Tables of physical and morphological properties of nearby extended radio galaxies

R.R.Andreasyan*and H.V.Abrahamyan[†]

NAS RA Byurakan Astrophysical Observatory (BAO), Byurakan 0213, Aragatzotn Province, Armenia

Abstract

It is brought the physical and morphological data of 267 nearby radio galaxies identified with elliptical galaxies brighter than 18th magnitude (sample 1) and for 280 extragalactic radio sources with known position angles between the integrated intrinsic radio polarization and radio axes (sample 2).

Keywords: radio galaxies, extragalactic radio sources, Fanaroff-Riley classes, FRI, FRII

1. Introduction

One of the well-known manifestations of activity of galaxies is the radiation in radio wavelength. Galaxies with more powerful radio radiation are named radio galaxies. In many cases the radio images of these extragalactic radio sources have sizes larger than optical images. They can have dimensions of hundreds kiloparsecs and sometimes of megaparsecs. These radio sources are named extended extragalactic radio sources. The main mechanism of radiation in these galaxies is the synchrotron mechanism of radiation of relativistic particles (mainly electrons) in magnetic fields of parent galaxies. Usually there are no concretization of the large-scale configuration of magnetic field, and there is no attention on the role of field configuration in the observing morphology of extragalactic radio sources. The first classification of extragalactic radio sources is the Fanaroff & Riley (1974) (FR) classification. It was done using the morphological features, the edge darkened-FRI, and edge brightened, relatively more luminous FRII types. There are found many other morphological and physical differences between the different FR classes of extragalactic radio sources: in the total luminosity, in radio core powers, in ratio of core to lobe radio power, in the relationships between emission-line luminosity and radio power (Zirbel & Baum (1995); Gopal & Wiita (2000); Gendre et al. (2011) etc.). In (Andreasyan (1984)) we have suggested a mechanism of the formation and evolution of extragalactic radio sources in framework of the cosmological conception of V.Ambartsumian (Ambartsumian (1966)). It was done a main suggestion about the magnetic field configuration of host supergiant elliptical galaxy. We conclude that the magnetic field of the host galaxy or AGN has a dipole configuration, with dipole axes parallel to the rotation axes of host galaxy. Extragalactic radio sources are formed from relativistic plasma clouds, ejected from the central part of the optical galaxy and moving in its large-scale, dipole magnetic field. It was also done a classification of extragalactic radio sources by their elongation parameters (K), where K is the ratio of the largest dimension of radio image to the perpendicular dimension. In the frame of suggested mechanism, the well-known Fanaroff-Riley Dichotomy and many other morphological fetchers finds a very simple physical explanation.

In our early works we studied correlation between different morphological and physical properties of extragalactic radio sources classified by Fanaroff-Riley and by our elongation parameters K. We find: The correlation of radio axis with the optical axis in nearby radio galaxies (Andreasyan & Sol (1999)); The ellipticity of elliptical galaxies identified with the different types of extragalactic radio

^{*}randrasy@bao.sci.am, Corresponding author

[†]abrahamyanhayk@gmail.com

sources (Andreasyan & Sol (2000)); The correlation of the radio polarization angle with the radio axes of extragalactic radio sources (Andreasyan et al. (2002)); The relation between FR classes and elongation K parameters (Andreasyan (2019)), et. all. Here we bring the tables of all data used in above mentioned studies.

2. Observational data

For the statistical analyses in our studies we have used data for more than 500 extragalactic radio sources. These are 267 nearby radio galaxies identified with elliptical galaxies brighter than 18th magnitude (sample1) (Andreasyan & Sol (1999)), and 280 extragalactic radio sources with known position angles between the integrated intrinsic radio polarization and radio axes (sample 2) (Andreasyan et al. (2002)). A little part of sources from sample 2 are also objects from sample 1.

In mentioned papers we has brought some data from samples 1 and 2, bat all observational data of these samples are not published, and here we bring the full samples 1 and 2.

In these samples we bring also classification of radio galaxies with their elongation parameter K using the published radio maps. In samples 1 and 2 we have 289 extragalactic radio sources with known both, FR classification and K parameters used in (Andreasyan & Sol (2000)) and (Andreasyan (2019)).

3. Tables of extragalactic radio sources from samples 1 and 2.

3.1. Sample 1.

Data for 267 nearby radio galaxies identified with elliptical galaxies brighter than 18th magnitude. For nearby radio sources, we have data on: radio source name (Col.1); the position angle of the major axis of optical elliptical galaxy oPA found mainly from the Palomar maps (Col.2); the position angles of radio axes (rPA) obtained from the published radio maps (Col.3); the relative position angle between optical and radio axis dPA (Col.4); the ellipticity E of the optical galaxy identified with radio sources (Col.5); the classes by elongation parameter K: K>2.5 or K<2.5 (Col.6); Fanaroff-Riley classes FR taken from the literature (Col.7); the optical magnitude M of parent galaxy (Col.8); the radio spectral index SI (Col.9); The redshift z (Col.10); the radio luminosity logP (Col.11); The parameter K (Col.12); references for radio maps and FR classes (Col.13). The references from Column 13 we give in Appendix.

1	2	3	4	5	6	7	8	9	10	11	12	13
Object	oPA	rPA	dPA	E	К	FR	M	SI	z	logP (WHz)	Κ	ref
0005-199	5	81	76	2.8	>2.5		16.5	0.7			4.2	26
0007+124	2	21	19		>2.5	II	17.7	0.78	0.157		2.6	20 5
0013-316	39	110	71	1	>2.5		16.5	0.92			3.5	26
0018-194	17	111	86	4	<2.5	II	17	0.69	0.095		1.4	21
0023-33	34	70	36	1.7	<2.5		16.7	0.5	0.05		1.6	26
0034 + 254	163	83	80	2	>2.5	Ι	14.8	0.66	0.032	24.07	2.8	$15 \ 15$
0039 + 211	82	0	82	2	>2.5			0.9	0.102	24.89	2.6	56
0040-06	58	165	73		<2.5		17				1.5	21
0043+201	69	172	77	2	>2.5		15.7	0.75	0.106	25.06	4	57
0043-424	159	136	23	2	<2.5	II	16	0.87	0.053	27.23	2.4	25 7
0053 + 261	171	146	25		<2.5	Ι	17.5	1.06	0.195	27.15	1.4	18 2
0055 + 265	152	109	43		>2.5	Ι	13	0.84	0.047	25.67	2.6	$15 \ 15$
0055 + 300	42	129	87	3.1	<2.5	Ι	12.2	1.04	0.017	24.52	2.4	$15 \ 15$
0104+321	135	147	12		<2.5	Ι	12.1	0.57	0.017	25.07	2	27 2
0106 + 130	131	20	69	1	>2.5	II	15.1	0.76	0.06		3.4	17 2
0108-142	53	100	47	1	>2.5	I	15.8		0.052	24.96	3.2	85 7
0109+492	101	13	88	1	>2.5	II	15.6	0.77	0.067	26.21	4.3	18 2
0110+152	105	170	65		>2.5		15.5	1.2	0.048	24.34	2.6	61

Table 1: Sample 1.

