away the curvature of space in the infinitesimally small
neighborhood does not mean approximating away the infinitesimal increment δzi. Imagine a thin
world tube around the null geodesic ΓS(2)O(2)

(v+ △ v) within which the space is flat to arbitrary
precision. Each observer has a local reference frame in which SR can be taken to apply, and the
observers are close enough together that each one O(i+1)(2) lies within the local frame of his neighbor
Oi(2). This implies the vacuum value of a velocity of light to be universal maximum attainable velocity
of a material body found in this space. Such statement is true for any thin neighborhood around a
null geodesic. Only in this particular case, the relative velocity of observers can be calculated by the
SR law of composition of velocities globally along the path of light ray. We may apply this law to
relate the velocity βi+1 to the velocity βi, measured in the i-th adjacent observer’s rest frame. The
end points of infinitesimal distance between the adjacent observers O(i+1)(2) and Oi(2) will respectively
be the points of intersection of the ray’s trajectory with the world lines oi+1(ui+1) and (oi)(ui). This
causes a series of infinitesimal increment of the proper space scale factor from initial value l0 =△ τS
to the given value li =△ τOi , which in turn causes a series of infinitesimal increment of spectral shift
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δzi = δλi/λi = δli/li. Within each local inertial frame, there are no gravitational effects, and hence the
infinitesimal spectral shift from each observer to the next is a Doppler shift. Thus, at the limit n→∞,
a resulting infinitesimal frequency shift δzi, can be unambiguously equated to infinitesimal increment
of a fractional SR Doppler shift δz̄i from observer Oi(2) to the next O(i+1)(2) caused by infinitesimal
relative velocity δβ̄ri : (δzi = δli/li)n→∞ = (δz̄i = δβ̄ri = (β̄i+1 − β̄i)/(1− β̄i+1β̄i) ≃ δβ̄i/(1− β̄2i ))n→∞,
where by (̄) we denote the null-geodesic value, as different choice of geodesics yields different results for
the motion of distant test particles relative to a particular observer. This relation can be transformed

as follows: (δzn−1 =)n→∞ = (δβn−1/(1 − β2n))n→∞ = (δz̄
(a)
(n−1) = δβ̄

r(a)
(n−1) ≡ (n − 1)−1

∑n−1
i=1 δβ̄i/(1 −

β̄2i ))n→∞, which, for sufficiently large but finite n, gives β̄n = (eϱn−1)/(eϱn +1), ϱn ≡ 2βn/(1−β2n).
Hence the general solution is reduced to a global Doppler shift along the null geodesic 1 + z =√

1 + β̄r.s./1− β̄r.s. = pµ(O2)V
µ
(S2)/pµ(O2)V

µ
(O2), where β̄rec = limn→∞ β̄n, V

µ
(S2) and V

µ
(O2) are the four-

velocity vectors, respectively, of the source S(2) and observer O(2), pµ(S2) and pµ(O2) are the tangent
vectors to the typical null geodesics ΓS(2)O(2)

(v) at their respective end points. This procedure, in fact,
is equivalent to performing parallel transport of the source four-velocity in a general Riemannian space-
time along the null geodesic to the observer. Note that any null geodesic from a set of null geodesics
mapped (s) on (o) can be treated in the similar way. In Minkowski space a parallel transport of vectors
is trivial and mostly not mentioned at all. This allows us to apply globally the SR law of composition
of velocities to relate the velocities β̄i+1 to the β̄i of adjacent observers along the path of light ray,
measured in the i-th adjacent observer’s frame. Then, a global Doppler shift of light ray emitted by
luminous source as it appears to observer at rest in flat Minkowski space can be derived by summing
up the infinitesimal Doppler shifts caused by infinitesimal relative velocities of adjacent observers.

