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Abstract

In the framework of local M̃Sp-SUSY theory, which is extension of global, so called, master space
(MSp)-SUSY theory (Ter-Kazarian, 2023, 2024), we address the accelerated motion and inertia effects.

The superspace is a direct sum of curved background double spaces M̃4 ⊕ M̃Sp, with an inclusion of

additional fermionic coordinates (Θ, Θ̄) induced by the spinors (θ, θ̄), which refer to M̃Sp. We take the
Lorentz group as our structure group in order to recover rigid superspace as a limiting solution to our
dynamical theory. The local M̃Sp-SUSY is conceived as a quantum field theory whose action includes the
fictitious gravitation field term, where the graviton coexists with a fermionic field of, so-called, gravitino
(sparticle) described by the Rarita-Scwinger kinetic term. A significant difference between standard

theories of supergravity and the local M̃Sp-SUSY theory is that a coupling of supergravity with matter
superfields no longer holds. We argue that a deformation/(distortion of local internal properties) of
MSp, is the origin of the absolute acceleration (~aabs 6= 0) and inertia effects (fictitious graviton). These
gravitational fields had no sources and were generated by coordinate transformations. A curvature of
M̃Sp arises entirely due to the inertial properties of the Lorentz-rotated frame of interest. This refers to
the particle of interest itself, without relation to other matter fields, so that this can be globally removed
by appropriate coordinate transformations. The supervielbein EA(z), being an alogue of Cartan’s local
frame, is the dynamical variable of superspace formulation, which identifies the tetrad field e â

m̂ (X) and
the Rarita-Schwinger fields. The connection is the second dynamical variable in this theory. The field
e â
m̂ (X) plays the role of a gauge field associated with local transformations (fictitious graviton). The

fictitious gravitino is the gauge field related to local supersymmetry. The two fields differ in their spin: 2
for the graviton, 3/2 for the gravitino. These two particles are the two bosonic and fermionic states of a

gauge particle in the curved background spaces M̃4 and M̃Sp, respectively, or vice versa. Following (Ter-
Kazarian, 2012), in the framework of classical physics, we discuss the inertia effects by going beyond
the hypothesis of locality, and derive the explicit form of the vierbien e â

m̂ (%) ≡ (e a
m (%), e

a
m (%)). This

theory furnishes justification for the introduction of the weak principle of equivalence (WPE). We derive
a general expression of the relativistic inertial force exerted on the extended spinning body moving in the
Rieman-Cartan space.

Keywords: Supersymmetry–Supergravity–Inertia effects

1. Introduction

The phenomenon of inertia may be the most profound mystery in physics. Its solution could shed light on
or be central to unraveling other important puzzles. In (Ter-Kazarian, 2023, 2024) we have studied the first
part of phenomenon of inertia, which governs the inertial uniform motion of a particle in 4D flat Minkowski
space, M4. This is probably the most fascinating challenge for physical research. We have developed the
theory of global, so-called, `double space´- or master space (MSp)- supersymmetry, subject to certain rules,
wherein the superspace is a 14D-extension of a direct sum of background spaces M4⊕ MSp by the inclusion
of additional 8D fermionic coordinates. The latter is induced by the spinors θ and θ̄ referred to MSp. While
all the particles are living on M4, their superpartners can be viewed as living on MSp. This is a main ground
for introducing MSp, which is unmanifested individual companion to the particle of interest. Supersymmetry
transformation is defined as a translation in superspace, specified by the group element with corresponding
anticommuting parameters. The multiplication of two successive transformations induce the motion. As a
corollary, we have derived SLC in a new perspective of global double MSp-SUSY transformations in terms
of Lorentz spinors (θ, θ̄). This calls for a complete reconsideration of our ideas of Lorentz motion code,
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to be now referred to as the individual code of a particle, defined as its intrinsic property. In MSp-SUSY
theory, obviously as in standard unbroken SUSY theory, the vacuum zero point energy problem, standing
before any quantum field theory in M4, is solved. The particles in M4 themselves can be considered as
excited states above the underlying quantum vacuum of background double spaces M4⊕ MSp, where the
zero point cancellation occurs at ground-state energy, provided that the natural frequencies are set equal
(q2

0 ≡ νb = νf ), because the fermion field has a negative zero point energy while the boson field has a positive
zero point energy. On these premises, we have derived the two postulates on which the theory of Special
Relativity (SR) is based.

The second part of phenomenon of inertia describes how the inertial uniform motion of a particle is
affected by applied forces (the accelerated motion and inertia effects). A puzzling underlying reality of
inertia effects stood open more than four centuries, and that this physics is still an unknown exciting
problem to be challenged and allows various attempts. The beginning of the study of inertia effects can be
traced back to the works developed by Galileo (Drake, 1978) and Newton (Newton, 1687). Certainly, more
than four centuries passed since the famous far-reaching discovery of Galileo (in 1602-1604) that all bodies
fall at the same rate (Drake, 1978) - an apparent enigmatic equality of inertial and passive gravitational mass,
which led to an early empirical version of the suggestion that the gravity and inertia may somehow result
from a single mechanism. Besides describing these early gravitational experiments, Newton in Principia
Mathematica (Newton, 1687) has proposed a comprehensive approach to studying the relation between the
gravitational and inertial masses of a body. Newton describes his precise pendulum experiments with ”gold,
silver, lead, glass, sand, common salt, wood, water and wheat” testing WPE - equality of inertial and passive
gravitational mass.

Einstein’s biographer Leopold Infeld wrote in 1950 (Infeld, 1950). ”No one in our century, with the
exception of Einstein, wondered about this law any longer”, These efforts led to Einstein’s extension in 1907
of WPE to all of physics (Beck & Havas, 1989): ”...We consider two systems Σ1 and Σ2 in motion. Let
Σ1 be accelerated in the direction of its X-axis, and let γ be the (temporally constant) magnitude of that
acceleration. Σ2 shall be at rest, but it shall be located in a homogeneous gravitational field that imparts
to all objects an acceleration -γ in the direction of the X-axis”. And then he formulate his principle of
equivalence (EPE): ”At our present state of experience we have thus no reason to assume that the systems
Σ1 and Σ2 differ from each other in any respect, and in the discussion that follows, we shall therefore
assume the complete physical equivalence of a gravitational field and a corresponding acceleration of the
reference system”. This involved relative acceleration in an attempt to introduce ideas of Ernst Mach into
his theory. These ideas gave the theory its name. This did not prove to be a happy idea since this notion
makes mathematical sense only for bodies having the same 4-velocity and from a physical point of view
accelerations are absolute.