0114-476	17	157	40		<2.5	II	16.5	0.6	0.146	26.86	2.2	21 3
0116+319	50	115	65		$<\!2.5$		14.5	0.42	0.059	25.1	1.6	75
0120+33	70	120	50		<2.5		13	1.4	0.016	23.35	2	15
0123-016	52	178	54		>2.5	Ι	12.2	0.66	0.018	25.27	2.6	29 15
0124+189	76	13	63	1	>2.5		15.5	0.56	0.043		2.8	85
0131-367	164	89	75	3.2	>2.5	II	14.2	0.51	0.03	25.76	2.6	20 7
0149+35	30	87	57		>2.5	Ι	14.5	0.6	0.016	23	5	15 15
0153+053	73	84	11	2	< 2.5		13.2	0.5	0.010		2.2	63
$\frac{0100+000}{0206+355}$	137	132	5	-	<2.5	T	13	0.66	0.037	25 44	1.5	16 15
$\frac{0200+000}{0214-480}$	100	175	75	1	>2.5	I	14.5	1	0.064	26	3.3	54 7
$\frac{0211}{0220\pm427}$	33	50	17	1	$^{-2.0}$	I	12.5	0.5	0.001	24 69	0.0	17.2
$-\frac{0220+421}{0222\pm360}$	80	48	30		<2.0	1	12.0	0.0	0.022	24.03	1.6	70
$-\frac{0222+303}{0220-208}$	174	110	64	1.6	<u>2.5</u>	TT	10	0.24	0.000	25.46	1.0	26
0229-208	1/4	05	10	1.0	>2.0	11	10	0.02	0.09	23.40	4 0	20
$\frac{0239-63}{0247,207}$	45	95	10	0.1	<2.0 > 9.5	т	15.4	0.07	0.087	05.95	- 2 - E E	00
0247 - 207	45	40	0 70	0.2	>2.5	1	15.4	0.97	0.087	25.35	0.0	20 (
0255+133	87	159	72	4	>2.5	11	16.8	0.04	0.075	24.07	2.6	57
0257-398	115	60	55	2	<2.5		15.3	0.64	0.010	24.02	1.5	26
0258 + 350	70	126	56		$<\!2.5$		13.5	0.54	0.016	24.63	2.2	22
0258 + 435	231	289	58	2	>2.5			0.67	0.065		2.7	86
0300+162	134	110	24	2	$<\!2.5$	I	14.5	0.77	0.032	25.45	1.8	17 2
0305 + 039	144	56	88	2	$<\!2.5$	Ι	13	0.43	0.029	25.68	1.2	20 7
0307 - 305	78	93	15	3.4	$<\!2.5$	II	16.5	0.54	0.068	25.15	2.4	26 7
0312 - 343	132	114	18	1.2	$<\!2.5$		15.6	0.62			2	26
0314 + 412	57	32	25	3	>2.5	Ι					2.6	$58\ 7$
0314 + 416	171	96	75	3	>2.5	Ι	12.5	0.62	0.026	25.43	4	45 2
0320-374	60	126	66	3.8	>2.5	Ι	8.9	0.52	0.005	25.46	2.6	26 7
0325 + 023	153	63	90	3	>2.5	II	13.5	0.52	0.03	25.58	2.6	20 7
0326+396	128	82	46	1	<2.5	II	14.9	0.6	0.024	24.68	2.4	15
0331+391	101	180	79	1	>2.5		15	0.52	0.02	24.48	2.6	15
0332-39	25	140	65	1.7	>2.5		15.3	1.05			3.5	26
0336-355	112	51	61	1.2	<2.5	Ι	10.9	0.8	0.005	23.52	2.4	26 7
0344-345	103	104	1	1.8	<2.5	I	17	0.73	0.054	25.4	2	25.7
0349 - 279	72	53	19		>2.5	II	17	0.72	0.066	26.48	2.6	20.7
$\frac{0010}{0349+212}$	126	17	71		>2.5		16	0.7	0.133	20110	3.5	87
0356 ± 102	72	25	47	2	>2.5	П	14.2	0.78	0.100	26.02	3.5	18.2
-0.000 + 102 -0.000 - 530	12	80	5		2.0	T	13.2	0.10	0.001	25.55	2.4	54 7
0427 555	8	1	7	26	<2.5	1	10.2 12.7	0.1	0.050	20.00	2.4	63
$-\frac{0425}{0434-225}$	140	100	40	0.6	< 2.0	T	14.6	0.74	0.060	25.2	2.5	26.7
-0434-223	143	103	24	0.0	<2.5	1	14.0	1	0.003	20.2	2.4	201
$-\frac{0440-208}{0440-175}$	0	145	24	0.0	<2.5	T	10.4	1 1	0.021	94.94	2.2	20
-0449 - 173	140	140 00	55	1.1	<2.0 > 9.5	1	13.7	1.1	0.031	24.94	2.4	20 7
-0452 - 190	140	04	- <u>- 50</u>	0.1	>2.0 <9.5	т	14.0	0.34	0.025	95.99	0.0 1.6	20
$\frac{0433-200}{0511-205}$	172	212	50	0.4	< 2.0	1	14	0.73	0.055	25.22	1.0	20 7
$\frac{0511 - 305}{0510 - 450}$	85	33 100	52 C	1.3	>2.5	11	16 7	0.84	0.058	25.39	2.1	20.3
0518 - 458	90	102	0	<u></u>	<2.5	11 T	15.1	1.07	0.035	20.80		21 (
0521-305	(5	123	48	2.0	< 2.5	1	15.3	0.43	0.001	20.04	1.4	20 10
0523-327	156	157	1	1.7	>2.5	 	15.4	0.94	0.076	25.3	3.5	26 7
0546-329	175	8	13	1.8	<2.5	1	14.5	0.97	0.037	24.73	2.2	26 7
0548-317	4	72	68	2.4	>2.5	11	14.5	0.66	0.033	24.53	2.7	26 7
0632+263	16	115	81	0.1	>2.5		15		0.04		3.8	14
0634-205	178	177	1	1.6	>2.5	1	16.8	0.8	0.056	26.48	3.7	21 7
0651+542	129	102	27		>2.5	II	19	0.87	0.238	27.39	2.7	31 2
0652+426	124	50	74	2	$<\!2.5$						2	13
0712 - 349	106	133	27	1.8	$<\!2.5$		15.9	0.55			2	26
0712 + 534	120	114	6	1	$<\!2.5$	Ι	15	0.6	0.064	24.83	2.2	13 15
0714 + 286	73	133	60	3	>2.5		16		0.083		2.6	13
0718 - 340	56	63	7	0.9	>2.5	II	16.5	0.5	0.03	24.71	2.9	$26 \ 7$
0734 + 806	49	150	79		>2.5	II	17	0.68	0.118	26.68	3.1	17 2
0744 + 559	70	63	7	2	<2.5	II	15.2	0.77	0.035	25.82	2.2	76 2
0745 + 521	37	92	55	1	>2.5	II		0.68	0.063		3	83
0755+379	144	107	37		<2.5	Ι	13.2	0.59	0.041	25.63	2.2	13
0800+248	53	70	17		<2.5	Ι	15.7	0.68	0.043	24.41	2.3	15 7
0802+243	13	118	75	0.1	>2.5	II	15.2	0.79	0.06	26.24	3	18 2
0810+66		85	60		<2.5		15.7				1.5	57
				1	ı		1	I	1		1	

Tables of physical and morphological properties of nearby extended radio galaxies