19. The implications for the spatially homogeneous and isotropic
Robertson-Walker space-time

In the framework of RW-cosmological model, one assumes that the universe is populated with
comoving observers (Ter-Kazarian, 2021a). In the homogeneous, isotropic universe comoving observers
are in freefall, and obey Wayl’s postulate: their all worldlines form a 3-bundle of non-intersecting
geodesics orthogonal to a series of spacelike hypersurfaces, called comoving hypersurfaces. In case of
expansion, all worldlines are intersecting only at one singular point. The clocks of comoving observers,
therefor, can be synchronized once and for all. Let the proper time, t, of comoving observers be the
temporal measure. Suppose R(t) is the scale factor in expanding homogenous and isotropic universe.
One considers in the so-called cosmological rest frame a light that travels from a galaxy to a distant
observer, both of whom are at rest in comoving coordinates. As the universe expands, the wavelengths
of light rays are stretched out in proportion to the distance L(t) between co-moving points (t > t1),
which in turn increase proportionally to R(t). In this case, the role of proper space scale factor li is
now destined to the scale factor R(ti) ∝ L(ti). The general solution, of course, does straightforwardly
yield the particular solution as a corollary for the case of expanding RW-space-time of standard
cosmological model. However, it is instructive to substantiate this principle statement further by the
reasoning recast in more physical terms of, alternative, so-called lookforward history of expanding
homogenous and isotropic universe. As a guiding principle, therefore, we briefly recount some of the
highlights behind of this approach. The Fig. 4 illustrates the lookforward history, where Li ≡ L(ti)
is the `proper distance´ between a galaxy (Ai) and observer (Oi), at given epoch (ti), while the
increase of the Li is viewed over different epochs (i = 1, 2, ..., n), with the infinitesimal time difference
((ti − ti−1) → 0, n → ∞). To give more credit to this view, we go ahead with the lookforward
history of the proper distance L1 ≡ L(t1) in the expanding universe, from initial epoch (t1) to the
present epoch (t). Thereby tn ≡ t and Ln ≡ L(t). We assume that an observer (Oi) in its rest
frame of reference measures the frequency of light rays emitted by a galaxy (Ai) viewed over different
epochs (1, ..., i) of expansion. Each proper distance LAi−1Oi−1(ti−1) (at epoch ti−1) is identically
mapped on the line segment LaiOi(ti) of proper distance (at infinitesimally close epoch ti), such that
LaiOi(ti) ≡ LAi−1Oi−1(ti−1). Null geodesic of a light signal from a galaxy (A1) to the observers Oi
(On ≡ O) is also plotted. The picture on Fig. 4, of course, wholly agrees with the Cosmological
Principle. The requirement for homogeneity and isotropy is implemented by this principle in order to
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Figure 4. `Lookforward´ history of expanding homogenous and isotropic universe.

avoid a privileged observer. In accord to modern cosmology, the universe does not expand in space,
but consists of expanding space. It does not say anything about the point of origin of the universe,
either it does not mean that every pair of galaxy (Ai) and observer (Oi) is in any specially favoured or
unfavoured position in the universe: the universe is isotropic about this pair, which moving apart as
universe expands. Keeping in mind aforesaid, now let us explore the definition of Hubble’s parameter
to write H = d

dt log(
R(t)
R1

) = d
dt ln(1+z) =

1
1+z

dz
dt , which, incorporating with the relation dt/dt1 = 1+z,

yields dL1/dt1 = L̇−HL = 0. The net result is as the relation λA1 = λO(1)
holds for the wavelengths.

Imagine a family of comoving adjacent observers situated at the points ai (i = 2, ..., n) on the
infinitesimal distances from the galaxies (Ai), who measure the frequency of light rays emitted by
(Ai) as it goes by. Consequently, an observers should observe the successive increments of `rel-
ative´ redshifts, δz1, δz2, δz3, ..., δzn−1, of the light when passing across the infinitesimal distances
(A2, a2), (A3, a3), ..., (An, an). Thus, the wavelength of light emitted at Ai is infinitesimally stretched
out relative to the wavelength of light emitted at the adjacent point ai. While weak, such effects
considered cumulatively over a great number of successive increments of redshifts could become signif-
icant. The resulting redshift is the accumulation of a series of infinitesimal redshifts as the light passes
from receding galaxy to adjacent observers along the line of sight. This interpretation holds rigorously
even for large redshifts of order one or more. Continuing along this line, in what follows, the math-
ematical structure has much in common with those constructions of subsection 10.1. Here we shall
forbear to write them out as they are explained so well. We finally achieve a general solution, which is
now reduced to the straightforward kinematic relationship 1+z = R(t)/R(t1) = exp

[
βrec/(1− β2rec)

]
.