Ever since, there is an ongoing quest to understand the reason for the universality of the gravity and
inertia, attributing to the WPE, which establishes the independence of free-fall trajectories of the internal
composition and structure of bodies. At present, the variety of consequences of the precision experiments
from astrophysical observations makes it possible to probe this fundamental issue more deeply by imposing
the constraints of various analyzes. Currently, the observations performed in the Earth-Moon-Sun sys-
tem (Everitt & et al., 2009, 2011, Faller & et al., 1990, Gabriel & Haugan, 1990, Gillies, 1997, Haugan &
Kauffmann, 1995, Hayasaka & Takeuchi, 1989, Heifetz & et al., 2009, Imanishi & et al., 1991, Keiser &
et al., 2009, Luo & et al., 2002, Muhlfelder & et al., 2009, Ni, 2011, Nitschke & Wilmarth, 1990, Quinn &
Picard, 1990, Silbergleit & et al., 2009, Turyshev, 2008, Will, 2006, Zhou & et al., 2002), or at galactic and
cosmological scales (Haugan & Lämmerzahl, 2001, Lämmerzahl & Bordé, 2001, Ni, 2005a,b,c, 2008), probe
more deeply both WPE and strong EPE. The intensive efforts have been made, for example, to clear up
whether the rotation state would affect the trajectory of test particle. Shortly after the development of the
work by Hayasaka & Takeuchi (1989), in which is reported that, in weighing gyros, it would be a violation
of WPE, by Faller & et al. (1990), Imanishi & et al. (1991), Nitschke & Wilmarth (1990), Quinn & Picard
(1990) performed careful weighing experiments on gyros with improved precision, but found only null results
which are in disagreement with the report of (Hayasaka & Takeuchi, 1989). The interferometric free-fall
experiments by Luo & et al. (2002) and Zhou & et al. (2002) again found null results in disagreement with
(Hayasaka & Takeuchi, 1989). For rotating bodies, the ultraprecise Gravity Probe B experiment (Everitt
& et al., 2009, 2011, Heifetz & et al., 2009, Keiser & et al., 2009, Muhlfelder & et al., 2009, Silbergleit &
et al., 2009), which measured the frame-dragging effect and geodetic precession on four quartz gyros, has
the best accuracy. GP-B serves as a starting point for the measurement of the gyrogravitational factor of
particles. Whereas, the gravitomagnetic field, which is locally equivalent to a Coriolis field and generated
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by the absolute rotation of a body, has been measured too. This, with its superb accuracy, verifies WPE for
unpolarized bodies to an ultimate precision - a four-order improvement on the noninfluence of rotation on
the trajectory, and ultraprecision on the rotational equivalence (Ni, 2011). Moreover, the theoretical models
may indicate cosmic polarization rotations which are being looked for and tested in the CMB experiments
(Ni, 2008). To look into the future, measurement of the gyrogravitational ratio of particle would be a fur-
ther step, see (Ni, 2005c) and references therein, towards probing the microscopic origin of gravity. Also,
the inertia effects in fact are of vital interest for the phenomenological aspects of the problem of neutrino
oscillations, see e.g. (Atwood & et al., 1984, Bonse & Wroblewski, 1983, Capozziello & Lambiase, 2000,
Cardall & Fuller, 1997, Colella et al., 1975, Gasperini, 1988, Halprin & Leung, 1991, Pantaleone et al., 1993,
Piniz et al., 1997, de Sabbata & Gasperini, 1981). All these have evoked the study of the inertial effects
in an accelerated and rotated frame. In doing this, it is a long-established practice in physics to use the
hypothesis of locality for extension of the Lorentz invariance to accelerated observers in Minkowski space-
time (Misner et al., 1973, Synge, 1960). This in effect replaces the accelerated observer by a continuous
infinity of hypothetical momentarily comoving inertial observers along its wordline. This assumption, as
well as its restricted version, so-called, clock hypothesis, which is a hypothesis of locality only concerned
about the measurement of time, are reasonable only if the curvature of the wordline could be ignored. As
long as all relevant length scales in feasible experiments are very small in relation to the huge acceleration
lengths of the tiny accelerations we usually experience, the curvature of the wordline could be ignored and
that the differences between observations by accelerated and comoving inertial observers will also be very
small. In this line, in 1990, Hehl and Ni proposed a framework to study the relativistic inertial effects of a
Dirac particle (Hehl & Ni, 1990), in agreement with (Li & Ni, 1979, Ni, 1977, Ni & Zimmermann, 1978).
Ever since this question has become a major preoccupation of physicists, see e.g. (Bakke & Furtado, 2010,
Bini et al., 2004, Hehl et al., 1991, Maluf & Faria, 2008, Maluf et al., 2007, Marzlin, 1996, Mashhoon, 2002,
2011, Pan & Ren, 2011, Silenko & Teryaev, 2007). Even this works out, still, it seems quite clear that such
an approach is a work in progress, and that it will have to be extended to describe physics for arbitrary
accelerated observers. Beyond the WPE, there is nothing convincing in the basic postulates of physics for
the origin and nature of inertia to decide on the issue. Despite our best efforts, all attempts to obtain a true
knowledge of the geometry related to the noninertial reference frames of an arbitrary observer seem doomed,
unless we find a physical principle the inertia might refer to, and that a working alternative relativistic theory
of inertia is formulated. Otherwise one wanders in a darkness.

In particular, the concept of a uniformly accelerated, gravitation-free reference system without the use
of special relativity is the problem (Schucking, 2009, Schucking & Surowitz, 2012). In Newton’s theory
the acceleration, γ, could be a vector in the x-direction constant in space and time independent of the
velocity of a body moving in the x-direction. Not so in Minkowski spacetime. There the acceleration
vector has to be orthogonal to the 4-velocity and it would appear that homogeneity of the acceleration
field in spacetime could no longer be achieved. That is, the notion of relative acceleration exists only
for particles whose four-velocities agree. Interpreting the gravitational acceleration of a falling object as
minus the acceleration of the reference system had to be restricted to objects at rest. It was a letter from
Max Planck that had alerted Einstein to this fact, which was acknowledged by Einstein in the Erratum
(1908, p. 317) to Ref. (Beck & Havas, 1989): ”A letter by Mr. Planck induced me to add the following
supplementary remark so as to prevent a misunderstanding that could arise easily. ...A reference system at
rest situated in a temporally constant, homogeneous gravitational field is treated as physically equivalent
to a uniformly accelerated, gravitation-free reference system. The concept ’uniformly accelerated’ needs
further clarification”. Einstein then pointed out that ”the equivalence was to be restricted to a body
with zero velocity in the accelerated system. In a linear approximation, he concluded, this was sufficient
because only linear terms had to be taken into account”. Einstein’s retreat raises the question whether
it is impossible to find a homogeneous uniformly accelerated reference system, or, assuming exact validity
of his principle of equivalence, a homogeneous gravitational field. But, as it is pointed out by Schucking
& Surowitz (2012), a homogeneous gravitational field in Minkowski spacetime can be constructed if the
reference frames in gravitational theory are understood as spaces with a flat connection and torsion defined
through teleparallelism. In 1907 Einstein did not show the equivalence of acceleration and gravitation
described by spacetime curvature. He did not show either the equivalence of geodesics and non-geodesics
or the equivalence of rotating and non-rotating systems. What he did, we now can see more clearly, was
the introduction of accelerated reference systems exhibiting torsion through distant parallelism. This kind
of torsion was first introduced by Einstein in 1928. There were physical consequences that needed to be
checked for these systems, like the constancy of the speed of light independent of acceleration, no influence
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of acceleration on the rate of clocks and the length of standards. As far as these assumptions have been
tested, they appear to be in order.

Various attempts at the resolution of difficulties that are encountered in linking Mach’s principle with
Einstein’s theory of gravitation have led to many interesting investigations. For example, by Mashhoon &
Wesson (2012) is shown that the GR can be locally embedded in a Ricci-flat 5D manifold such that every
solution of GR in 4D can be locally embedded in a Ricci-flat 5D manifold, and that the resulting inertial
mass of a test particle varies in space-time.

However, the inertial forces are not of gravitational origin as it was proposed by EPE, because there are
many controversies to question the validity of such a description. Synge confesses in his monograph ( Synge
(1960), in introduction) “. . . I have never been able to understand this Principle. ...Does it mean that the
effects of a gravitational field are indistinguishable from the effects of an observer’s acceleration? If so, it is
false. In Einstein’s theory, either there is a gravitational field or there is none, according as the Riemann
tensor does or does not vanish. This is an absolute property; it has nothing to do with any observer’s
worldline. Space-time is either flat or curved, and in several places of the book I have been at considerable
pains to separate truly gravitational effects due to curvature of space-time from those due to curvature of
the observer’s worldline (in most ordinary cases the latter predominate)...”

The difficulty is brought into sharper focus by considering the laws of inertia, including their quantitative
aspects. That is, Mach principle and its modifications do not provide a quantitative means for computing
the inertial forces. Brans’s thorough analysis (Brans, 1977) has shown that no extra inertia is induced in a
body as a result of the presence of other bodies. If the matter distribution is not isotropic, and if the inertia
is due to gravitational interactions, then one of the consequences of Mach’s principle could be conceivable
that the concentration of matter near the centre of our galaxy may result in an anisotropy of inertia at
the earth which could be detected experimentally. Testing this question, the experiments by Cocconi &
Salpeter (1960), Drever (1961), Hughes et al. (1960) do not found such anisotropy of inertial mass. The
experiment suggested by Cocconi and Salpeter was to observe the Zeeman splitting in the excited nuclear
state of Fe57 by use of the Mössbauer effect. The effect of some anisotropy of inertia is then very similar to
that for the atomic Zeeman effect, except that one is now dealing with the motion of the nucleon in the Fe57

responsible for the γ-ray transition (at least on a shell-model picture) instead of the motion of an electron.
They found that the variation ∆m of mass with direction, if it exists, should satisfy ∆m

m ≤ 10−9. The most
sensitive test is obtained in (Hughes et al., 1960) from a nuclear magnetic resonance experiment with a Li7

nucleus of spin I = 3/2. This method gives a sensitivity some factor of 106 greater than could be achieved
in the experiment suggested by Cocconi and Salpeter using the Mössbauer effect. The magnetic field was of
about 4700 gauss was stabilized against the proton resonance frequency with the Atomichron as a frequency
standard. Only a single line was observed. The increase in sensitivity over that which one could obtain from
the Mössbauer effect is due to the far narrower line width obtainable for a transition with a nucleus in its
ground state as compared with a nucleus in an excited state. The south direction in the horizontal plane
points within 22 degrees towards the center of our galaxy, and 12 hour later this same direction along the
earth’s horizontal plane points 104 degrees away from the galactic center. If the nuclear structure of Li7 is
treated as a single P3/2 proton in a central nuclear potential, the variation ∆m of mass with direction, if it

exists, was found to satisfy ∆m
m ≤ 10−20. This is by now very strong evidence that there is no anisotropy of

mass which is due to the effects of mass in our galaxy. Hence it seems that within the framework of the Mach
theory as discussed by Cocconi and Salpeter one should conclude that there is no anisotropy of mass of the
type which varies as P2(cosθ) associated with effects of mass in our galaxy. Here P2(cosθ) is the Legendre
polynomial of order 2, and θ is the angle between the direction of acceleration of the particle (determined by
the direction of an external magnetic field H and by the magnetic quantum state) and the direction to the
galactic center. In the same time, Dicke (1961) and Ni (1983) have pointed out that when anisotropic effects
on both kinetic and potential energies are considered, the null results are to be expected provided that the
anisotropy couples in the same way to both forms of energy. It is concluded that the extremely accurate null
result of the experiment of (Hughes et al., 1960) seemed does not cast doubt upon the validity of Mach’s
principle. They stated that, on the contrary, this important experiment shows, with great precision, that
inertial anisotropy effects are universal, the same for all particles. These experiments can thus be regarded as
a test of the universal coupling of gravity to all forms of mass-energy. Anyway, the subsequent experimental
test along this line (Prestage & et al., 1985), using nuclear-spin-polarized 9Be+ ions, also gives null result
on spatial anisotropy and thus supporting local Lorentz invariance. In this experiment the frequency of a
nuclear spin-flip transition in 9Be+ has been compared to the frequency of a hydrogen maser transition to
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see if the relative frequencies depend on the orientation of the 9Be+ ions in space. Obtained null result
represents a decrease in the limits set by (Hughes et al., 1960) and (Drever, 1961) on a spatial anisotropy
by a factor of about 300.

