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Abstract

The time-dependent problem of spectral line formation in a one-dimensional semi-infinite scat-
tering and absorbing atmosphere containing a local energy source radiating equally in both direc-
tions is considered. The energy release is assumed to be non-stationary and to be either δ(t)-shaped
or of the unit jump form given by the Heaviside H(t) function. The main attention is paid to the
temporal dependence of the observed line profiles on the depth of energy eruption in the atmosphere.
The role of scattering in the continuous spectrum is emphasized.

1. Introduction

In our previous works (Nikoghossian, 2021a,b) we used a relatively simple way of finding solutions
to the time-dependent problems of the line radiation transfer in 1D atmosphere. The method is
based on the construction of Neumann series for the quantities sought and goes back to the works
of Ganapol (1979), Matsumoto (1967, 1974). Solutions were constructed for diffuse reflection from
a semi-infinite atmosphere as well as for diffuse reflection and transmittance for a medium of finite
optical thickness. In both cases the scattering was assumed to be coherent. These mathematically
simple model problems in the above approach have a number of advantages. The main one is that,
despite the assumptions made, they allow one to clearly trace the evolution of the spectral lines formed
depending on the values of various quantities determining the local optical properties of the medium
and location of primary sources. In a number of cases, it is not difficult to conclude that some of
detected patterns remain valid also for fairly more general problem formulations. The assumption of
scattering coherence in the problem simplification is crucial, since in some cases the coefficients in the
expansion of the Neumann series are constants and are calculated once and for all. Tables of such
coefficients for the coefficient of reflection from a semi-infinite atmosphere are given in Nikoghossian
(2021b). The frequency dependence of the reflection function, as well as the dependence on the local
optical properties of the medium, appear through a certain parameter λ̃, of the form

λ̃ (x) =
λα (x) + γ

λα (x) + β + γ
(1)

where λ is the coefficient of the quantum re-radiation in the elementary event of scattering in the line,
α(x) is the line absorption profile, x is the dimensionless frequency measured by displacement from
the center of the line in Doppler widths, β and γ correspondingly are the ratios of the continuum
absorption and scattering coefficients to that in the center of the line. It is noteworthy that, with
the assumptions we have made, the role of scattering in the continuum, which is also assumed to
be coherent, is taken into account quite simply. This is another advantage of the approach used. In
astrophysical applications, one of the most common scattering mechanisms in the continuum spectrum
is scattering on free electrons (see, for example, Nikoghossian, 2020) and the list of literature there. In
this paper, we will continue the study of the temporal variations of spectral lines in various problems
frequently encountered in astrophysical applications, in which multiple scattering of radiation in the
medium should be taken into account. Here we will assume that the primary energy source is located
inside the atmosphere at some predetermined optical depth τ0.
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2. The line radiation transfer in a semi-infinite atmosphere with the
local energy sources.

Before addressing to our problem it is expedient to present some formulas and relations being
in use in solving the problems of diffuse reflection (and transmission for finite atmosphere) we have
considered in the cited papers (Nikoghossian, 2021a,b). The reflection function from the semi-infinite
atmosphere ρ(x), as was said, is sought in the form of a Neumann series

ρ(x) =

∞∑
n=1

ρnλ̃
n (x). (2)

The coefficients ρn for n > 2 are found recurrently by

ρn =
1

2

(
ρn−1 +

1

2

n−2∑
k=1

ρkρn−k−1

)
(3)

taking of ρ1 = 0.25 and ρ2 = 0.125.
Analogously, in the case of a medium of finite optical thickness τ0 for the reflection and transmission

functions are given by

ρ (x, τ0) =

∞∑
n=1

ρn (x, τ0) λ̃
n (x), q (x, τ0) =

∞∑
n=0

qn (x, τ0) λ̃
n (x). (4)

Note that the coefficients in these series depend on the frequency in the line. The first two coefficients
in the series are found immediately to give

ρ1 (x, τ0) =
1

4

(
1− e−2ν(x)τ0

)
, ρ2 (x, τ0) =

1

8

[
1− (1 + 2ν (x) τ0) e

−2ν(x)τ0
]
, (5)

q0 (x, τ0) = e−ν(x)τ0 q1 (x, τ0) =
1

2
τ0e

−ν(x)τ0 , (6)

where v(x) = α(x)+β. The remaining coefficients associated with the twofold reflection processes are
calculated sequentially by means of the formulas

ρn (x, τ0) = 2ν (x)

τ0∫
0

Φn (x, t) e
−2ν(x)(τ−t)dt, (7)

qn (x, τ0) = ν (x)

τ0∫
0

Ψn (x, t) e
−2ν(x)(τ−t)dt, (8)

where the functions Φn(x, t) and Ψn(x, t) are determined as

Φn (x, τ0) =
1

2

[
ρn−1 (x, τ0) +

1

2

n−2∑
k=1

ρk (x, τ0) ρn−k−1 (x, τ0)