A crux is the more rigorous viable concept of physical recession velocity (βrec ≡ βrel.s.) of a comoving
distant galaxy of redshift z, which crossed past light cone at time t1, at point (A1) away from comoving
observer (O) at the present time t. This interpretation so achieved has physical significance as it agrees
with a view that the light waves will be stretched by travelling through the expanding universe, and in
the same time the kinetic recession velocity of a distant astronomical object is always subluminal even
for large redshifts of order one or more. It, therefore, does not violate the fundamental physical princi-
ple of causality. This provides a new perspective to solve startling difficulties of superluminal `proper´
recession velocities, which the conventional scenario of expanding universe of standard cosmological
model presents. In some instances (in earlier epochs), the distant astronomical objects are observed
to exhibit redshifts in excess of unity, and only a consistent theory could tackle the key problems of a
dynamics of such objects. Moreover, the general solution is reduced to global Doppler shift along the
null geodesic, studied by Synge. If, and only if, for the distances at which the Hubble empirical linear
`redshift-distance´ law (cz = HL) is valid, the relationship between the physical recession velocity,

vrec, and the expansion rate, L̇ (= HL), reads βrec = [
√

1 + 4 ln2(1 + L̇/c)− 1]/2 ln(1 + L̇/c).
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20. The physical outlook and concluding remarks

The physical outlook and concluding remarks on suggested novel aspects of geometry and high
energy physics, spacetime deformation induced inertia effects and intense radiation physics, are given
in the following items in order to resume once again a whole physical picture.
•We show how the curvature and torsion, which are properties of a connection of geometry under

consideration, will come into being? The theoretical significance resides in constructing the theory
of the two-step spacetime deformation as a guiding principle. We construct the TSSD-versions of the
theory of teleparallel gravity and the most important EC theory. It is remarkable that the equations
of the standard EC theory, in which the equation defining torsion is the algebraic type and, in fact, no
propagation of torsion is allowed, can be equivalently replaced by the set of modified Einstein-Cartan
equations in which the torsion, in general, is a dynamical. The special physical constraint imposed upon
the spacetime deformations yields the short-range propagating spin-spin interaction and the existence
of torsion waves that may contribute a new special polarized effects in the neutron interferometry
and gravitational waves experiments. We can observe the effect of the polarized rotation plane due to
quantum interferometry, which would be an interesting topic not discussed in this paper. A detailed
analysis and calculations on the more general MAG theory with dynamical torsion in context of TSSD
formulation of post-Riemannian geometry will be presented in another paper to follow at a later date.
• In the same framework we shown that the equations of the standard MAG theory can be equiva-

lently replaced by the set of modified MAG equations in which the torsion, in general, is dynamical. As
an application we have to test the general TSSD-MAG framework in some limit, namely we have to put
on Lagrange multipliers to recover the TSSD-versions of different (sub-)cases of Poincaré gauge theory
(PG), Einstein-Cartan (EC) theory, teleparallel gravity (GR||) and general relativity (GR). Moreover,
we shown that by imposing different appropriate physical constraints upon the spacetime deformations,
in this framework we may reproduce the term in the well known Lagrangian of pseudoscalar-photon
interaction theory, or terms in the Lagrangians of pseudoscalar theories by Ni, or in modification of
electrodynamics with an additional external constant vector coupling, as well as in case of intergrand
for topological invariant, or in case of pseudoscalar-gluon coupling occurred in QCD in an effort to
solve the strong CP problem.
• The new conceptual element in the extended phase space formulation is noteworthy. Extended