Our idea is that the universality of gravitation and inertia attribute to the single mechanism of origin
from geometry but having a different nature. We have ascribed, therefore, the inertia effects (second part
of inertia) to the geometry itself but as having a nature other than 4D Riemannian space (Ter-Kazarian,
2012). The key to our construction procedure of the toy model is an assignment to each and every particle
individually a new fundamental constituent of hypothetical 2D, so-called, master-space (MSp), subject to
certain rules. The MSp, embedded in the background 4D-space, is an unmanifested indispensable individual
companion to the particle of interest. Within this scheme, the MSp was presumably allowed to govern the
motion of individual particle in the background 4D-space. The particle has to live with MSp-companion as
an intrinsic property devoid of any external influence. This together with the idea that the inertia effects
arise as a deformation/(distortion of local internal properties) of MSp, are the highlights of the alternative
relativistic theory of inertia (RTI) (Ter-Kazarian, 2012). The crucial point is to observe that, in spite of
totally different and independent physical sources of gravity and inertia, the RTI furnishes justification for
the introduction of the PE. However, this investigation obviously is incomplete unless it has conceptual
problems for further motivation and justification of introducing the fundamental concept of MSp. The way
we assigned such a property to the MSp is completely ad hoc and there are some obscure aspects of this
hypothesis. Moreover, this theory will certainly be incomplete without revealing the physical processes that
underly the inertial uniform motion of a particle in flat space.

Since in (Ter-Kazarian, 2023), we already have solved these questions in the framework of global MSp-

SUSY theory, then on these premises, in the present paper we develop the local M̃Sp-SUSY theory in

order to address the accelerated motion and inertia effects. A curvature of M̃Sp arises entirely due to the
inertial properties of the Lorentz-rotated frame of interest, i.e. a fictitious gravitation, which can be globally
removed by appropriate coordinate transformations. Whereas, in order to become on the same footing with
the distorted space M̃Sp, the space M̃4 refers only to the accelerated proper reference frame of a particle.

With this perspective in sight, we will proceed according to the following structure. To start with, in
Section 2 we revisit the global `double space´- or MSp-SUSY as a guiding principle to make the rest of paper
understandable. We give a glance at MSp, and outline the key points of the proposed symmetry. More about

the accelerated motion is said in Section 3, but this time in the framework of local M̃Sp-SUSY. In Section

4, we turn to non-trivial linear representation of the M̃Sp-SUSY algebra. In Section 5 we briefly discuss
the inertia effects. In Section 6, we turn to model building in the 4D background Minkowski space-time On
these premises, we discuss the theory beyond the hypothesis of locality in Section 7. In this, we compute the
improved metric and other relevant geometrical structures in noninertial system of arbitrary accelerating
and rotating observer in Minkowski space-time. The case of semi-Riemann background space V4 is studied
in Section 8, whereas we give justification for the introduction of the weak principle of equivalence (WPE) on
the theoretical basis, which establishes the independence of free-fall trajectories of the internal composition
and structure of bodies. The implications of the inertial effects for the more general post-Riemannian
geometry are briefly discussed in Section 9. Concluding remarks are presented in Section 10. For brevity,
whenever possible undotted and dotted spinor indices often can be ruthlessly suppressed without ambiguity.
Unless indicated otherwise, we take natural units, h = c = 1.

2. Probing SR behind the MSp-SUSY, revisited

For a benefit of the reader, as a guiding principle to make the rest of paper understandable, in this section
we necessarily recount some of the highlights behind of global MSp-SUSY (Ter-Kazarian, 2023, 2024), on

which the local M̃Sp-SUSY is based. The latter is the only framework in use throughout the paper.
The flat MSp is the 2D composite space

MSp ≡M 2 = R1
(+) ⊕R

1
(−), (1)

with Lorentz metric. The ingredient 1D-space R1
m is spanned by the coordinates ηm. The following nota-

tional conventions are used throughout this paper: all quantities related to the space M 2 will be underlined.
In particular, the underlined lower case Latin letters m,n, ... = (±) denote the world indices related to M 2.

Suppose the position of the particle is specified by the coordinates xm(s) (x0 = t) in the basis em
(m=0,1,2,3) at given point in the background M4 space. Consider a smooth (injective and continuous)

G.Ter-Kazarian
doi: https://doi.org/10.52526/25792776-23.70.2-212

216

https://doi.org/10.52526/25792776-23.70.2-212


Inertia II: The local M̃Sp-SUSY induced inertia effects

embedding M 2 ↪→ M4. That is, a smooth map f : M2 −→ M4 is defined to be an immersion (the
embedding which is a function that is a homeomorphism onto its image):

e0 = e0, x0 = x0, e1 = ~n, x1 = |~x|, (2)

where ~x = eix
i = ~n|~x| (i = 1, 2, 3). Given the inertial frames S(4), S

′
(4), S

′′
(4), ... in unaccelerated uniform

motion in M4, we may define the corresponding inertial frames S(2), S
′
(2), S

′′
(2),... in M 2, which are used

by the non-accelerated observers for the positions xr, x′r, x′′r, ... of a free particle in flat M 2. According
to (2), the time axes of the two systems S(2) and S(4) coincide in direction, and the time coordinates are
taken the same. For the case at hand,

v(±) =
dη(±)

dx0
= 1√

2
(v0 ± v1), v1 = dx1

dx0
= |~v| = | d~x

dx0
|, (3)

and that
u = emv

m = (~v 0, ~v 1), ~v 0 = e0v
0, ~v 1 = e1v

1 = ~n|~v| = ~v, (4)

therefore, u = u = (e0, ~v). To explain why MSp is two dimensional, we note that only 2D real null vectors
are allowed as the basis at given point in MSp, which is embedded in M4. Literally speaking, the M 2 can
be viewed as 2D space living on the 4D world sheet.

The elementary act of particle motion at each time step (ti) through the infinitely small spatial interval
4xi = (xi+1 − xi) in M4 during the time interval 4ti = (ti+1 − ti) = ε is probably the most fascinating
challenge for physical research. Since this is beyond our perception, it appears legitimate to consider
extension to the infinitesimal Schwinger transformation function, Fext(xi+1, ti+1;xi, ti), in fundamentally
different aspect. We hypothesize that

in the limit n → ∞(ε → 0), the elementary act of motion consists of an `annihilation´ of a particle at
point (xi, ti) ∈ M4, which can be thought of as the transition from initial state |xi, ti > into unmanifested
intermediate state, so-called, `motion´ state, |xi, ti >, and of subsequent `creation´ of a particle at infinitely
close final point (xi+1, ti+1) ∈M4, which means the transition from `motion´ state, |xi, ti >, into final state,
|xi+1, ti+1 >. The motion state, |xi, ti) >, should be defined on unmanifested `master´ space, M 2, which
includes the points of all the atomic elements, (xi, ti) ∈M 2 (i = 1, 2, ...).

This furnishes justification for an introduction of unmanifested master space, M 2.
The fields of spin-zero (~S = ~K = 0) scalar field A(x) and spin-one An(x), corresponding to the (1/2, 1/2)

representation, transform under a general Lorentz transformation as follows:

A(η) ≡ A(x), (spin 0);

Am(η) = ΛmnA
n(x), (spin 1).

(5)

The map from SL(2, C) to the Lorentz group is established through the ~σ-Pauli spin matrices, σm =
(σ0, σ1, σ2, σ3) ≡ (I2, ~σ), σ̄m ≡ (I2,−~σ), where I2 is the identity two-by-two matrix.