]
, (9)

Ψn (x, τ0) =
1

2

[
qn−1 (x, τ0) +

1

2

n−1∑
k=1

ρk (x, τ0) qn−k−1 (x, τ0)

]
. (10)

Having now all the prerequisites we formulate problem under consideration as follows. Suppose
that the primary source of energy is located at depth τ0 in the 1D atmosphere and radiate equally
in both directions (see Fig. 1). If the total intensity is taken as unity, for the probability distribution
function of radiation P (x, τ0) outgoing from the atmosphere one obviously can write

P (x, τ0) =
1

2

(1 + ρ∞ (x)) q (x, τ0)

1− ρ∞ (x) ρ (x, τ0)
. (11)
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Figure 1. Schematic picture of the radiation transport in the presence of internal energy sources
.

Figure 2. Profiles of spectral lines formed in the stationary regime.

For further treatment, it is convenient to replace the ratio 1/(1−ρ∞)ρ with corresponding infinite
series as follows,

1

1− ρ∞ (x) ρ (x, τ0)
=

∞∑
i=0

[ρ∞ (x) ρ (x, τ0)]
i, (12)

which, obviously, converges at any values of the physical parameters if only λ < 1 when γ = 0, x = 0.
The convergence rate is higher at lower values of optical thickness, scattering coefficient, also in the
wings of the line, where the scattering effect is weakly expressed.

Typical examples of spectral line profiles formed in the stationary regime are shown in Fig. 2. The
results are shown for the case when there is no scattering in the continuum (left panel) and for the case
when it is present (right panel). As could be expected with sources located inside the atmosphere, we
observe in both cases absorption lines in spite of the difference in the levels of the continuous spectrum.
However, in the absence of scattering in the continuum, the lines have a specific shape associated with
emission components in their wings. There exists a clear correlation between the depth of the energy
source and the equivalent width, as well as the central depth of the spectral line.

Fig. 3 shows the equivalent width of the resulting spectral line as a function of the depth of the
internal energy source. Both cases, with and without allowance of scattering in the continuum, are
depicted. It is seen that when photons are scattered both in the line and in continuous spectrum, the
equivalent width of the line grows more slowly with optical depth. Thus, the shape of the spectral
line together with its equivalent width provide a fundamental opportunity to judge the depth in the
atmosphere where the energy release occurs. Below we will see that the time characteristics of the
line appearance can provide additional information about the energy release in the atmosphere.
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Figure 3. The depth variation of equivalent widths of the spectral line.

3. The time dependent problem of the spectral line formation in
the semi-infinite atmosphere with local non-stationary sources of
energy

After solving the stationary problem, it is easy to construct the solution of the corresponding
time-dependent problem. To this purpose let us return to Eq.(11) and write it briefly in the operator
notation

P =
1

2
(1 +R∞)Q

∞∑
i=0

(R∞R)i. (13)

When passing to the time-dependent problem, it is necessary to know the coefficients in the expansions
of each of the above operators with respect to the powers of λ̃(x).

Q =
∞∑
n=0

qn (x, τ0) λ̃
n (x), R =

∞∑
k=1

ρk (x, τ0)λ̃
k (x) , R∞ =

∞∑
i=1

ρ∞i λ̃i (x, ) ,

P =
∞∑
k=0

pk (x, τ0) λ̃
i (x), R∞R =

∞∑
i=1

λ̃i (x)
i∑

j=1

ρ∞j ρi−j (x, τ0). (14)

Eq.(13) shows that the calculations numerically are reduced to the multiplication of power series
according to the well-known Cauchy formula, which does not meet any fundamental difficulties. In
the first approximation, which neglects the multiple interactions between finite surface part (0, τ0) of
the atmosphere and its the rest infinitely deep part, we will have

pn (x, τ0) =
1

2

(
qn (x, τ0) +

n∑
l=1

ρ∞l qn−l (x, τ0)

)
, (15)

and, in the second approximation, limiting ourselves to the linear part in the infinite series in Eq.(13),

2pn (x, τ0) = qn (x, τ0)+

n∑
l=1

[
ρ∞l qn−l (x, τ0) + ql

l∑
i=1

ρ∞l ρl−l (x, τ0) +

l∑
i=1

ρ∞l ql−l (x, τ0)

l∑
k=1

ρ∞k ρk−l (x, τ0)

]
. (16)

Obviously, the accuracy of the results obtained depends largely on the number of terms that
have to be limited in the corresponding expansions. Difficulties are usually associated with finding
the coefficients of the Neumann series for the reflection and transmittance functions of the finite
atmosphere, through which the required values of p(x, τ) are expressed. However, as can be concluded
from Fig. 4 and Fig. 5, in fact it is often sufficient to limit ourselves to a small number of terms in
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Figure 4. Coefficients in the Neymann series of reflectance and transmittance of finite media of
different thicknesses and indicated values of other parameters. The data are enveloped by B-splines
for illustration.