canonical transformations allows to go from one extended phase space to another. This unifying
feature of the theory makes the comparison of the various functions existing in the literature possible
and transparent. We have developed the SQM in extended phase space and shown how this method
can be generalized to deal with systems subjected to first class constraints. We have proved that
Lagrange’s method of undermined multipliers yields the quantization of constrained systems in SQM
and, in a natural way, results in the Faddeev-Popov conventional path-integral measure for gauge
systems. One of the most remarkable features of SQM is that one may quantize even dynamical
systems with non-holonomic constraints as it is seen in the case of the stochastic gauge fixing.
• We construct (N=2)-realization of the extended phase space SUSY algebra, discuss the vacuum

energy and the topology of super-potentials. The question of spontaneously breaking of extended
SUSY deserves further investigation. Therefore, in subsequent paper we will analyze in detail the
non-perturbative mechanism for extended phase space SUSY breaking in the instanton picture, and
we will show that this indeed has resulted from tunnelling between the classical vacua of the theory.
We demonstrate the merits of shape-invariance of exactly solvable extended SUSY potentials, which
has underlying algebraic structure, by obtaining analytic expressions for the entire energy spectrum of
extended Hamiltonian with Scarf potential without ever referring to underlying differential equation.
However, a shape-invariance is not the most general integrability condition as not all exactly solvable
potentials seem to be shape-invariant.
•We addressed the classical analog of (N=2)-realization of the supersymmetry algebra. We obtain

the integrals of motion. We use the iterative scheme to find the approximate groundstate solutions to
the extended Schrödinger-like equation and calculate the parameters which measure the breaking of
extended SUSY such as the groundstate energy. The approximation, which went into the derivation of
solutions meets our interest that the groundstate energy ε is supposedly small. This gives direct evi-
dence for the SUSY breaking. However, we calculate a more practical measure for the SUSY breaking,
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in particular in field theories which is the expectation value of an auxiliary field. We analyze in detail
the non-perturbative mechanism for extended phase space SUSY breaking in the instanton picture
and show that this has resulted from tunneling between the classical vacua of the theory. Finally,
we present an analysis on the independent group theoretical methods with nonlinear extensions of lie
algebras from the extended phase space SUSY quantum mechanics. Using the factorization procedure
we explore the algebraic property of shape invariance and spectrum generating algebra. Most of these
Hamiltonians posses this feature and hence are solvable by an independent group theoretical method.
We construct the unitary representations of the deformed Lie algebra.
• The OM formalism is the mathematical framework for our physical outlook embodied in the

idea that the geometry and fields, with the internal symmetries and all interactions, as well the four
major principles of Relativity (Special and General), Quantum, Gauge and Colour Confinement, are
derivative. They come into being simultaneously in the stable system of the underlying `primordial
structures´ involved in the `linkage´ establishing processes. The OM formalism is the generalization
of secondary quantization of the field theory with appropriate expansion over the geometric objects
leading to the quantization of geometry drastically different from all existing schemes. We generalize
the OM formalism via the concept of the OMM yielding the MW-geometry involving the spacetime
continuum and the internal worlds of the given number. In an enlarged framework of the OMM
we define and clarify the conceptual basis of subquarks and their characteristics stemming from the
various symmetries of the internal worlds. They imply subcolour confinement and gauge principle.
By this we have arrived at an entirely satisfactory answer to the question of the physical origin of the
Geometry and Fields, the Internal symmetries and interactions, as well the fundamental principles of
Relativity, Quantum, Gauge and Subcolour Confinement.
• The value of the hypothesis of existence of the MW-structures defined on the MW-geometry

resides in solving of some key problems of the SM, wherein we attempt to suggest a microscopic ap-
proach to the properties of particles and interactions. Particularly, we derive the Gell-Mann-Nishijima
relation and flavour group, infer the only possible low energy SM particle spectrum, and conclude that
the leptons are particles with integer electric and leptonic charges, and free of confinement, while
quarks carry fractional electric and baryonic charges, and imply the confinement. We suggest the
microscopic theory of the unified electroweak interactions with a small number of free parameters,
wherein we exploit the background of the local expanded symmetry SU(2) ⊗ U(1) and P-violation.
The Weinberg mixing angle is shown to have fixed value at 30o.