According to embedding map (2), the σ-matrices are

σm = σ(±) = 1√
2
(σ0 ± σ1) = 1√

2
(σ0 ± σ3). (6)

The matrices σm form a basis for two-by-two complex matrices P :

P = (pmσ
m) = (p(±)σ

(±)) = (p0σ
0 + p1σ

1), (7)

provided p(±) = i∂η(±) , p0 = i∂x0 and p1 = i∂x1 . The real coefficients p′m and pm, like p′m and pm, are related

by a Lorentz transformation p′m = Λ
n
m pn, because the relations det(σm pm) = p2

0 − p2
1 and detM = 1 yield

p′0
2 − p′12 = p2

0 − p2
1. Correspondence of pm and P is uniquely: pm = 1

2Tr(σ
m P ), which combined with (9)

yields
Λ
m
n(M) = 1

2 Tr
(
σmMσnM †

)
. (8)

Thus, both hermitian matrices P and P ′ or P and P ′ have expansions, respectively, in σ or σ:

(σm p′m) = M(σm pm)M †, (σm p′m) = M(σm pm)M †, (9)

where M(M ∈ SL(2, C)) is unimodular two-by-two matrix. Meanwhile (χσm ζ̄)Am is a Lorentz scalar if
the following condition is satisfied:

Λ
m
n (M)σ

n
αα̇ = (M−1)α

βσ
m

ββ̇
(M−1)†β̇ α̇. (10)
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A two-component (1/2, 0) Weyl fermion, χβ(x), therefore, transforms under Lorentz transformation to yield
χ
α
(η):

χβ(x) −→ χ
α
(η) = (MR) β

α χβ(x), α, β = 1, 2, (11)

where the orthochronous Lorentz transformation, corresponding to a rotation by the angles ϑ3 and ϑ2 about,
respectively, the axes n3 and n2, is given by rotation matrix

MR = ei
1
2
σ2ϑ2ei

1
2
σ3ϑ3 . (12)

There with the rotation of an hermitian matrix P is

pmσ
m = MR pmσ

mM †R, (13)

where pm and pm denote the momenta pm ≡ m(chβ, shβ sinϑ2 cosϑ3, shβ sinϑ2 sinϑ3,
shβ cosϑ2), and pm ≡ m(chβ, 0, 0, shβ).

A two-component (0, 1/2) Weyl spinor field is denoted by χ̄β̇(x), and transforms as

χ̄β̇(x) −→ χ̄α̇(η) = (M−1
R )†α̇

β̇
χ̄β̇(x), α̇, β̇ = 1, 2. (14)

The so-called `dotted´ indices have been introduced to distinguish the (0, 1/2) representation from the
(1/2, 0) representation. The `bar´ over the spinor is a convention that this is the (0, 1/2)-representation.
We used the Van der Waerden notations for the Weyl two-component formalism: (χ̄

α̇
)∗ = χ

α
and χ̄

α̇
= (χ

α
)∗.

The odd part of the supersymmetry algebra is composed entirely of the spin-1/2 operators Q i
α , Q

j
β . In

order to trace a maximal resemblance in outward appearance to the standard SUSY theories, here we set
one notation m̂ = (m if Q = q, or m if Q = q), and as before the indices α and α̇ run over 1 and 2.

If that is the case as above, a creation of a particle in M 2 means its transition from initial state defined
on M4 into intermediate state defined on M 2, while an annihilation of a particle in M 2 means vice versa.
The same interpretation holds for the creation and annihilation processes in M4. All the fermionic and
bosonic states taken together form a basis in the Hilbert space. The basis vectors in the Hilbert space
composed of HB ⊗HF is given by

{|n b > ⊗|0 >f , |n b > ⊗f † |0 >f},

or
{|nb > ⊗|0 > f , |nb > ⊗f † |0 > f},

where we consider two pairs of creation and annihilation operators (b†, b) and (f †, f) for bosons and fermions,
respectively, referred to the background space M4, as well as (b†, b) and (f †, f) for bosons and fermions,

respectively, as to background master space M 2. Accordingly, we construct the quantum operators, (q†, q†)
and (q, q), which replace bosons by fermions and vice versa:

q |n b, nf >= q0
√
n b |n b − 1, nf + 1 >,

q† |n b, nf >= q0
√
n b + 1 |n b + 1, nf − 1 >,

(15)

and that
q |nb, n f >= q0

√
nb |nb − 1, n f + 1 >,

q† |nb, n f > q0
√
nb + 1 |nb + 1, n f − 1 > .

(16)

This framework combines bosonic and fermionic states on the same footing, rotating them into each other
under the action of operators q and q. So, we may refer the action of the supercharge operators q and q† to
the background space M4, having applied in the chain transformations of fermion χ (accompanied with the
auxiliary field F as it will be seen later on) to boson A, defined on M 2:

−→ χ(F ) −→ A −→ χ(F ) −→ A −→ χ(F ) −→ . (17)

Respectively, we may refer the action of the supercharge operators q and q† to the M 2, having applied in
the chain transformations of fermion χ (accompanied with the auxiliary field F ) to boson A, defined on the
background space M4:

−→ χ(F ) −→ A −→ χ(F ) −→ A −→ χ(F ) −→ . (18)
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The successive atomic double transitions of a particle M4 
M 2 is investigated within MSp-SUSY, wherein
all the particles are living on M4, their superpartners can be viewed as living on MSp. The underlying
algebraic structure of MSp-SUSY generators closes with the algebra of translations on the original space M4

in a way that it can then be summarized as a non-trivial extension of the Poincaré group algebra those of the
commutation relations of the bosonic generators of four momenta and six Lorentz generators referred to M4.
Moreover, if there are several spinor generators Q i

α with i = 1, ..., N - theory with N−extended supersym-
metry, can be written as a graded Lie algebra of SUSY field theories, with commuting and anticommuting
generators:

{Q i
α , Q̄

j
α̇} = 2δij σm̂αα̇ pm̂;

{Q i
α , Q

j
β } = {Q̄i α̇, Q̄

j

β̇
} = 0; [pm̂, Q

i
α ] = [pm̂, Q̄

j
α̇] = 0, [pm̂, pn̂] = 0.

(19)

The anticommuting (Grassmann) parameters εα(ξα, ξα) and ε̄α(ξ̄α, ξ̄
α
):

{εα, εβ} = {ε̄α, ε̄β} = {εα, ε̄β} = 0, {εα, Qβ} = · · · = [pm̂, ε
α] = 0, (20)

allow us to write the algebra (19) for (N = 1) entirely in terms of commutators:

[εQ, Q̄ε̄] = 2εσm̂ε̄pm̂, [εQ, εQ] = [Q̄ε̄, Q̄ε̄] = [pm̂, εQ] = [pm̂, Q̄ε̄] = 0. (21)

For brevity, here the indices εQ = εαQα and ε̄Q̄ = ε̄α̇Q̄
α̇ will be suppressed unless indicated otherwise. This

supersymmetry transformation maps tensor fields A(A, A) into spinor fields ψ(χ, χ) and vice versa. From
the algebra (21) we see that Q has mass dimension 1/2. Therefore, as usual, fields of dimension ` transform
into fields of dimension ` + 1/2 or into derivatives of fields of lower dimension. It can be checked that the
supersymmetry transformations close supersymmetry algebra:

(δξ1δξ2 − δξ2δξ1)A = −2i(ξ1σ
mξ̄2 − ξ2σ

mξ̄1)(δ0
m∂0 + 1

|~x|x
iδim∂1)A. (22)

The guiding principle of MSp-SUSY resides in constructing the superspace which is a 14D-extension of
a direct sum of background spaces M4 ⊕ M 2 (spanned by the 6D-coordinates Xm̂ = (xm, ηm) by the
inclusion of additional 8D-fermionic coordinates Θα = (θα, θα) and Θ̄α̇ = (θ̄α̇, θ̄ α̇), as to (q, q), respectively.
Therewith thanks to the embedding M 2 ↪→ M4, the spinors (θ, θ̄), in turn, induce the spinors θ(θ, θ̄) and
θ̄(θ, θ̄), as to M4. These spinors satisfy the following relations:

{Θα, Θβ} = {Θ̄α̇, Θ̄β̇} = {Θα, Θ̄β̇} = 0,

[xm, θα] = [xm, θ̄α̇] = 0, [ηm, θα] = [ηm, θ̄α̇] = 0.
(23)

and Θα∗ = Θ̄α̇. Points in superspace are identified by the generalized coordinates

z(M) = (Xm̂, Θα, Θ̄α̇) = (xm, θα, θ̄α̇)⊕ (ηm, θα, θ̄α̇).

We have then the one most commonly used `real´ or `symmetric´ superspace parametrized by

Ω(X, Θ, Θ̄) = ei(−X
m̂pm̂+ΘαQα+Θ̄α̇Q̄

α̇) = Ωq(x, θ, θ̄)× Ωq(η, θ, θ̄), (24)

where we now imply a summation over m̂ = (m,m). To study the effect of supersymmetry transformations,
we consider

g(0, ε, ε̄) Ω(X, Θ, Θ̄) = ei(ε
αQα+ε̄α̇Q̄

α̇) ei(−X
m̂pm̂+ΘαQα+Θ̄α̇Q̄

α̇). (25)

the transformation (25) induces the motion:

g(0, ε, ε̄) Ω(Xm̂, Θ, Θ̄) → (Xm̂ + iΘσm̂ ε̄− i ε σm̂ Θ̄, Θ + ε, Θ̄ + ε̄), (26)

namely,
gq(0, ξ, ξ̄) Ωq(x, θ, θ̄) → (xm + i θ σm ξ̄ − i ξ σm θ̄, θ + ξ, θ̄ + ξ̄),
gq(0, ξ, ξ̄) Ωq(η, θ, θ̄) → (ηm + i θ σm ξ̄ − i ξ σm θ̄, θ + ξ, θ̄ + ξ̄).