Figure 5. The same as in Fig.4 for the function P (x, τ0).

the proper expansions in order to achieve the necessary accuracy. For clarity, in the above mentioned
figures, the discrete set of coefficients is enveloped using B splines. Figures show that even for relatively
large values of the scattering coefficient the required number of terms in the Neumann series is small
even in the central frequencies of the spectral line.

Having the coefficients of pn, we pass to the time-dependent problem and establish the temporal
characteristics of changes in the observed spectral line. As we showed in the cited papers (Nikoghossian,
2021a,b) such transition is carried out by multiplication of coefficients in the Neumann expansion of
the quantity under study by the total time taken by the quantum at the corresponding number of
scattering events. Referring the reader to the above-mentioned works for the reasoning in deriving the
distribution law of the total time spent by the quantum while staying in the medium, the probability
distribution function (PDF) of this time is given by

Fn (z) = e−z z2n−1

(2n− 1)!
, (17)

where the time variable z = t/t̄ and t̄ = t1t2/(t1+ t2). Here we used the commonly adopted notations:
t1 is the average time of the atom stay in the exited state, and t2 is the mean time of the quantum
travel between two successive events of scattering.

Hence the evolution of the observed spectral line profile for the pulse of δ(t) form of the internal
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Figure 6. Typical graphs of PDF and CDF for the photons in the center of the line in the absence of
continuum scattering when λ = 0.9.

Figure 7. The same as in Fig.6 for λ = 0.5.

energy release can be written as

P̄ (x, τ0, z) = e−z
∞∑
n=0

pn(x, τ0)λ̃
n (x)

z2n−1

(2n− 1)!
(18)

Another case of interest is the internal energy source burst of the form os unite jump H(z) known as
The Heviside function. Then Eq.(18) yields

P̄ (x, τ0, z0) = e−z0

∞∑
n=0

pn (x, τ0)λ̃
n (x)

z0∑
k=0

z2n+k

(2n+ k)!
(19)

Figures 6 and 7 demonstrate the PDF (probability density function) and CDF (cumulative distri-
bution function) of the observed spectral line for different values of optical and geometrical parameters.
Note that the time reading of z, z0 in the figures coincides with the moment of the beginning of the
quanta’ exit from the semi-infinite atmosphere.

The effect of radiation multiple scattering in a spectral line on their temporal characteristics is
demonstrated in Figures 6 and 7, where two cases with particular values of λ = 0.9 and 0.5 are
depicted. The main salient trait is that when the level of the scattering process is high, the different
regions of the line are set to plateau at different time intervals, with the core of the line being set
later, as a rule. Another characteristic feature of the large role of radiant energy scattering manifests
itself in the dependence of the time of spectral line appearance on the depth where the primary energy
release occurs. It is most discernible in the case of the δ(t)-form energy release by comparing the time
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Figure 8. Variations of the maximum values of PDF with optical depth of the primary energy sources.

the observed line reaches its maximum intensity depending on the depth in the atmosphere where the
primary source of energy is located. These functions are shown in Fig. 8, from which one can see that
the dependence is stronger the stronger the process of radiation scattering in the line developed. At
the same time, it is seen that the role of scattering in the continuous spectrum here is insignificant. It
is important to note that the effect of scattering in the continuum on the evolution of the spectral line
profile is negligible for both strong and weak lines and weakly depends on the value of the scattering
coefficient λ.

4. Concluding remarks

The Neumann series for the reflection coefficient from a semi-infinite atmosphere, as well as for
the reflectance and transmittance of a medium of finite optical thickness, constructed in our previous
works, allow to turn to a time-dependent, more general classical problem in which it is assumed that
the primary energy sources are located inside the atmosphere. In the problem considered here, these
sources themselves also depend on time. Two possible types of non-stationarity of the sources are
considered: δ(t)-shaped energy emission and the form of a unit jump given by the Heaviside H(t)
function. The problem posed was to describe the evolution of the profile of the observed absorbtion
lines and to reveal its dependence on the depth of local energy sources and the role of scattering in the
continuous spectrum. The calculations showed that the influence of the source depth on the observed
characteristics of the observed line is strong enough to make, in principle, an idea of the internal source
depth on the base of the indicated characteristics (equivalent width, central residual intensity). The
temporal characteristics of line changes provide additional information about the capacity and depth
of energy released within the atmosphere. It is also shown that scattering in the continuous spectrum
does not play a significant role in the evolution of the spectral line profile.
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