0818 + 472	103	4	81	1	>2.5	II	16.5	0.69	0.13		2.6	$45 \ 4$
0819 - 30	44	119	75		>2.5	II	18	0.68	0.086		3.1	20
0819 + 061	98	38	60		>2.5	II	18	0.69	0.082	26.23	2.7	20 7
0836 + 299	59	30	29	2	$<\!2.5$	Ι	15.7	0.78	0.065	25.68	1.8	15 15
0843+316	42	45	3		>2.5		16.5	0.85	0.068	25.86	2.8	59
0844+540	45	113	68	1	>2.5		15		0.045		2.9	85
0844 + 319	123	170	47	1	< 2.5	T	13.5	0.78	0.068	25.86	2.4	15
0908 + 376	80	5	75	-	>25	II	15.6	0.56	0.105	25.73	2.6	62
0013 + 385	30	49	10		2.0	- 11	15.7	0.00	0.100	26.10	1.5	50
-0913 ± 303	30	42 91	12	1	<2.5	т	15.7	0.62	0.071	20.24	1.0	15 7
0913 ± 320	40	31	10	1	< 2.5	I	10.0	0.40	0.002	24.00	1.0	107
0915-119	130	24	74		>2.5	1	10	0.07	0.005	22.0	2.0	04 /
0916+342	30	110	80		>2.5		13	0.87	0.017	23.6	3.2	15
0922 + 366	130	170	40		$<\!2.5$	1	15.5	0.98	0.112	25.99	2	16
0923+330			5		$<\!2.5$		16	1.12	0.14		1.9	16
0924 + 302	49	55	6	1	$<\!2.5$		14.5	1.04	0.027	24.72	2	72
0936 + 361	118	164	46		>2.5	II	16.8	0.74	0.137		6	18 2
0938+399	45	14	31	3	>2.5	II	16.2	0.56	0.108	26.31	4	16 4
0940-304	90	21	69	5	<2.5		14.5	0.58			1.5	26
1000 + 201	112	7	75		>2.5	T	16.5	0.8	0 168	26.56	2.6	85.7
1000 + 201 1002 - 320	52	20	23	1.0	>2.5	-	17.4	0.0	0.100	20.00	2.0	26
$1002 \ 520$	45	192	20 78	1.5	>2.0	тт	15.5	0.55	0.000	26.62	2.0	73.0
1003 ± 301	40	71	10	J 1	/2.5	11	15.5	0.51	0.099	20.02	0.0	10 4
1005+007	30	11	33	1	< 2.0		10.4	1 1 5	0.140	05 90	2.4	30
1005+282	5	150	45	2	>2.5	11	16.4	1.15	0.148	25.36	2.6	59
1014 + 398	115	130	15		>2.5	11	15.5	1.1	0.106		5	16
1015 + 491	95	10	85		>2.5	I	14.8	0.57	0.08		3.2	62
1033 + 003	131	8	57	2	$<\!\!2.5$		15.2				1.8	85
1040 + 317		50	21		$<\!2.5$	Ι	15.5	0.62	0.036	24.97	2	$15 \ 7$
1053 - 282	48	26	22	3.3	>2.5	II	15.5	0.61	0.061	25.3	2.7	26 7
1102+304	147	70	77	2	>2.5	II	15.7	0.72	0.072	25.32	3.8	15
1107-372	30	78	48	2.3	<2.5		12.4	0.7		22.8	1.8	26
1108 + 272		80	5		<2.5	I	14.6	0.48	0.033	23.01	2.3	15 7
1113 + 295	138	71	67	2	>25	II	14.2	0.64	0.049	25.7	2.8	15.7
1116 + 200 1116 + 281	40	112	73	-	>2.0		14.3	0.65	0.010	25.3	2.0	50
1110 + 201 1122 + 200	25	110	83	2.1	>2.0	T	11.0	0.057	0.007	20.0	2.1	28.7
$\frac{1122 \pm 390}{1192 + 251}$	174	110	53	2.1	/2.5	1	11.0	0.57	0.007	23.90	2.9	201
$\frac{1123-331}{1107+010}$	1/4	120	04	1.0	< 2.5		10	0.7	0.055		2.2	20
1127+012	100	12	88	3	>2.5		16.7				2.7	85
1137+123	139	12	53	2	<2.5		16.5				1.6	85
1141 + 374	130	52	78		>2.5	11	15.9	0.94	0.115	26.46	ζ5	23
1141 + 466	147	40	73		>2.5	II	15.8	1.1	0.162		2.6	23
1142 - 341	31	150	61	2.1	>2.5		15.6	0.92			2.8	26
1146 - 11	79	104	25		$<\!2.5$	II	18	0.96	0.117		1.3	21
1154 - 038	45	109	64	2	>2.5		14.3				3.3	85
1155 + 266	55	130	75		>2.5						2.7	56
1204 + 241		166	5		<2.5		15.2	0.76	0.077	24.83	1.5	59
1209 + 746	60	155	85		>2.5		16.5		0.061		3.5	61
1216 + 061	150	83	67	3	>2.5	II	11	0.51	0.007	24.8	3	20.7
1218 + 296	40	152	68	07	<25		11.2	0.24	0.002	21.6	1.8	65
1222 ± 131	116	167	51	1	<2.5	T	10	0.6	0.002	23.8	1.0	17.9
1222 + 101	50	70	20	1	< <u>2.0</u> <2.5	TT	16.1	0.70	0.000	20.0	1.3 9.4	50
$\frac{1220\pm200}{1207\pm92}$	160	70	20	1.0	<2.5	11	10.1	0.19	0.004		2.4	- <u> </u>
$\frac{1227+65}{1000}$	100	10	90	1.0	<2.5		12.0	0.0			1.0	00
1228-335	164	83	81	2	<2.5	Ŧ	15.4	0.6	0.004		2.4	20
1228+127	157	101	56	1.4	<2.5	1	8.7	0.79	0.004	25.65	2	1/2
1240+029	166	33	47	1.9	>2.5		12.9				2.6	63
1249 + 035	27	146	61	2	>2.5						2.6	85
1250 - 102	65	162	83	1	>2.5		12	1.2	0.014	23.27	4	37
1251 + 278	30	169	41	0.1	$<\!\!2.5$	Ι	15.5	0.58	0.086	26.27	1.5	$19 \ \overline{15}$
1254 + 277	51	11	40	3	$<\!2.5$	Ι	12.3	0.86	0.025	22.63	1.8	$15 \ 7$
1256 + 281	171	275	76	2	>2.5	Ι	14.9	1.04	0.024	24.5	2.6	74 15
1257-253	37	150	67	2.4	>2.5		16	0.7			3.5	26
1257 + 282	17	39	22		<2.5	I	14	0.75	0.023	23.05	2.2	67
1258-321	167	125	42	3.2	<2.5	-	12.8	0.59		-0.00	1.8	26
1313 ± 072	40	71	31		<2.5		15.5	0.00	0.051	24 75	2	20
1316 + 200	67	07	30		< <u>2.0</u> <2.5		15.0	0.71	0.001	21.10	1 5	12
10107299	07	91	50		-2.0		1.10	0.11	0.073	20.00	1.0	10

Tables of physical and morphological properties of nearby extended radio galaxies