(27)

The spinors θ(θ, θ̄) and θ̄(θ, θ̄) satisfy the embedding relations ∆x0 = ∆x0 and ∆x2 = (∆~x)2, so from (27)
we obtain

θ σ0 ξ̄ − ξ σ0 θ̄ = θ σ0 ξ̄ − ξ σ0 θ̄, (θ σ3 ξ̄ − ξ σ3 θ̄)2 = (θ ~σ ξ̄ − ξ ~σ θ̄)2. (28)
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The atomic displacement caused by double transition of a particle M4 
M 2 reads

∆η
(a)

= em∆η
m
(a) = uτ, (29)

where the components ∆η
m
(a) are written

∆η
m
(a) = (θ σm θ̄)τ. (30)

In Van der Warden notations for the Weyl two-component formalism θ̄α̇ = (θα)∗, the (29) can be recast into
the form

∆η2
(a)

= 1
2

[
(∆x

0
(a)q)

2 − (∆x
1
(a))

2
]
, (31)

where ∆x
0
(a) = v0τ , ∆x

1
(a) = v1 τ , and v(±) = 1√

2
(v0 ± v1). Hence the velocities of light in vacuum, v0 = c,

and of a particle ,~v 1 = e1v
1 = ~n|~v| = ~v (|~v| ≤ c), are

v0 = θ σ0 θ̄ = (θ1 θ̄1 + θ2 θ̄2) = θ θ̄,
v1 = θ σ1 θ̄ = (θ1 θ̄1 − θ2 θ̄2),

(32)

where

θ1(θ, θ̄) = 1
2

[(
v0 +

√
2
3v

1
)1/2

+
(
v0 −

√
2
3v

1
)1/2

]
,

θ2(θ, θ̄) = 1
2

[(
v0 +

√
2
3v

1
)1/2

−
(
v0 −

√
2
3v

1
)1/2

]
.

(33)

Thus we derive the first founding property (i) that the atomic displacement ∆η
(a)

, caused by double transition

of a particle M4 
M 2, is an invariant:

(i) ∆η
(a)

= ∆η′
(a)

= · · · = inv. (34)

The (32) gives the second (ii) founding property that the bilinear combination θ θ̄ is a constant:

(ii) c = θ θ̄ = θ′ θ̄
′
= · · · = const. (35)

The latter yields a second postulate of SR (Einstein’s postulate) - the velocity of light, c, in free space
appears the same to all observers regardless the relative motion of the source of light and the observer. The
c is the maximum attainable velocity (32) for uniform motion of a particle in Minkowski background space,
M4. Equally noteworthy is the fact that (34) and (35) combined yield invariance of the element of interval
between two events ∆x = k∆η

(a)
(for given integer number k) with respect to the Lorentz transformation:

k2∆η2
(a)

= (c2 − v2
1)∆t2 = (c2 − ~v 2)∆t2 = (∆x0)2 − (∆~x)2 ≡ (∆s)2 = (∆x′0)2−

(∆~x)′2 ≡ (∆s′)2 = · · · = inv.,
(36)

where x0 = ct, x0′ = ct′, . . . . We have here introduced a notion of physical relative finite time intervals
between two events ∆t = kτ/

√
2, ∆t′ = kτ ′/

√
2, ....

3. Accelerated motion and local M̃Sp-SUSY

On the premises of Section 2, in what follows, we address the accelerated motion and inertia effects in
the framework of local M̃Sp-SUSY.

In case of an accelerated (a = |~a| 6= 0) motion of a particle in M4, according to (27), we have then

i√
2

(
θ σ3 d2ξ̄

dt2
− d2ξ

dt2
σ3θ̄
)

= d2q
dt2

= a = 1√
2

(
d2η(+)

dt2
− d2η(−)

dt2

)
=

1√
2

(
a(+) − a(−)

)
, a(±) = dv(±)

dt .
(37)

So, we may relax the condition ∂m̂ε = 0 and promote this symmetry to a local supersymmetry in which
the parameter ε = ε(Xm̂) depends explicitly on Xm̂ = (x̃m, η̃m), where x̃m ∈ M̃4 and η̃m ∈ M̃2. The
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mathematical structure of the local M̃Sp-SUSY theory has much in common with those used in the geo-
metrical framework of standard supergravity theories. Such a local SUSY can already be read off from the
algebra (21) in the form

[ε(X)Q, Q̄ε̄(X)] = 2ε(X)σm̂ε̄(X)p̃m̂, (38)

which says that the product of two supersymmetry transformations corresponds to a translation in space-
time of which the four momentum p̃m̂ is the generator. In accord, the transformation (22) is expected to be
somewhat of the form

[δε1(X), δε2(X)]V ∼ ε1(X)σm̂ε̄2(X) ∂m̂V, (39)

that differ from point to point, namely this is the notion of a general coordinate transformation. Whereupon
we see that for the local M̃Sp-SUSY to exist it requires the background spaces (M̃4, M̃ 2) to be curved.

Thereby, the space M̃4, in order to become on the same footing with the distorted space M̃ 2, refers to the
accelerated proper reference frame of a particle, without relation to other matter fields. A useful guide in
the construction of local superspace is that it should admit rigid superspace as a limit. The reverse is also
expected, since if one starts with a constant parameter ε (20) and performs a local Lorentz transformation,
then this parameter will in general become space-time dependent as a result of this Lorentz transformation.

Supergravity theories have been successfully formulated in terms of differential forms in superspace. We
may introduce supergravity in a way which is manifestly covariant under such coordinate transformations.
This leads us to extend the concept of differential forms to superspace. Coordinates of curved superspace
are denoted

zM = (Xm̂, Θ, Θ̄) = z(M̃4) ⊕ z(M̃ 2) = (x̃m, θ, θ̄)⊕ (η̃m, θ, θ̄), (40)

and differential elements

dzM = (dXm̂, dΘ, dΘ̄) = dz(M̃4) ⊕ dz(M̃ 2) = (dx̃m, dθ, dθ̄)⊕ (dη̃m, dθ, dθ̄), (41)

where M ≡ (m̂, µ̂, ˆ̇µ), m̂ ≡ (m,m), Θµ̂ ≡ (θµ, θµ) and Θ̄ ˆ̇µ ≡ (θ̄µ̇, θ̄µ̇). The µ̂ are all upper indices, while ˆ̇µ is

a lower index. Elements of superspace obey the following multiplication law:

zMzN = (−1)nmzNzM . (42)

Here n is a function of N and m is a function of M . These functions take the values zero or one, depending
on whether N and M are vector or spinor indices. Exterior products in superspace are defined in complete
analogy to ordinary space:

dzM ∧ zN = −(−1)nmdzN ∧ dzM ,
dzMzN = (−1)nmdzN ∧ zM . (43)

With this definition, differential forms have a standard extension to superspace. The differentials are written
to the left of the coefficient function and the indices are labeled in such a way that there is always an
even number of indices between those being summed. We shall, as usual, drop the symbol ∧ for exterior
multiplication. Functions of the superspace variable z are called zero-forms. Having defined superspace
forms, we must also introduce exterior derivatives. Exterior derivatives map zero-forms into one-forms.
Equations written in terms of differential forms and exterior derivatives are covariant under coordinate
changes. Objects which transform linearly under a representation of the structure group are called tensors.
Note that exterior derivatives do not map tensors into tensors. Connections are Lie algebra valued one-forms.
The curvature tensor is a Lie algebra valued two-form. The curvature form and the covariant derivative of a
tensor are, in general, the only tensorial quantities which may be constructed by taking derivatives. Higher
derivatives lead to identities (and not to new tensors) because of the fact that dd = 0. These identities are
called Bianchi identities. Bianchi identities of the first type are found from the covariant derivative. Bianchi
identities of the second type are found from the curvature form. Here we shall forbear to write the details
out as the standard theory is so well known. Together with other details of the theory, they can be seen in
the textbooks, e.g. (Wess & Bagger, 1983, West, 1987).

Similar to (26), the multiplication of two local successive supersymmetric transformations induces the
motion

g(0, ε(X), ε̄(X)) Ω(Xm̂, Θ, Θ̄) −→
(Xm̂ + iΘσm̂ ε̄(X)− i ε(X)σm̂ Θ̄, Θ + ε(X), Θ̄ + ε̄(X)).