Due to the Bose-condensation of relativistic fermion pairs the Higgs bosons have arisen on an
analogy of the Cooper pairs in superconductivity. It involves the Higgs bosons as the collective
excitations of bound quasi-particle iso-pairs. In the framework of local gauge invariance of the theory
incorporated with the P-violation in weak interactions we propose a mechanism providing the Bose-
condensation of iso-pairs, which is due to effective attraction between the relativistic fermions caused
by the exchange of the mediating induced gauge quanta in the W-world. We consider the four-
component Bose-condensate, where due to self-interaction its spin part is vanished. Based on it we
show that the field of symmetry-breaking Higgs boson always must be counted off from the gap
symmetry restoring value as the point of origin. Then the Higgs boson describes the excitations in
the neighbourhood of stable vacuum of the W-world. In contrast to the SM, the suggested approach
predicts the electroweak symmetry breakdown in the W -world by the VEV of spin zero Higgs bosons
and the transmission of electroweak symmetry breaking from the W−world to the M4 spacetime
continuum. The resulting Lagrangian of unified electroweak interactions of leptons and quarks ensues,
which in lowest order approximation leads to the Lagrangian of phenomenological SM. In general,
the self-energy operator underlies the Yukawa coupling constant, which takes into account a mass-
spectrum of all expected collective excitations of bound quasi-particle pairs.

The implication of quarks into this scheme is carried out in the same manner except that of
appearance of quark mixing with Cabibbo angles and the existence of CP-violating complex phase in
unitary matrix of quark mixing. The Q-components of the quarks u′, c′ and t′ contain at least one
identical subquark, due to which the partial formfactors gain nonzero values. This underlies the quark
mixing with Cabibbo angles. In the case of the leptons these formfactors are vanished and the mixing
is absent. The CP-violation stems from the spanning incorporated with the expanded group of global
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rotations. With a simple viewpoint on Higgs sector the masses of leptons and quarks are given.
• We derive the MW-SUSY, which has an algebraic origin in the sense that it has arisen from

the subquark algebra defined on the internal worlds, while the nilpotent supercharge operators are
derived. Our purpose at first is much easier to handle, by restoring in the first the `exact` ´ MW-
SUSY. It can be achieved by lifting up each sparticle to corresponding particle state. This enables
the sparticle to be included in the same supermultiplet with corresponding particle. Due to different
features of particles and sparticles when passing back to physically realistic limit one must have always
to distinguish them by introducing an additional discrete internal symmetry, i.e., the multiplicative
Z2 R-parity. The MW-SUSY has realized only on the internal worlds, but not on the spacetime
continuum, which are all the ingredients of the broken super-multimanifold (/SMM). Defined on the
/SMM it implies the super-algebra different from the conventional SUSY algebra. We write then the
most generic renormalizable MW-SUSY action involving gauge and supersymmetric matter frame
fields, and, thus, the corresponding generating functional. Therein, we are led to the principal point
of drastic change of the standard SUSY scheme to specialize the superpotential to be in such a form,
which enables within this framework, further, to build up the MTSM.
• We develop the microscopic approach to the isospinor Higgs boson with self-interaction and