1317 + 258	75	54	21	2	>2.5						2.6	86
1318-434	100	24	76	2	>2.5	Ι	14.5	0.96	0.011	25.01	3.9	21 7
1319 + 428	130	79	51		>2.5	II	16	0.95	0.079	26.15	3	17 2
1321+318	69	111	42		>2.5	Ι	13.9	0.65	0.016	24.6	3	67 15
1322-428		40	10	2	<2.5	Ι	7	0.79	0.002	23.8	2.4	54 8
1322 + 366	75	7	68	3	>2.5	П	14	0.46	0.018	24.35	3.5	13
1323 - 271	154	68	86	3.9	>2.5	II	12.9	0.67	0.043	24.99	4	26
1323 + 370	87	154	67	2	>2.5	II	15	0.7	0.08		2.7	62
1331-099	55	107	52	-	>25	II	17.5	0.9	0.081	26.26	2.8	21.16
1333 - 337	47	125	78	0.9	>2.5	II	11.0	0.5	0.001	25.06	3.3	26 17
$\frac{1335}{1344-241}$	1/0	155	6	3.0	2.0	11	11.0 14.4	1.05	0.015	20.00	0.0	20 11
$\frac{1344}{1346\pm 268}$	145	20	2	0.5	<2.0	т	13.5	0.02	0.063	25 73	2	13.7
1340 + 200	62	100	28		<2.5	I	15.6	0.52	0.005	25.4	15	10.2
$\frac{1350 \pm 310}{1354 - 251}$	147	155	- JO - Q	3.0	<2.5	1	15.0	0.1	0.045	20.4	1.5	19 2
$\frac{1354-251}{1257+287}$	147	155	0 95	3.9	< <u>2.5</u>	II	10.4	0.04	0.062	25.06	1.5	50
$\frac{1357 \pm 267}{1259 - 112}$	41	10	0.0	0	> 2.5	11 11	14,0	0.8	0.003	25.00	2.0	20
$\frac{1336 - 113}{1400 - 227}$	41	120	04	2	>2.0	11	10	0.7	0.037	24.69	3	29
$\frac{1400-337}{1401+25}$	90	4	80	2.1	<2.5		12.4	1.28	0.014	0.9 C	1.4	20
$\frac{1401+35}{1401-95}$	70	0	10		<2.5		12.8	0.92	0.013	23.0	1.5	62
1401-05		=0	15		<2.5	Ŧ	17		0.010	22.40	1.9	21
$\frac{1407 + 177}{1411 + 224}$	6	73	67	2	<2.5	1	13.4		0.016	23.68	1.8	21 15
1411+094	84	178	86		>2.5		18.3		0.162		2.8	85
1413-36	43	35	8	2.6	>2.5		17.5	0.74			3	26
1414 + 110	146	85	61	1	$<\!2.5$	Ι	13.3	0.67	0.024	25.36	1.6	20.2
1420 + 198	95	135	40		>2.5	II	18	0.78	0.27	27.58	3	45 2
1422 + 268	118	96	22	2	$<\!\!2.5$	I	15.6	0.74	0.037	25.07	2.4	15 7
1427 + 07	54	157	77		>2.5		15.6				2.6	20
1433 + 553	110	143	33	1	$<\!2.5$		17	0.8	0.14	25.05	2.3	87
1441 + 262	150	68	82		>2.5	II	14.3	0.79	0.062	25.03	3.1	59
1441 + 522		125	25		$<\!\!2.5$	II	17	0.76	0.141	26.76	2.2	19 2
1449 - 129	135	89	46		$<\!2.5$	Ι	18		0.07	25.26	2.2	20 7
1452 + 165	161	59	78	3	$<\!2.5$	II	14.9	0.71	0.046		1.5	21
1457 + 29	130	169	39		$<\!2.5$		17.2				1.3	59
1458 + 21A			0		$<\!2.5$						2.2	56
1459 + 21E			20		$<\!2.5$						2.3	56
1502 + 262		150	12		>2.5	Ι	15.2	0.92	0.054	26.46	3.3	13 2
1509 + 059	26	145	61	3.3	>2.5						2.7	63
1512 + 30	110	31	79		>2.5	II	15.4	0.75	0.093	24.99	2.8	59
1514 + 004	53	132	79	3	>2.5	II	16.5	0.4	0.052		3.1	20
1514 + 072	21	16	5	3	$<\!2.5$	Ι	16	1.02	0.035	26.1	1.4	29 4
1519 + 078			90		>2.5		15	1.93	0.046	25.09	2.6	57
1525 + 291	8	14	6		<2.5	Ι	15.4	0.73	0.065	24.89	1.5	15 7
1527 + 308	175	130	45		>2.5		15	0.98	0.114	25.39	2.7	59
1547 + 309	136	120	16		>2.5		16.5	0.96	0.111		3.2	37
1549+202	119	80	39		>2.5	II	18.5	0.88	0.09	26.5	3.8	18 2
1553+245	19	129	70	3	>2.5	Ι	14.4	0.28	0.043	23.36	3.5	13 7
1555+308	120	122	2		>2.5		16.1	0.58	0.075		3.2	59
1556+274	109	291	2	2	<2.5			-			2.4	74
1559+021	138	100	38	3	>2.5	II	15.5	0.61	0.104	27	2.9	20 4
1601+173	64	180	64	2	<2.5		13.5		0.034		1.8	91
1602+178	117	171	54	1	<2.5	Ι	14.6	0.15	0.032		2	85 7
$\frac{1602+34}{1602+34}$			37	-	<2.5	-	15.4	0.82	0.032	23.4	2.4	15
1604 + 183	89	176	87	2	>2.5		15				2.8	90
1610 + 296	1	66	65	3	<2.5	I	14.8	0.72	0,031	24.13	1.5	15.7
1610-607	127	86	41	$\frac{1}{2}$	>2.5	II	12.8	1.15	0.017		3.4	54
1615+325	28	17	11	-	>2.5	II	16	0.61	0.152	26.69	3	19 7
1615 + 351	252	323	71	1	>2.5	II	14.9	0.76	0.03	25.31	35	60.7
1621 ± 380	175	70	75	5	>2.5 >2.5	I	14.1	0.56	0.00	20.01	2.8	60 7
$\frac{1021+300}{1626\pm307}$	3/	82	/18		<pre>>2.0</pre>	I	19	1 10	0.031	24.00	2.0	17.9
1626 ± 270	04	75	5	1	<2.5	T	16.4	0.8	0.00	20.01	2 9.2	56
-1637 - 771	80	165	76		<u>\</u> 2.0 \ <u>9</u> 5	I II	16	0.0	0.179		2.0	25.8
$\frac{1007 - 771}{1640 + 996}$	09 97	100	10	4 9	>2.0 >2 ⊑	T	10	0.0	0.043		2.0 2	200
$\frac{1040\pm020}{1643\pm074}$	41 190	25	00 95	4	>2.0 > 2 E	I TT	150	0.02	0 102	95.1	07	50
$\frac{1049 \pm 214}{1649 \pm 070}$	120	- 55 - 100	00		×2.0	11 T	10.0	0.92	0.102	20.1	4.1	- J9 - 20.7
1048 ± 050	121	100	21		< 2.5	1	19	1	0.154	28.20	2.2	20 (

Tables of physical and morphological properties of nearby extended radio galaxies

1059+90	170	195	25	1	< 9.5		197	0.10	0.024	04.95	10	01
1652+39	170	135	35		<2.5		13.7	0.18	0.034	24.35	1.8	81
1050+52A		10	50		<2.5		10.0	0.75	0.002	05 20	2.1	50
$\frac{1057+325}{1059+300}$		10	5		<2.5	т	16.8	0.75	0.063	25.32	1.5	50 10.15
$\frac{1038+302}{1658+306}$	24	10	10	0	<2.5	1	14.1	0.00	0.035	24.91	1.0	10 10
$\frac{1030+320}{1659+320}$	24	10	14 69		<2.5		10.1	0.85	0.102	20.42	1.1	50
$\frac{1038+32B}{1710+156}$	F	160	08	4	>2.5		167				2.0	00 01
$\frac{1710+130}{1712+641}$	208	109	58	4	< 2.3		10.7	0.74	0.081		1.0	57
$\frac{1712 \pm 041}{1717 000}$	200	100	50	1	>2.0	тт	16.0	0.74	0.001	96.7	2.0	20.4
$\frac{1717-009}{1726+218}$		- 69 - 110	04 20		>2.0	11 11	10.8	0.71	0.03	20.7	2.0	20 4
$\frac{1720+318}{1741+300}$	10	00	75		>2.5	11	15.5	0.57	0.100	20.85	2.9	10 11
$\frac{1741+390}{1744+557}$	10	90 77	67	2	>2.5		13.0		0.042		2.0	10
$\frac{1744+307}{1747+303}$	70	150	80		>2.5		16.7	1.17	0.03	23.06	2.0	50
$\frac{1747+305}{1752\pm325}$	110	41	69		>2.0 >2.5		10.7	0.01	0.15	20.00	2.5	50
1752 + 323 1759 + 211	60	50	10	2	<2.5		17.5	0.51	0.040	27.77	2.0	89
$\frac{1100+211}{1820+689}$	133	177	44	2	<2.5		15	0.7	0.131		1.5	88
$\frac{1020+003}{1826+743}$	147	161	14		>2.5	П	18	0.68	0.101		2.8	17 11
$\frac{1020+119}{1833+326}$	73	48	25	2	>2.5	II	14.5	0.59	0.058	26.3	2.7	17 2
1833+653	97	19	78	-	>2.5		17	0.00	0.161	-0.0	2.6	85
$\frac{1830+300}{1834+197}$	22	142	60	1	>2.5		14	0.79	0.016		2.7	13
$\frac{1001+101}{1842+455}$	51	68	17	-	>2.5	II	15	0.7	0.091	25.73	3.2	19.2
$\frac{1845+797}{1845+797}$	60	145	85		>2.5	II	14.4	0.75	0.056	26.56	5	17 2
1855 + 379	55	4	51		<2.5	Ι	14.9	0.84	0.055	25.02	1.1	15 7
1928-340	138	9	51	1.3	>2.5	II	17	0.7	0.098	26.21	3	26 16
1929-397	130	124	6	1.2	<2.5		16	0.7	0.075		2.4	26
1939 + 606	8	26	18		<2.5	II	18	0.71	0.201	27.4	1.9	19 2
1940 + 504	34	28	6	1	<2.5	Ι	14	0.56	0.024	25.23	1.5	17 11
1949+023	163	92	71		>2.5	II	15	0.45	0.059	26.33	2.6	20 4
1957 + 405	152	109	43		>2.5	II	15	0.74	0.057	25.76	2.9	17 4
2013-308	123	64	59	1.9	>2.5	Ι	15.4	0.86	0.089	25.33	2.8	26 7
2014 - 558	11	157	34		$<\!2.5$		15.5	0.7	0.061		2.2	21
2031 - 359	146	170	24	1.1	$<\!2.5$		15.5	0.78			1.5	26
2040 - 267	68	158	90	0.1	>2.5	II	13.5	0.73	0.038	24.98	3.4	20 7
2053 - 201	11	52	41		$<\!2.5$	Ι	17.8		0.156	26.29	2.4	92 7
2058 - 135	29	101	72	1	$<\!2.5$	II	15.5	0.81	0.046	24.89	2	21
2058 - 282	55	135	80	0.8	>2.5	Ι	14.8	0.74	0.038	25.67	3	20 7
2059 - 311	24	106	82	3.7	>2.5		14.5	0.5			3.5	26
2103 + 124	59	138	79	2	>2.5		17.3	0.56			3	85
2104 - 256	138	22	64		>2.5	II	16.8	0.89	0.039	25.3	3.2	26 8
2116+262	65	22	43	5	<2.5	I	14		0.016	23.57	1.8	15 7
2117 + 605	106	35	71	2	>2.5	II	15	0.72	0.054		2.8	19 4
2121+248	100	4	85	1.0	<2.5	1	15.5	0.75	0.102	27.09	2	18 2
2128 - 388	106	49	57	1.3	>2.5	тт	14.4	0.64	0.015	07 91	2.7	20
$\frac{2141+279}{2152-600}$	35 120	1/3	42		>2.5	11 T	18.5	0.80	0.215	27.31	2.9	1/2 E47
2102-099	130	14 F0	04	07	>2.5	1	13.8	0.71	0.027	20.38	2.8	04 (
2108-380	97 145	0U 1.41	41	2.1	>2.5	т	14.0	0.71	0.055	94.0	2.8 1 E	20
$\frac{2220-300}{2220\pm301}$	140	0	4 9	0.0	>2.0 <2.5	I	10.0	0.74	0.000	24.9	4.0	18.9
2229 ± 391 2236 ± 176	0/1	9 52	<u> </u>	2 1 2	<u>\</u> 2.0 \ <u>9</u> 5	I	15 Q	0.00	0.017	24.30	2.2	26.7
2230 - 170 2236 - 364	94 /10	- 00 - 129	41 83	1.0	<pre>>2.0</pre>	1	15.0	0.01	0.070	20.00	1.9	207
2236 + 350		46	41	1.0	< 2.5	T	15	0.57	0.028	24.4	2.4	15 15
2200+300 2244+366	131	34	83		< 2.5	II	16	0.00	0.082	<i>2</i> 1.1	2.2	16
2247+113	48	31	17	1	<2.5	I	14.4	0.75	0.023	25.21	2.2	21.2
2318+079	2	30	28	1.7	>2.5	I	12.8	0.10	0.011	23.17	2.6	67 15
2333-327	88	132	44	1.9	<2.5	-	14.6	0.61		-0.11	1.5	26
2335 + 267	60	140	80		>2.5	Ι	13.2	0.75	0.029	25.88	4	17 2
2350 - 374	25	56	31	2.4	>2.5	-	16	0.55			3	26
2353-184	153	140	13	0.9	<2.5		16	0.78			1.3	26
2353 + 56	135	115	20	4	>2.5						6	63
2354-351	162	150	12	2.4	>2.5		14.4	1.2	0.049		3	26
2354+471	52	64	12	1	<2.5	Ι	15	0.72	0.046	24.63	2.3	28 15
2356 - 611	3	134	49	2	>2.5	II	16	1.36	0.096	27.79	3	54 3
				-	-			-				