(44)

In its simplest version, supergravity was conceived as a quantum field theory whose action included the
gravitation field term, where the graviton coexists with a fermionic field called gravitino, described by the
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Rarita-Scwinger kinetic term. The two fields differ in their spin: 2 for the graviton, 3/2 for the gravitino.
The different 4D N = 1 supergravity multiplets all contain the graviton and the gravitino, but differ by their
systems of auxiliary fields. For a detailed discussion we refer to the papers by (Binetruy et al., 2001, Fayet
& Ferrara, 1977, Jacob, 1987, Nilles, 1984, Wess & Bagger, 1983, West, 1987, van Nieuwenhuizen, 1981, van
Nieuwenhuizen et al., 1976). These fields would transform into each other under local supersymmetry. We
may use the usual language which is almost identical to the vierbien formulation of GR with some additional
input. In this framework supersymmetry and general coordinate transformations are described in a unified
way as certain diffeomorphisms. The motion (44) generates certain coordinate transformations:

zM −→ z′M = zM − ζM (z), (45)

where ζM (z) arc arbitrary functions of z. The dynamical variables of superspace formulation are the frame
field EA(z) and connection Ω. Using the analogue of Cartan’s local frame, the superspace (zM , Θ, Θ̄) has
at each point a tangent superspace spanned by the frame field defined as a 1-form over superspace

EA(z) = dzME A
M (z), (46)

with coefficient superfields, generalizing the usual frame, namely supervierbien E A
M (z). Here, we use the first

half of capital Latin alphabet A,B, . . . to denote the anholonomic indices related to the tangent superspace
structure group, which is taken to be just the Lorentz group. The inverse vielbein E M

A (z) is defined by the
relations

E A
M (z)E N

A (z) = δ N
M , E M

A (z)E B
M (z) = δ B

A , (47)

where

δ N
M =

 δ n̂
m̂ 0 0
0 δ ν̂

µ̂ 0

0 0 δ
ˆ̇ν

ˆ̇µ

 , (48)

The formulation of supergravity in superspace provides a unified description of the vierbein and the
Rarita-Schwinger fields, which are identified in a common geometric object, the local frame EA(z) of super-
space. They are manifestly coordinate independent. The upper index A is reserved for the structure group,
for which we take the Lorentz group. This is because we would like to recover supersymmetric flat space as
a solution to our dynamical theory. With this choice, the reference frame defined by the vielbein is locally
Lorentz covariant.

δEA = EBL A
B (z), δE A

M = E B
M L A

B (z). (49)

The indices transforming under the structure group will be called Lorentz indices. The Lorentz generators

L A
B (z) have three irreducible components: L â

b̂
, L α

β and Lβ̇α̇. The vielbein forms Eâ = dzME â
M , Eα̂ =

dzME α̂
M , and E ˆ̇α = dzMEM ˆ̇α are coordinate-independent irreducible Lorentz tensors.

To formulate covariant derivatives one must introduce a connection form

φ = dzMφM , φM = φ B
MA, (50)

transforming as follows under the structure group:

δφ = φL− Lφ− dL. (51)

Connections are Lie algebra valued one-forms

φ = dzMφ r
M (z)iT r, (52)

with the following transformation law:

φ′ = X−1φX −X−1dX, (53)

where r runs over the dimension of the algebra. The connection is the second dynamical variable in this
theory. The φ B

MA is Lie algebra valued in its two Lorentz indices:

φMAB = −(−1)abφMBA. (54)
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The covariant derivative of the vielbein is called torsion:

TA = dEA + EBφ A
B . (55)

In flat space it is possible to transform the vielbein into the global reference frame: EA = eA. It is defined
up to rigid Lorentz transformations. In this frame the connection vanishes: φ = 0. The torsion, however, is
non-zero because of the following non-zero components:

T ĉ

α̂
ˆ̇
β

= T ĉ
ˆ̇
βα̂

= 2iσ ĉ

α̂
ˆ̇
β
. (56)

The curvature tensor is defined in terms of the connection:

R = dφ+ φφ. (57)

It is a Lie algebra valued two-form:
R B
A = 1

2dz
MdzNR B

NMA . (58)

Covariant derivatives with respect to local Lorentz transformations are constructed by means of the spin
connection Ω, which is a 1-form in superspace. Supergauge transformations are constructed from the general
coordinate and structure group transformations of superspace:

L A
B = −ζCφ A

CB . (59)

They amount to a convenient reparametrization of these transformations. Supergauge transformations
map Lorentz tensors into Lorentz tensors and reduce to supersymmetry transformations in the limit of
flat space. The parameter ζ characterizes infinitesimal changes in coordinates. Whereas, either ζA or
ζM may be chosen as the field-independent transformation parameter. Its companion then depends on
the fields through the vielbein. Since we would like Lorentz tensors to transform into Lorentz tensors,
we shall choose ζA to be field-independent. Supergauge transformations consist of a general coordinate
transformation with field-independent parameter ζA followed by a structure group Lorentz transformation
with field-dependent parameter (68). It is among this restricted class of transformations that we shall find
the gauged supersymmetry transformations.

The super-vielbein E A
M and spin-connection Ω contain many degrees of freedom. Although some of

these are removed by the tangent space and supergeneral coordinate transformations, there still remain
many degrees of freedom. There is no general prescription for deducing necessary covariant constraints
which if imposed upon the superfields of super-vielbein and spin-connection will eliminate the component
fields. However, some usual constraints can be found using tangent space and supergeneral coordinate
transformations of the torsion and curvature covariant tensors, given in appropriate super-gauge. The
transformation parameters ζA and Lâb̂ are functions of superspace. Their lowest components characterize
general coordinate transformations in six-dimensional X-space [ζ â(Xm̂)], gauged supersymmetry transfor-
mations [ζα̂(X)], ζ ˆ̇α(X)], and local Lorentz transformations Lâb̂(X). We will use their higher components
to transform away certain Θ = Θ̄ = 0 components of the vielbein and the connection. Let us consider the
vielbein. Its transformation law may be written as a super-gauge transformation together with an additional
Lorentz transformation L A

B :

δζE
A

M = −DMζA − ζBT A
BM + E B

M L A
B . (60)

The lowest component of this equation gives the transformation property of E A
M |Θ=Θ̄=0. Higher components

of ζA enter δE A
M | through the covariant derivatives Dµ̂ζA and D̄ ˆ̇µζA. One may use these higher components

to transform super-vielbein to the final form, see e.g. (Wess & Bagger, 1983), where the minimum number
of independent component fields are the graviton, e â

m̂ (X), and the gravitino, ψ α̂
m̂ (X), ψ̄m̂ ˆ̇α(X). Since

E M
A (z)

∣∣
Θ=Θ̄=0

= E
m
a (z(M̃ 2))

∣∣∣
θ=θ̄=0

⊕ E m
a (z(M̃4))

∣∣∣
θ=θ̄=0

, (61)
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accordingly, we find

E
m
a (z(M̃ 2))

∣∣∣
θ=θ̄=0

=


e
a
m (η̃) 1

2ψ
α
m (η̃) 1

2 ψ̄mα̇(η̃)

0 δ
α
µ 0

0 0 δ
µ̇

α̇

 ,

E m
a (z(M̃4))

∣∣∣
θ=θ̄=0

=


e a
m (x) 1

2ψ
α
m (x) 1

2 ψ̄mα̇(x)

0 δ α
µ 0

0 0 δµ̇α̇

 .

(62)

The fields of graviton and gravitino cannot be gauged away. Provided, we have

e m̂
â e b̂

m̂ = δb̂â, ψ µ̂
â = e m̂

â ψ α̂
m̂ δµ̂α̂, ψ̄â ˆ̇µ = e m̂

â ψ̄m̂ ˆ̇αδ
ˆ̇µ
ˆ̇α
. (63)

The tetrad field
e â
m̂ (X) = (e a

m (η̃), e a
m (x))

plays the role of a gauge field associated with local transformations. The Majorana type field

1

2
ψ α̂
m̂ =

1

2
(ψ α

m (η̃), ψ α
m (x))

is the gauge field related to local supersymmetry. These two fields belong to the same supergravity multiplet
which also accommodates auxiliary fields so that the local supersymmetry algebra closes. Under infinitesimal
transformations of local supersymmetry, they transformed as

δe â
m̂ = i(ψm̂σ

âζ − ζσâψ̄m̂),

δψm̂ = −2Dm̂ζα̂ + ie ĉ
m̂{

1
3M(εσĉζ̄)α̂ + bĉζ

α̂ + 1
3b
d̂(ζσd̂σ̄ĉ)},

(64)

etc., where M(X) = −6R(z)|Θ=Θ̄=0 and bâ(X) = −3G(z)|Θ=Θ̄=0 are the auxiliary fields, and

ζα̂(z) = ζα̂(X), ζ̄α̂(z) = ζ̄α̂(X),
ζ ā(z) = 2i[Θσâζ̄(X)− ζ(X)σâΘ̄].

(65)

These auxiliary fields are not restricted by any differential equations in X-space.