Yukawa couplings, wherein the two complex self-interacting isospinor-scalar Higgs doublets (Hu, Hd)
as well as their spin-12 SUSY partners (H̃u, H̃d) Higgsinos have arisen on the W -world as the Bose-
condensate. The Higgs mechanism does work in the following way: Before the symmetry was broken
in the W -world, the 2 complex SU(2)L Higgs doublets had 8 degrees of freedom. Three of them were
the would-be Nambu-Goldstone bosons G0, G±, which were absorbed to give rise the longitudinal
modes of the massive W -components of the Z0 and W± vector bosons, which simultaneously give
rise the corresponding x- components too, leaving 5 physical degrees of freedom. The latter consists
of a charged Higgs boson pairs H±, a CP-odd neutral Higgs boson A0, and CP-even neutral Higgs
bosons h0 and H0. The mass eigenstates and would-be Nambu-Goldstone bosons are made of the
original gauge-eigenstate fields, where the physical pseudoscalar Higgs boson A0 is made of from the
imaginary parts of h0u and h0d, and is orthogonal to G0; while the neutral scalar Higgs bosons are
mixtures of the real parts of h0u and h0d. The mass of any physical Higgs boson that is SM-like is
strictly limited, as are the radiative corrections to the quartic potential terms. We calculated the tree-
level masses for these Higgs states (sec.16) and shown that the h0 Higgs boson arisen in the internal
W -world is much heavier of that Z0 boson. Such a breaking of the MW-SUSY can be implemented by
subtracting back all the explicit soft mass terms formerly introduced for the sparticles. These terms
do not reintroduced the quadratic diagrams which motivated the introduction of SUSY framework.
Therewith, the boson-fermion cancellation in the above-mentioned problems can be regarded as a
consequence of a constraint stemming from holomorphy of the observables, therefore it will be held at
the limit too. Thus, we extract the pertinent piece containing only the η-field components and then
in afterwards pass to M4 to get the final VMSM yielding the realistic particle spectrum.
• The implication of quarks into the VMSM is carried out in the same way of leptons except that

of appearance of quark mixing with Cabibbo angle and the existence of CP-violating complex phase
in unitary matrix of quark mixing . The Q-components of the quarks contain at least one identical
subquark, due to which the partial formfactors gain nonzero values. This underlies the quark mixing
with Cabibbo angles. In lepton’s case these formfactors are vanished and lepton mixing is absent.
The CP-violation stems from the spanning. Adopting a simple viewpoint on Higgs sector the masses
of leptons and quarks are given.
• Employing some features of the TSSD theory, we probe the origin and nature of the phenomenon

of inertia effects. We construct the relativistic theory of inertia, which treats the inertia as a distortion
of local internal properties of hypothetical 2D master-space. The MS is an indispensable companion of
individual particle, without relation to the other matter, embedded in the background 4D-spacetime.
The RTI allows to compute the inertial force, acting on an arbitrary point-like observer or particle due
to its absolute acceleration. In this framework we essentially improve standard metric and other rele-
vant geometrical structures referred to a noninertial frame for an arbitrary velocities and characteristic
acceleration lengths. Despite the totally different and independent physical sources of gravitation and
inertia, this approach furnishes justification for the introduction of the WPE. We relate the inertia ef-
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fects to the more general post-Riemannian geometry. We derive a general expression of the relativistic
inertial force exerted on the extended spinning body moving in the Rieman-Cartan space.
•We present a standard Lorentz code of motion in a new perspective of supersymmetry. In this, we

explore the intermediate, so-called, motion state for a particle moving through the two infinitesimally
closed points of original space. The Schwinger transformation function for these points is understood
as the successive processes of annihilation of a particle at initial point and time, i.e. the transition from
the initial state to the intermediate motion state, and the creation of a particle at final point and time,
i.e. the subsequent transition from the intermediatemotion state to the final state. The latter is defined
on the master space, MS (≡M 2), which is prescribed to each particle, without relation to every other
particle. Exploring the rigid double transformations of MS-SUSY, we derive SLC as the individual
code of a particle in terms of spinors referred to MS. This allows to introduce the physical finite time
interval between two events, as integer number of the duration time of atomic double transition of
a particle from M4 to M 2 and back. The theories with extended Nmax = 4 supersymmetries, as
renormalizable flat-space field theories, if only such symmetries are fundamental to nature, lead to
the model of ELC in case of the apparent violations of SLC, the possible manifestations of which
arise in a similar way in all particle sectors. We show that in the ELC-framework the propagation
of the superluminal particle could be consistent with causality, and give a justification of forbiddance
of Vavilov-Cherenkov radiation/or analog processes in vacuum. In the framework of local MS-SUSY,

we address the inertial effects. The local MS-SUSY can only be implemented if M̃ 2 and M̃4 are

curved (deformed). Whereas the space M̃4, in order to become on the same footing with the distorted