Tables of physical and morphological properties of nearby extended radio galaxies

3.2. Sample 2.

280 extragalactic radio sources with known position angles between the integrated intrinsic radio polarization and radio axes: In (Col.1 and 2) we bring Radio Source Name; (Col.3) dPA is a relative position angle between radio axis and integrated polarization; (Col.4) Ref. for the data of dPA; (Col.5) K is the ratio of major to minor axis of radio image; (Col.6) Ref. for the radio maps; (Col.7) FR the Fanaroff Riley classes; (Col.8): Ref. for the FR classes.

1	2	3	4	5	6	7	8
Source	Name	dPA	Ref	K	Ref	\mathbf{FR}	\mathbf{ref}
0002 + 12		73	Cl	3.5	20		
0003-00	3c2	39	Ha	2.2	30		
0007 + 12	4c12.03	83	Cl	2.6	20	II	5
0013 + 79	3c6.1	64	PB	3.5	19	II	2
0017 + 15	3c9	71	Cl	2.2	24	II	2
0020 - 25		79	Cl	1.7	20		
0031 + 39	3c13	69	Cl	5	27	II	2
0033 + 18	3c14	89	Cl	3	27	II	2
0034 - 01	3c15	85	Cl	2.6	27	II	1
0035 + 38	4c38.03	84	PB	3.6	28		
0038 + 32	3c19	88	Cl	2.8	27	II	2
0040 + 51	3c20	44	Cl	4	19	II	2
0043 - 42		0	PB	2.4	25	II	7
0048 + 50	3c22	79	Cl	5	27	II	2
0052 + 68	3c27	53	Cl	3.5	50	II	50
0104 + 32	3c31	51	Cl	2	27	Ι	2
0105 + 72	3c33.1	87	Cl	3.8	17	II	2
0106 + 13	3c33	73	Cl	3.4	17	II	2
0107 + 31	3c34	74	Cl	3.9	27	II	2
0114 - 47		32	Cl	2.2	21	II	3
0115 + 02	3c37	70	Ha	3	32		
0123 + 32	3c41	74	Cl	3.5	55	II	2
0125 + 28	3c42	60	PB	4	18	II	2
0128 + 25	4c25.07	22	PB	1.4	46		
0128 + 06	3c44	89	Cl	2.7	18		
0131-36		15	Ha	2.6	20	II	7
0132 + 37	3c46	87	Cl	5	17	II	2
0133 + 20	3c47	6	Cl	2.2	17	II	2
0134 + 32	3c48	43	Mi	1.5	33		
0145 + 53	3c52	50	Cl	2.1	17		
0152 + 43	3c54	43	Cl	4.5	55		
0154 + 28	3c55	83	Cl	3.7	24	II	2
0159 - 11	3c57	65	Ha	1.6	32		
0210 + 86	3c61.1	38	PB	4.5	17	II	2
0211 + 34	4c34.06	58	PB	3.5	22		
0213 - 13	3c62	20	Cl	2.7	80	II	7
0214 - 48		84	Cl	3.3	54	Ι	7
0219 + 08	3c64	73	Cl	2.4	20		
0220 + 39	3c65	69	Cl	3.5	55	II	2
0221 + 27	3c67	64	Cl	5	33	II	2
0222 - 00	4c-00.12	59	Cl	3.7	30		
0229 + 34	3c68.1	88	Cl	2.7	18	II	2
0229 + 35		79	PB	3	16		
0232 - 02	4c-02.12	58	Cl	4	30		

Table 2: Sample 2. (In Col.4: Cl - Clarke et al., 1980, MNRAS, 190, 205; Ha - Haves, 1975, MNRAS, 173, 553; Da - Davis et al., 1983, MN-RAS, 205, 1267; PB - Birch, 1982, Nature, 298, 451; Mi - Mitton, 1972, MNRAS, 155, 373)