4. Non-trivial linear representation of the M̃Sp-SUSY algebra

With these guidelines to follow, we start by considering the simplest example of a supersymmetric theory
in six dimensional background curved spaces M̃4 ⊕ M̃ 2 as the M̃Sp-generalization of flat space MSp-SUSY
model. The chiral superfields are defined as D̄ ˆ̇αΦ = 0, which reduces to D̄ ˆ̇αΦ = 0 in flat space. To obtain
a feeling for this model we may consider first example of non-trivial linear representation (χ̂,A,F), of

the M̃Sp-SUSY algebra. This has N = 1 and s0 = 0, and contains two Weyl spinor states of a massive
Majorana spinor χ̂(χ, χ), two complex scalar fields A(A, A), and two more real scalar degrees of freedom
in the complex auxiliary fields F(F, F ), which provide in supersymmetry theory the fermionic and bosonic
degrees of freedom to be equal off-shell as well as on-shell, and are eliminated when one goes on-shell. The
component multiplets, (χ̂,A,F), are called the chiral or scalar multiplets. We could define the component
fields as the coefficient functions of a power series expansion in Θ and Θ̄. This decomposition, however, is
coordinate-dependent. It is, therefore, more convenient to define them as

A = Φ|Θ=Θ̄=0 , χ̂α̂ = 1√
2
Dα̂ Φ|Θ=Θ̄=0 , F = −1

4D
α̂Dα̂ Φ|Θ=Θ̄=0 , (66)

which carry Lorentz indices. They are related to the Θ and Θ̄ expansion coefficients through a transformation
which depends on the supergravity multiplet. The transformation laws of the component fields are found
from the transformation law of the superfield Φ:

δΦ = −ζADAΦ, (67)
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provided, the parameters ζA are specified as (65). Under infinitesimal transformations of local supersym-
metry, the transformation law of the chiral multiplet (see e.g. Wess & Bagger (1983),), incorporating with

embedding map M̃ 2 ↪→ M̃4, which is the map (2) rewritten for curved spaces M̃ 2 and M̃4, and the trans-
formation law A(η̃) = A(x̃ (5) for spin-zero scalar field, give

δA = −
√

2ζαχα,

δχα = −
√

2ζαF − i
√

2σ a
αβ̇

ζ̄ β̇D̂aA,

δF = −
√

2
3 M

∗ζαχα + ζ̄α̇
(

1
6

√
2bαα̇χ

α − i
√

2D̂αα̇χ
α
)
,

(68)

where

D̂aA ≡ e m
a

[(
∂x̃0

∂x̃m

)
∂̃0A+

(
∂|~̃x|
∂x̃m

)
∂̃1A− 1√

2
ψ µ
m χµ

]
,

D̂aχα = e m
a

(
Dmχα − 1√

2
ψmαF − i√

2
ψ̄ β̇
m D̂αβ̇A

)
.

(69)

In the same way, we should define the spinor χ as the field into which A(x) transforms. In this case, the
infinitesimal supersymmetry transformations for Q = q read

δA = −
√

2ζαχ
α
,

δχ
α

= −
√

2ζ
α
F − i

√
2σ

a

α β̇
ζ̄
β̇
D̂aA,

δF = −
√

2
3 M

∗ζαχ
α

+ ζ̄
α̇
(

1
6

√
2bα α̇ χ

α − i
√

2D̂α α̇ χ
α
)
,

(70)

where
D̂aA ≡ e m

a

[(
∂x̃0

∂x̃m

)
∂̃0A+

(
∂x̃i

∂x̃m

)
∂̃iA− 1√

2
ψ µ
m
χ
µ

]
,

D̂aχα = e
m
a

(
Dmχα −

1√
2
ψ
mα

F − i√
2
ψ̄

β̇

m
D̂α β̇A

)
.

(71)

The graviton and the gravitino form thus the basic multiplet of local M̃Sp-SUSY, and one expects the
simplest locally supersymmetric model to contain just this multiplet. The spin 3/2 contact term in total
Lagrangian arises from equations of motion for the torsion tensor, and that the original Lagrangian itself
takes the simpler interpretation of a minimally coupled spin (2, 3/2) theory.

5. Inertial effects

We would like to place the emphasis on the essential difference arisen between the standard supergravity
theories and some rather unusual properties of local M̃Sp-SUSY theory. In the framework of the standard
supergravity theories, as in GR, a curvature of the space-time acts on all the matter fields. The source
of graviton is the energy-momentum tensor of matter fields, while the source of gravitino is the spin-
vector current of supergravity. In the local M̃Sp-SUSY theory, unlike the supergravity, instead we argue
that a deformation/(distortion of local internal properties) of MSp, is the origin of the absolute acceleration
(~aabs 6= 0) and inertia effects (fictitious graviton). This refers to the particle of interest itself, without relation
to other matter fields, so that this can be globally removed by appropriate coordinate transformations. A
next member of the basic multiplet of local M̃Sp-SUSY -fictitious gravitino, will be arisen under infinitesimal

transformations of local supersymmetry, because the M̃Sp-SUSY is so constructed as to make these two

particles just as being the two bosonic and fermionic states in the curved background spaces M̃4 and
M̃ 2, respectively, or vice versa. Whereas, in order to become on the same footing with the distorted

space M̃ 2, the space M̃4 refers only to the accelerated proper reference frame of a particle. With these
physical requirements, a standard Lagrangian consisted of the gravitation field Lagrangian plus a part
which contains the Rarita-Schwinger field, and coupling of supergravity with matter superfields evidently
no longer holds. Instead we are now looking for an alternative way of implications of local M̃Sp-SUSY
for the model of accelerated motion and inertial effects. For example, we may with equal justice start
from the reverse, which as we mentioned before is also expected. If one starts with a constant parameter
ε (20) and performs a local Lorentz transformation, which can only be implemented if MS and space-

time are curved (deformed/distorted) (M̃2, M̃4), then this parameter will in general become space-time

dependent as a result of this Lorentz transformation, which readily implies local M̃Sp-SUSY. In going

into practical details of the realistic local M̃Sp-SUSY model, it remains to derive the explicit form of the
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vierbien e â
m̂ (%) ≡ (e a

m (%), e
a
m (%)), which describes fictitious graviton as a function of local rate %(η,m, f) of

instantaneously change of the velocity v(±) of massive (m) test particle under the unbalanced net force (f).
We, of course, does not profess to give any clear-cut answers to all the problems addressed, the complete
picture of which, of course, is largely beyond the scope of present paper. In particular, the latter does not
allows us to offer here a straightforward recipe for deducing the vierbien e â

m̂ (%) in the framework of quantum

field theory of M̃Sp-supergravity, where the accelerated frame has to be described as the frame that has
torsion. This will be a separate topic for research in a subsequent paper. Therefore, cutting short where
our analysis is leading to, instead we now turn to recently derived by Ter-Kazarian (2012) the vierbien
e â
m̂ (%) in the framework of classical physics. Together with other usual aspects of the theory, the latter

illustrates a possible solution to the problems of inertia behind spacetime deformations. It was argued
that a deformation/(distortion of local internal properties) of M 2 is the origin of inertia effects that can

be observed by us. Consequently, the next member of the basic multiplet of local M̃Sp-SUSY -fictitious
gravitino, ψ α

m̂ (%), will be arisen under infinitesimal transformations of local supersymmetry (64), provided
by the local parameters ζM (a) (45).

For brevity reason, we shall forbear here review of certain essential theoretical aspects of a general
distortion of local internal properties of MSp, formulated in the framework of classical physics by Ter-
Kazarian (2012). But for the self-contained arguments, the interested reader is invited to consult the
original paper.

6. Model building in the 4D background Minkowski space-time

In this section, we briefly discuss the RTI in particular case when the relativistic test particle accelerated
in the background flat M4 space under an unbalanced net force other than gravitational, but we refer to
the original paper for more details. To make the remainder of our discussion a bit more concrete, it proves
necessary to provide, further, a constitutive ansatz of simple, yet tentative, linear distortion transformations
of the basis em at the point of interest in flat space M 2, which can be written in terms of local rate
%(η,m, f) of instantaneously change of the measure vm of massive test particle under the unbalanced net
force (f) (Ter-Kazarian, 2012):

e ˜(+)
(%) = D

m
˜(+)

(%) em = e (+) − %(η,m, f) v(−) e (−),

e ˜(−)
(%) = D

m
˜(−)

(%) em = e (−) + %(η,m, f) v(+) e (+),
(72)

Clearly, these transformations imply a violation of relation e2
µ(%) 6= 0 for the null vectors em. The norm in

the resulting general deformed/distorted space M̃ 2 now can be rewritten in terms of space-time variables
as

id = e ϑ ≡ d˜̂q = ẽ0 ⊗ dt̃+ ẽq ⊗ dq̃, (73)

where ẽ0 and ẽq are, respectively, the temporal and spatial basis vectors in M̃ 2:

ẽ0(%) = 1√
2

[
e ˜(+)

(%) + e ˜(−)
(%)
]
, ẽq(%) = 1√

2

[
e ˜(+)

(%)− e ˜(−)
(%)
]
. (74)

Hence, in the framework of the space-time deformation/distortion theory (Ter-Kazarian, 2012), we can
compute the general metric g̃ as

g̃ = gr̃s̃ dq̃
r̃ ⊗ dq̃s̃, (75)

provided

g0̃0̃ = (1 +
%vq√

2
)2 − %2

2 , g1̃1̃ = −(1− %vq√
2

)2 + %2

2 , g1̃0̃ = g0̃1̃ = −
√

2%. (76)

We suppose that a second observer, who makes measurements using a frame of reference S̃(2) which is held

stationary in curved (deformed/distorted) master space M̃ 2, uses for the test particle the corresponding

space-time coordinates q̃r̃
(

(q̃0̃, q̃1̃) ≡ (t̃, q̃)
)