space M̃ 2, refers to the accelerated reference frame of a particle, without relation to other matter
fields. So, unlike gravitation, a curvature of space-time arises entirely due to the inertial properties
of the Lorentz-rotated frame of interest, i.e. a fictitious gravitation which can be globally removed
by appropriate coordinate transformations. The only source of graviton and gravitino, therefore, is
the acceleration of a particle, because the MS-SUSY is so constructed as to make these two particles
just as being the two bosonic and fermionic states of a particle of interest in the background spaces
M4 and M 2, respectively, or vice versa. Therefore, a coupling of supergravity with matter superfields
evidently is absent in resulting theory. Instead, we argue that a deformation/(distortion of local
internal properties) of MS is the origin of inertia effects that can be observed by us.
•We briefly outline the issues on the interaction of electrons with the intense radiation: Einstein’s

transition coefficients for Compton scattering, and the annihilation and creation of electron-positron
pairs at intense radiation. Einstein’s ideas are developed for free-virtual, virtual-free and free-free
transitions for electron-photon scattering at arbitrary intense radiation by splitting Compton scatter-
ing into two components. Whereas, we consider the general problem of interaction of electrons with
the intense radiation via s-photon Compton scattering sγ + e→ γ′ + e′. In doing this, we introduce a
new concept of `effective photon´, and then instead of s-photon scattering by electron with an `effec-
tive´ four-momentum, with equal footing,, we should consider the scattering of one `effective photon´
by free electron. The Compton scattering is the s-channel of the photon-electron interaction. This
formalism can be easily extended to the t-channel of the photon-electron interaction, namely to pro-
cesses of annihilation and creation of electron-positron pairs. On the basis of the method of `effective
photons´, the integral kinetic equation is derived that describes the time variation of the distribution
function of quanta of non-equilibrium intense radiation for their multiphoton Compton scattering on
Maxwellian nonrelativistic electrons. The equations of heating and cooling of electron gas are derived.
We have continued the study of the process of relaxation of intense radiation on Maxwellian electrons
in the general case of any spectral widths and any angular aperture of the radiation beam.
• Finally, we study the much-discussed in literature question of interpretation of the spectral shift

of radiation from a distant object in a curved spacetime. We aim to provide a unique definition for
the kinetic relative velocity between a source and the observer as measured along the observer’s line-
of-sight. Extending those geometrical ideas of well-known kinematic spectral shift rule to infinitesimal
domain, we try to catch this effect by building a series of infinitesimally displaced shifts and then sum
over them in order to find the proper answer to the problem that we wish to address. Thereby, the
general equation is the result of a series of infinitesimal stretching of the proper space scale factor in
Riemannian space-time, whereas the path of a luminous source appears nowhere, thus this equation
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does not relate to the special choice of transport path. A resulting general relationship between
the spectral shift and the kinetic relative velocity is utterly distinct from a familiar global Doppler
shift. We discuss the implications for a particular case when adjacent observers are being in free
fall and populated along the null geodesic, so that the kinetic relative velocity of luminous source is
reduced to global Doppler velocity as studied by Synge. Moreover, the implications for the spatially
homogeneous and isotropic Robertson-Walker space-time of standard cosmological model leads to
cosmological consequences that resulting kinetic recession velocity of a distant astronomical object
is always subluminal even for large redshifts of order one or more and, thus, it does not violate the
fundamental physical principle of causality. That is, in the framework of `stretching of space´ point
of view of the spatially homogeneous and isotropic RW space-time of standard cosmological model,
we overcome an ambiguity of the procedure of parallel transport of four-velocity of source along the
null geodesic to an observer by an alternative study of a `lookforward´ history of expanding universe.
We use a way of separating the cosmological redshifts into infinitesimally displaced `relative´ redshift
bins and sum over them to achieve an unique definition of the kinetic recession velocity of comoving
astronomical object. A stemming relationship of overall cosmological redshift and kinetic recession
velocity is utterly distinct from a familiar global Doppler shift formula. Nevertheless, in particular
case of along the null geodesic, a general solution is reduced to a global Doppler shift.
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