0234+58	3c69	88	Cl	4.5	19		
0241 - 51		72	Cl	2.8	21		
0241+29	4c29.08	64	PB	2.5	22		
0300+16	3c76.1	3	Cl	1.8	17	T	2
0307 + 16	3c79	78	Cl	4.5	29	II	2
0313+34	4c34 13	80	Cl	2.8	47		-
0323+55	3c86	55	Cl	5	17		
0325 ± 02	3c88	16		2.6	20	T	7
0326 35	3000	76		2.0	20	1	'
0330-35		56		2.4	20	T	7
0344 - 34	OF 282	77		2	20	I	7
0.349 - 27	4c26 12	77		2.0	20	11	1
0349+20	4020.12	10		4 9 5	10	TT	0
0350+10	3098	19		3.0	18	11	2
0403 - 13	0F-105	80	Ha	2.3	48	тт	1
0404+03	30105	80		3.5	20	11	1
0404+42	3c103	86	CI	3.2	17		
0410+11	3c109	83		3	19	11	2
0415 + 37	3c111	81	PB	4	18	11	1
0427 - 53		84	Cl	2.9	54		
0431 - 133		82	PB	2.8	25		
0433 + 29	3c123	58	Cl	2	18	II	2
0453 + 22	3c132	66	Cl	1.9	18	II	2
0459 + 25	3c133	33	Cl	2.4	18	II	2
0501 + 38	3c134	87	Cl	3.4	17		
0511 - 48		14	Cl	1.4	21		
0511 - 30		46	Cl	2.7	20	II	3
0511 + 00	3c135	1	Cl	1.5	21	II	1
0515 + 50	3c137	84	Cl	5	53		
0518 - 45	PikA	9	Cl	2	21	II	8
0518 + 16	3c138	80	Ha	2.2	33		
0521 + 28	3c139.2	65	Cl	3.5	44		
0528 + 06	3c142.1	72	Cl	4.2	79		
0538 + 49	3c147	50	Mi	1.7	33		
0605+48	3c153	20	Cl	1.7	24	II	2
0610+26	3c154	86	Cl	5	45		
0618-37		18	Cl	2	26		
$\frac{0010}{0634 - 20}$		82	PB	37	20	П	14
$\frac{0001}{0640\pm23}$	3c165	55	Cl	4.5	21	- 11	11
0010+20 0651+54	3c171	16		2.7	20	II	2
-0656 - 24	50171	81		2.7	20	11	
0050-24	30172	70		1.1	18	TT	2
0039+23	30172	19		0.0	17	II	2
0702 + 14	2.175	12		2.2	50	11 TT	2
0710+11		40		0.0	30	11 TT	2
0711+14 0715 26	30175.1	50 50		2.4	21	11	2
0713 - 30	2-170	09		1.1	40	TT	10
$\frac{0123+01}{0724-01}$	2c1/9	01		4	40	11	12
$\frac{0724 - 01}{0725 + 1.4}$	30180	18		2.1	20	тт	0
0120+14	30181	49		2	34	11 TT	2
0733 + 70	3c184	64	CI	5	24	11	2
0734+80	30184.1	88	CI	3.1	17	11	2
0736-06	01-161	69	CI	3	21		
0742+02	3c187	76	CI	2.6	20	-	
0755+37	4c37.21	2	CI	2.2	13	1	
0800-09	0.55	19		2	21		
0802+10	3c191	34	Ha	2.3	34	11	2
0802 + 24	3c192	49	Cl	3	18	II	2
0809 + 48	3c196	47	Cl	1.5	24	II	2
0814 + 22	4c22.20	19	Cl	2	45		
0818 + 47	3c197.1	22	Cl	2.6	45	II	6
0819 - 30		55	PB	3.1	20	II	
0819 + 06	3c198	57	Cl	2.7	20	II	6
0824 + 29	3c200	57	Cl	3.5	27	II	2
0000 + 65	3c204	15	PR	17	18	II	2

0835 + 58	3c205	59	Cl	2.2	18	II	2
0836+19	4c19.31	76	Cl	3	27		
0838 ± 13	3c207	80	Cl	2.4	31	II	2
0840+29	4c29.31	48	PB	4	22		_
$-\frac{0040+20}{0843-33}$	1020.01	15	H ₂	17	22		
0.043 - 33	2-000	10		1.7	20	тт	0
0850+14	30208	03	PB	3.5	24	11	2
0854+34	4c34.30	62	PB	1.5	22		
0855 + 14	3c212	85	CI	3	18	11	2
0903 + 16	3c215	58	Cl	2	18	II	2
0905 + 38	3c217	89	Cl	2.8	27	II	2
0917 + 45	3c219	60	Cl	3.5	17	II	2
0927+36	3c220.2	25	Cl	2.4	27		
0931 + 39	4c39.26	87	PB	1.5	22		
0936 + 36	3c223	85	Cl	5	18	II	2
0038 ± 30	36223	30		4	16	II	
030+33	2,005	50		- 1 E	10	11 11	-4
0939+14	30223	37		5	10	11	2
0941+10	3c226	77	CI	4.5	18	11	2
0945 + 07	3c227	76	CI	3.1	20	11	1
0947 + 14	3c228	81	Cl	4	18	II	2
0951 + 69	3c231	50	Mi	1.7	17	Ι	2
0958 + 29	3c234	68	Cl	3	17	II	2
1030 + 58	3c244.1	49	Cl	2.2	17	II	2
1040 + 12	3c245	78	Cl	3.5	27	II	2
1048-09	3c246	72	Cl	2	20		
1056+43	3c247	57	Cl	14	18	II	2
1050 - 01	3c240	81	Cl	1.1	77		-
1039-01 1100 + 77	30249	88		3.5	21	TT	2
1100 ± 11	2.249.1	70		5.5	07	11 TT	2
1100+23	30230	10		0	21	11	2
1107+37	4c37.29	88	PB	3.5	22	11	7
1108 + 35	3c252	5	CI	1.8	17	11	2
1111+40	3c254	17	Mi	1.3	18	II	2
1136 - 67		76	Cl	3	21		
1136 - 13	OM-161	69	Cl	2.9	36		
1137 + 66	3c263	70	Cl	2.7	17	II	2
1140 + 22	3c263.1	34	Cl	2.2	24	II	2
1142+19	3c264	71	Cl	2	20	Ι	2
1142 + 31	3c265	64	Cl	3.6	50	II	2
1143-31		86	Cl	2	21		
1147 ± 13	3c267	73	Cl	- 35	50	II	2
1147 + 10 1157 + 72	36268 1	55		0.0 4 3	10	II	2
$\frac{1157 \pm 73}{1159 \pm 21}$	2.068.0	64		4.5	19	11 TT	 1_1
1130+31	30208.2	04		2.1	17	11	11
1203+64	3c268.3	83	CI	3.2	33	11	2
1206 + 43	3c268.4	2	CI	2.2	24	11	2
1211-41		6	PB	2.2	25		
1216 - 10		52	Cl	2.2	20		
1216 + 06	3c270	8	Cl	3	20	Ι	17,7
$12\overline{18+33}$	3c270.1	69	Cl	2.3	27	II	2
1222+13	3c272.1	36	Cl	1.9	17	Ι	7
1222+21	4c21.35	43	Cl	2.8	32		
1222+42	3c272	88	Cl	4	27	II	2
1226+02	3c273	69	Cl	3	41		
$\frac{1220+02}{1228+12}$	3c274	89	Cl	2	17	T	2
1929 ± 91	3c974.1	<u>81</u>		28	17	TT	2
1202 ± 21 1992 ± 16	50274.1	79		2.0	20	11	2
1200+10	2.075 1	12		4.0	20	тт	0
1241+10	30273.1	45		2.4	21	11	2
1249+09	0.077	82		3	51		
1251+15	3c277.2	62	PB	4	27	11	2
1251 + 27	3c277.3	21	Cl	1.5	19	Ι	15
1251 - 12	3c278	57	Cl	1.3	20	Ι	8
1253 + 37	4c37.35	78	PB	5	23		
1254 + 47	3c280	58	Cl	1.2	18	II	2
1257 + 38	4c38.34	77	PB	3	22		
1258 + 40	3c280.1	86	Cl	3.1	24	II	2

1301 + 38	4c38.35	68	PB	2.8	16	II	16
1308 + 27	3c284	80	Cl	3	17	II	2
1313 + 07		7	Cl	2	20		
1317 - 00	4c00.50	89	Cl	2.3	21		
1318 + 11	4c11.45	44	Cl	1.3	27		
1319 + 42	3c285	4	Cl	2.2	28	II	2
1328 + 30	3c286	37	Mi	2	38		
1330+02	3c287.1	52	Cl	1.8	20	II	7
1335-06	4c-06.35	85	Ha	2.6	32		
$\frac{1303}{1343+50}$	3c289	78	Cl	3	27	П	2
$\frac{1010+00}{1350+31}$	3c293	53	Cl	1.5	19	I	2
1352 ± 165	3c293.1	68	Cl	2.3	21	-	-
1354 - 17	op 100 4	6		2.5	21		
$\frac{1354-17}{1354\pm10}$	4c10.4	84		2.1	21	TT	19
1354 ± 15 1358 $- 11$	4013.44	1		5	20	II	12
1350 - 11	2,005	-4 E		0	29 91	11 11	0
1409+32	30290	5		2	31	11	2
1413 - 30	2-200	37	PD Cl	3 1.0	20	т	0
1414+11	36296	1		1.0	20	1	2
1420+19	3c300	36	CI	3	45	11	2
1422+20	4c20.33	65	CI	3.4	37		
1423+24	4c24.31	75	CI	5	32		
1425-01	3c300.1	37	Cl	2.1	21		
1441+52	3c303	61	Cl	2.2	19	11	2
1449 - 12		87	Cl	2.2	20		
1458 + 71	3c309.1	45	Ha	2	33		
1502 + 26	3c310	54	Cl	3.3	13	Ι	2
1508 + 08	3c313	55	Cl	2.6	17	II	7
1511 + 26	3c315	72	Cl	1.4	18	Ι	2
1512 + 37	4c37.43	79	Cl	3.5	49		
1514 + 00	4c00.56	28	Cl	3.1	20	II	
1522 + 54	3c319	45	Cl	3.5	14	II	2
1529 + 24	3c321	64	Cl	3.2	44	II	2
1529 + 35	3c320	46	PB	1.5	18	II	7
1545 + 21	3c323.1	72	Cl	3.4	19	II	11
1547 + 21	3c324	80	Cl	5	39	II	2
1549 + 62	3c325	44	Cl	1.4	18	II	2
1549 + 20	3c326	88	Cl	5	18	II	2
1553 + 20	3c326.1	56	PB	1.5	27		
1556 - 21		15	Cl	1.7	21		
1559 + 02	3c327	70	Cl	2.9	20	II	4
1602 - 63		8	Cl	1.9	21		
1602 - 09		90	Cl	2.8	20		
1609 + 66	3c330	69	Cl	2.7	17	II	2
1610-608		22	PB	3.4	54	II	
1615+32	3c332	75	Cl	3	19	II	7
1618 + 17	3c334	81	Cl	3	27	II	2
$\frac{1010+11}{1622+23}$	3c336	80	Cl	22	18	II	2
$\frac{1022+20}{1626+27}$	3c341	86		37	17	II	2
$\frac{1020+21}{1626+30}$	3c338	85	PR	3.2	82	I	2
$\frac{1020+33}{1627\pm23}$	3c340	87		<u> </u>	27	I	2
1027 ± 23 1697 ± 44	30340	36		- 1	17	II	2
1021 + 44 1634 ± 26	36349	78		1.0	22	11	
1034 ± 20	30342	10		0 96	22	TT	0
$\frac{1037 - 77}{1641 + 17}$	2,246	41 70		2.0	20 91	TT II	0 7
$\frac{1041 \pm 17}{1641 \pm 20}$	3c340	19		4	01 49	TT II	19
1649+05		70	па	2.2	45	11	13
$\frac{1048 + 05}{1659 + 47}$	3C248,HerA	18	Ha Cl	2.2	20	тт	0
$\frac{1008+41}{1704+61}$	3C349	14		う 0.0	10	11 TT	2
1700+12	30351	19	PR PR	2.3	18	11	2
1709+46	3c352	77		2.8	27	11 -	2
1717-00	3c353	5		2.6	20	1	7
1723+51	3c356	30		3.5	50	11	2
1726+31	3c357	61	PB	2.9	16	11	11
1730 - 13		26	Cl	1.5	41		

1733 - 56		83	PB	5	80	II	7
1737 - 60		85	PB	2.6	25		
1826 + 74	3c379.1	50	Cl	2.8	17	II	11
1832 + 47	3c381	67	Cl	3.3	19	II	2
1836 + 17	3c386	13	Cl	1.5	18	Ι	2
1842 + 45	3c388	63	PB	3.2	19	II	2
1845 + 79	3c390.3	53	Cl	5	17	II	2
1938 - 155	OV-164	74	Da	1.8	80		
1939 + 60	3c401	38	PB	1.9	19	II	2
1949 + 02	3c403	37	Cl	2.6	20	II	4
2014 - 55		47	Cl	2.2	21		
2018 + 29	3c410	51	Cl	1.5	44		
2019 + 09	3c411	60	Cl	2.6	31		
2040 - 26		2	Cl	3.4	20	II	7
2058 - 28		68	Cl	3	20		
2104 - 25	OX-208	39	Cl	3.2	26	Ι	7
2104 + 76	3c427.1	89	Cl	3.4	19	II	2
2106 + 49	3c428	83	Cl	5	50		
2117 + 60	3c430	55	Cl	2.8	19	II	4
2121 + 24	3c433	21	Cl	2	18	Ι	2
2130 - 53		53	Cl	1.1	21	Ι	7
2135 - 14	OX-158	77	Cl	1.7	20	II	8
2141 + 27	3c436	3	Cl	2.9	17	II	2
2145 + 15	3c437	69	Cl	3.5	18	II	2
2153 - 69		67	PB	1.5	21		
2153 + 37	3c438	47	PB	2.3	19	Ι	7
2203 + 29	3c441	32	Cl	2	18	II	2
2211 - 17	3c444	12	Cl	2.2	20	II	7
2212 + 13	3c442	83	Cl	3	18		
2221 - 02	3c445	67	Cl	2.7	21	II	1
2229 + 39	3c449	73	Cl	2.2	18	Ι	2
2239 + 33		74	PB	2.8	16		
2243 + 39	3c452	77	Cl	5	17	II	2
2247 + 11		24	Cl	2	21	Ι	2
2251 + 15	3c454.3	72	Ha	2.8	43		
2252+12	3c455	80	Cl	3	38	II	2
2310 + 05	3c458	23	Cl	2.4	20		
2314 + 038	3c459	85	Da	3.3	52	II	7
2317 - 27		85	PB	2.7	25	II	7
2318 + 23	3c460	65	Cl	4.5	24	II	2
2335 + 26	3c465	78	Cl	4	17	I	2
2345 + 18	3c467	45	Cl	3	31		
2352+79	3c469.1	87	Cl	3.2	17	II	2
2354-11		62	Cl	2.4	21		
2356 - 61		66	Cl	3	54	II	3
2356 + 27	4c27.54	78	PB	4	22		
2356 + 43	3c470	86	Cl	5	45	II	2

References

Ambartsumian V. A., 1966, Transactions of the IAU, 12B, Academic Press, London-New York, 672

- Andreasyan R. R., 1984, Ap., 19, 245
- Andreasyan R. R., 2019, Communications of the Byurakan Astrophysical Observatory (ComBAO), 66, 8
- Andreasyan R. R., Sol H., 1999, Ap., 42, 275
- Andreasyan R. R., Sol H., 2000, Ap., 43, 413
- Andreasyan R. R., Appl S., Sol H., 2002, Ap., 45, 198
- Fanaroff B. L., Riley J. M., 1974, MNRAS, 167, 31
- Gendre M., Wall J. V., Best P. N., 2011, AAS, 21831702G
- Gopal K., Wiita P. J., 2000, A&A, 507, 363
- Zirbel E. S., Baum S. A., 1995, ApJ, 52, 448

Appendices

LITERATURE for radio-maps and FR classes.

- 1) Hardcastle, M.J., Alexander, P., Pooley, G.G., Riley, J.M., 1998, MNRAS, 296, 445
- 2) Laing, R.A., Riley, J.M., Longair, M.S., 1983, MNRAS, 204, 151
- 3) Subrahmanyan, R., Saripalli, L., Hunstead, W., 1996, MNRAS, 279, 257
- 4) Leahy, J.P., Black, A.R.S., Dennet-Thorpe, J., et al., 1997, MNRAS, 291, 20
- 5) Hardcastle, M.J., Alexander, R., Pooley, G.G., Riley, J.M., 1997, MNRAS, 288, 859
- 6) Black, A.R.S., Baum, S.A., Leahy, J.P., et al., 1992, MNRAS, 256, 186
- 7) Zirbel, L.E. Baum, S.A., 1995, ApJ, 448, 521
- 8) Morganti, R., Killeen, N.E.B., Tadheunter, C.N., 1993, MNRAS, 263, 1023
- 9) Pearson, T.J., Readhead, A.C.S., 1988, ApJ, 328, 114
- 10) Nilsson, K. 1998, A&AS, 132, 31
- 11) Fanaroff, B.L. & Riley, J.M., 1974, MNRAS, 167, 31p
- 12) Peacock, J.A., Wall, J.V., 1981, MNRAS, 194, 331
- 13) Bridle, A.H., Fomalont, E.B., 1978, AJ, 83, 704
- 14) Fomalont, E.B, Bridle, A.H., 1978, AJ, 83, 725
- 15) Fanti, C., Fanti, R., Gioia, J.H., et al, 1977, A&AS., 29, 279
- 16) Rudnick, L., Adams, M.T., 1979, AJ, 84, 437
- 17) Macdonald, G.H., Kenderdine, S., Neville, A.C. 1968, MNRAS, 138, 259
- 18) Mackay, C.D., 1969, MNRAS, 145, 31
- 19) Branson, N.J.B.A., Elsmore, B., Pooley, G.G., Ryle, M., 1972, MNRAS, 156, 377
- 20) Fomalont,E.B., 1971, AJ, 76, 513
- 21) Schilizzi, R.T., McAdam, W.B., 1975, Mem. R. Astron. Soc., 79, 15
- 22) Conway, R.G., Burn, B.J., Vallee, J.P., 1977, A&AS., 27, 155
- 23) Machalski, J., Maslowski, J., Condon, J.J., Marlene, A., 1982, AJ, 87, 1150
- 24) Laing, R.A., 1981, MNRAS, 195, 261
- 25) Ekers, R.D., 1969, Aust. J. Phys. Astrophys. Suppl., 6, 3
- 26) Ekers, R.D., Wall, J.V., Shaver, P.A., et al, 1989, MNRAS, 236, 737
- 27) Jenkins, C.J., Pooley, G.G. Riley, J.M., 1977, Mem.R. Astron. Soc., 84, 61
- 28) Vigotti, M., Grueff, G., Perley, R., et al, 1989, AJ, 98, 419
- 29) Antonucci, R.R.J., 1985, ApJS., 59, 499
- 30) Dunlop, J.S., Peacock, J.A., Savage, A., et al, 1989, MNRAS, 238, 1171
- 31) Pooly,G.G., Henbest,S.H., 1974, MNRAS, 169, 477
- 32) Hintzen, P., Ulvestad, J., Owen, F., 1983, AJ, 88, 709
- 33) Van Breugel, W., Miley, G., Heckman, T., 1994, AJ, 89, 5
- 34) Barthel, P.D., Miley, G.K., Schilizzi, R.T., Lonsdale, C.J., 1988, A&AS, 73, 515
- 35) Saikia, D.J., Shastri, P., Sinha, R.P., et al, 1984, JA&A, 5, 429
- 36) Saikia, D.J., Shastri, P., Cornwel, T.J., et al, 1989, JA&A, 10, 203
- 37) Saikia, D.J., Kulkarni, I.V.K. & Porcas, R.W., 1986, MNRAS, 219, 719
- 38) Spencer, R.E., McDowel, J.C. & Charlesworth, M., 1989, MNRAS, 240, 657

R.R.Andreasyan and H.V.Abrahamyan

doi: https://doi.org/10.52526/25792776-2021.68.1-75

- 39) Fernini, I., Burns, J.O., Bridle, A.H. & Perley, R.A., 1993, AJ, 105, 1690
- 40) Owen, F.N. & Puschel, J.J., 1984, AJ, 89, 932
- 41) Perley, R.A., Fomalont, E.B. & Jonston, K.J. 1980, AJ, 85, 649
- 42) Perley, R.A., Fomalont, E.B. & Jonston, K.J., 1982, ApJ, 255, L93
- 43) Browne, I.W.A., Orr, M.J.L., Davis, R.J., et al, 1982, MNRAS, 198, 673
- 44) Hogbom, J.A. & Carlsson, I., 1974, A&A, 34, 341
- 45) Riley, J.M. & Pooley, G.G., 1975, Mem. R. Astron. Soc., 80, 105
- 46) Grueff,G. Kotanyi,C., Schiavo-Campo,P., et al, 1981, A&AS, 44, 241
- 47) Gerhardt, M.R., 1977, Nat, 266, 819
- 48) Wardle, J.F.C., Moore, R.L. & Angel, J.R.P., 1984, ApJ, 279, 93
- 49) Potash, R.I. & Wardle, J.F.C., 1979, AJ, 84, 707
- 50) Leahy, J.P. Muxlow, T.W.B. & Stephens, P.W., 1989, MNRAS, 239, 401
- 51) Ulvestad, J., Johnston, K., Perley, R.& Fomalont, E., 1981, AJ, 86, 1010
- 52) Ulvestad, J.S., 1985, ApJ, 288, 514
- 53) Poley,G.G., Leahy,J.P., Shakeshaft,J.R. & Riley,J.M., 1987, MNRAS, 224, 847
- 54) Christiansen, W.N., Frater, R.H., Watkinson, A., et al, 1977, MNRAS, 181, 183
- 55) Longair, M.S., 1975, MNRAS, 173, 309
- 56) Riley, J.M., 1975, MNRAS, 170, 53
- 57) Slingo, A., 1974, MNRAS, 168, 307
- 58) Miley, G.K., Perola, G.C., Van der Kruit, P.C., Van der Laan, H., 1972, Nat, 237, 269
- 59) Fanti, R., Gioia, J., Lary, C., & Ulrich, M.-H., 1978, A&AS, 34, 341
- 60) Ekers, R.D., Fanti, R., Lary, C., & Ulrich, M.-H., 1978, A&A, 69, 253
- 61) Fanti, C., Fanti, R., Feretti, L., et al, 1983, A&AS, 51, 179
- 62) Machalsky, J., & Condon, J.J., 1983, AJ, 88, 143
- 63) Birkinshaw, M., & Davies, R.L., 1985, ApJ, 291,32
- 64) Ekers, R.D. & Simkin, S.M., 1983, ApJ, 265, 85
- 65) Jones, D.L., Wrobel, J.M., & Shaffer, D.B., 1984, ApJ, 276, 480
- 66) Ekers, R.D., Kotanyi, C.G., 1978, A&A, 67, 47
- 67) Jenkins, C.R., 1982, MNRAS, 200, 705
- 68) Parma, P., de Ruiter, H.R., Fanti, c., Fanti, R., 1986, A&AS, 64, 135
- 69) de Ruiter, H.R., Parma, P., Fanti, c., Fanti, R., 1986, A&AS, 65, 111
- 70) Fanti, C., Fanti, R., de Ruiter, H.R., Parma, P., 1986, A&AS, 65, 145
- 71) Fanti, R., Fanti, C., de Ruiter, H.R., Parma, P., 1987, A&AS, 69, 57
- 72) Ekers, R.D., Fanti, R., Lari, C., Parma, P., 1981, A&A, 101, 194
- 73) Barthel, P.D., Scilizzi, R.T., Miley, G.K., et al., 1985, A&A, 148, 243
- 74) O'Dea, P. & Owen, F.N., 1985, AJ, 90, 927
- 75) Wrobel, J.M., Simon, R.S., 1986, ApJ., 309, 593
- 76) Mack,K.-H., Klein,U., O'Dea,C.P., Willis,A.G., 1997, A&AS, 123, 423
- 77) Rhene, G., Marvel, K., Wilson, T., et al., 1996, ApJS, 107, 175
- 78) Law-Green, J.D., Leahy, J.P., Alexander, P., et al., 1995, MNRAS, 274, 939

Tables of physical and morphological properties of nearby extended radio galaxies

- 79) Bogers,
W.J., Hes,R., Barthel,P.D., Zensus,J.A., 1994, A&AS, 105, 91 $\,$
- 80) Colina,L., De Juan, 1995, ApJ, 448, 548
- 81) Van Breugel, W., Schilizzi, R., 1986, ApJ, 301, 834
- 82) Capetti, A., Morganti, R., Parma, P., Fanti, R., 1993, A&AS, 99, 407
- 83) Rudnik,L., & Owen,F.N., 1977, AJ, 82, 1
- 84) Pacholczyk, A.G., 1978, A handbook of radio sources
- 85) Fomalont, E.B., Palimaka, J.J., Bridle, A.H., 1980, AJ, 85, 981
- 86) Burns, J.O., & Owen, F.N., 1979, AJ, 84, 1478
- 87) Owen, F.N., White, R.A., Burns, J.O., 1992, ApJS, 80, 501
- $88)\,$ Owen, F.N., White, R.A., Ge JingPing, 1993, ApJS, $87,\,135$
- 89) Saikia, D.J., Wiita, P.J., Cornwell, T.J., 1987, MNRAS, 224, 53
- 90) Perola, G.C. & Valentijn, E.A., 1979, A&A, 73, 54
- 91) Valentijn, E.A. & Perola, G.C., 1978, A&A, 63, 29
- 92) Hazard, C., 1972, Astrophys. Letters, 11, 139
- 93) Allington-Smith, J.R.A., Ellis, R.S., Zirbel, E.L., 1993, ApJ, 404, 521.