. The very concept of the local absolute acceleration (in New-

ton’s terminology) is introduced by Ter-Kazarian (2012), brought about via the Fermi-Walker transported
frames as

~aabs ≡ ~eq d(%)√
2dsq

= ~eq |
de0̂
ds | = ~eq |a|. (77)
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Here we choose the system S(2) in such a way as the axis ~eq lies along the net 3-acceleration (~eq ||~ea), (~ea =
~anet/|~anet|), ~anet is the local net 3-acceleration of an arbitrary observer with proper linear 3-acceleration,
~a, and proper 3-angular velocity, ~ω, measured in the rest frame: ~anet = d~u

ds = ~a ∧ ~u + ~ω × ~u, where u is

the 4-velocity. A magnitude of ~anet can be computed as the simple invariant of the absolute value |duds | as
measured in rest frame:

|a| = |duds | =
(
dul

ds ,
dul
ds

)1/2
. (78)

Following Misner et al. (1973), Synge (1960), we also define the orthonormal frame, ea, carried by an accel-
erated observer, who moves with proper linear 3-acceleration, ~a(s), and proper 3-rotation, ~ω(s). Particular
frame components are ea, where a = 0̂, 1̂, etc. Let the zeroth leg of the frame e0̂ be 4-velocity u of the
observer that is tangent to the worldline at a given event xl(s) and we parameterize the remaining spatial
triad frame vectors eî, orthogonal to e0̂, also by (s). The spatial triad eî rotates with proper 3-rotation ~ω(s).
The 4-velocity vector naturally undergoes Fermi-Walker transport along the curve C, which guarantees that
e0̂(s) will always be tangent to C determined by xl = xl(s):

dea
ds = −Φ ea (79)

where the antisymmetric rotation tensor Φ splits into a Fermi-Walker transport part ΦFW and a spatial
rotation part ΦSR:

Φlk
FW = aluk − akul, Φlk

SR = umωnε
mnlk. (80)

The 4-vector of rotation ωl is orthogonal to 4-velocity ul, therefore, in the rest frame it becomes ωl(0, ~ω),
and εmnlk is the Levi-Civita tensor with ε0123 = −1. So, the resulting metric (75) is reduced to

ds̃2
q = Ω2(%) ds2

q , Ω(%) = 1 + %2, %2 = v2%2, v2 = v(+)v(−), % =
√

2
∫ sq

0 |a|ds
′
q. (81)

Combining (37) and (77), we obtain

% = i
γ2q

∣∣∣(θ σ3 dξ̄
dsq
− dξ

dsq
σ3θ̄
)∣∣∣ , (82)

where γq = (1− v2
q )
−1/2. The resulting inertial force ~f(in) has computed by Ter-Kazarian (2012) as

~f(in) = −mΓ1
r̃s̃(%)dq̃

r̃

ds̃q
dq̃s̃

ds̃q
= − m~aabs

Ω2(%) γq
, (83)

Whereupon, in case of absence of rotation, the relativistic inertial force reads

~f(in) = − 1
Ω2(%) γqγ

[~F + (γ − 1)~v(~v·~F )
|~v|2 ]. (84)

Note that the inertial force arises due to nonlinear process of deformation of MSp, resulting after all to linear
relation (84). So, this also ultimately requires that MSp should be two dimensional, because in this case
we may reconcile the alluded nonlinear and linear processes by choosing the system S(2) in only allowed
way mentioned above. At low velocities vq ' |~v| ' 0 and tiny accelerations we usually experience, one has
Ω(%) ' 1, therefore the (84) reduces to the conventional non-relativistic law of inertia

~f(in) = −m~aabs = −~F . (85)

At high velocities vq ' |~v| ' 1 (Ω(%) ' 1), if (~v · ~F ) 6= 0, the inertial force (84) becomes

~f(in) ' − 1
γ~ev(~ev · ~F ), (86)

and it vanishes in the limit of the photon (|~v| = 1, m = 0). Thus, it takes force to disturb an inertia
state, i.e. to make the absolute acceleration (~aabs 6= 0). The absolute acceleration is due to the real defor-
mation/distortion of the space M 2. The relative (d(τ2%)/dsq = 0) acceleration (in Newton’s terminology)
(both magnitude and direction), to the contrary, has nothing to do with the deformation/distortion of the
space M 2 and, thus, it cannot produce an inertia effects.
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7. Beyond the hypothesis of locality

In SR an assumption is required to relate the ideal inertial observers to actual observers that are all
noninertial, i.e., accelerated. Therefore, it is a long-established practice in physics to use the hypothesis
of locality (Hehl & Ni, 1990, Hehl et al., 1991, Li & Ni, 1979, Mashhoon, 2002, 2011, Misner et al., 1973,
Ni, 1977, Ni & Zimmermann, 1978), for extension of the Lorentz invariance to accelerated observers in
Minkowski space-time. The standard geometrical structures, referred to a noninertial coordinate frame of
accelerating and rotating observer in Minkowski space-time, were computed on the base of the assumption
that an accelerated observer is pointwise inertial, which in effect replaces an accelerated observer at each
instant with a momentarily comoving inertial observer along its wordline. This assumption is known to
be an approximation limited to motions with sufficiently low accelerations, which works out because all
relevant length scales in feasible experiments are very small in relation to the huge acceleration lengths
of the tiny accelerations we usually experience, therefore, the curvature of the wordline could be ignored
and that the differences between observations by accelerated and comoving inertial observers will also be
very small. However, it seems quite clear that such an approach is a work in progress, which reminds
us of a puzzling underlying reality of inertia, and that it will have to be extended to describe physics for
arbitrary accelerated observers. Ever since this question has become a major preoccupation of physicists,
see e.g. (Hehl et al., 1991, Maluf & Faria, 2008, Maluf et al., 2007, Marzlin, 1996, Mashhoon, 95, 1988,
1990a,b, 2002, 2011) and references therein. The hypothesis of locality represents strict restrictions, because
in other words, it approximately replaces a noninertial frame of reference S̃(2), which is held stationary

in the deformed/distorted space M̃2 ≡ V
(%)
2 (% 6= 0), where V 2 is the 2D semi-Riemann space, with a

continuous infinity set of the inertial frames {S(2), S
′
(2), S

′′
(2), ...} given in the flat M2 (% = 0). In this

situation the use of the hypothesis of locality is physically unjustifiable. Therefore, it is worthwhile to

go beyond the hypothesis of locality with special emphasis on distortion of M 2 (M2 −→ V
(%)
2 ), which we

might expect will essentially improve the standard results. Here, following (Mashhoon, 2002, Misner et al.,
1973), we introduced a geodesic coordinate system - the coordinates relative to the accelerated observer (the
laboratory coordinates), in the neighborhood of the accelerated path. We choose the zeroth leg of the frame,
ĕ0̂, as before, to be the unit vector u that is tangent to the worldline at a given event xµ(s), where (s) is a
proper time measured along the accelerated path by the standard (static inertial) observers in the underlying
global inertial frame. Following (Maluf & Faria, 2008, Maluf et al., 2007, Marzlin, 1996, Mashhoon, 95, 1988,
1990a,b, 2002, 2011), in analogy with the Faraday tensor, one can identify the antisymmetric acceleration
tensor Φab −→ (−a, ω), with a(s) as the translational acceleration Φ0i = −ai, and ω(s) as the frequency
of rotation of the local spatial frame with respect to a nonrotating (Fermi- Walker transported) frame
Φij = −εijk ωk. The invariants constructed out of Φab establish the acceleration scales and lengths. The
hypothesis of locality holds for huge proper acceleration lengths |I|−1/2 � 1 and |I∗|−1/2 � 1, where the
scalar invariants are given by I = (1/2) Φab Φab = −~a2+~ω2 and I∗ = (1/4) Φ∗ab Φab = −~a·~ω (Φ∗ab = εabcd Φcd)
(Mashhoon, 95, 1988, 1990a,b, 2002, 2011). Suppose the displacement vector zµ(s) represents the position
of the accelerated observer. According to the hypothesis of locality, at any time (s) along the accelerated
worldline the hypersurface orthogonal to the worldline is Euclidean space and we usually describe some
event on this hypersurface (”local coordinate system”) at xµ to be at x̃µ, where xµ and x̃µ are connected
via x̃ 0 = s and

xµ = zµ(s) + x̃ i eµ
î
(s). (87)

Consequently, the standard metric of semi-Riemannian 4D background space V
(0)

4 in noninertial system of
the accelerating and rotating observer, computed on the base of hypothesis of locality (see also Mashhoon
(95, 1988, 1990a,b, 2002, 2011)), is:

g̃ = ηµν dx
µ ⊗ dxν =

[
(1 + ~a · ~̃x)2 + (~ω · ~̃x)2 − (~ω · ~ω)(~̃x · ~̃x)

]
dx̃0 ⊗ dx̃0−

2 (~ω ∧ ~̃x) · d~̃x⊗ dx̃0 − d~̃x⊗ d~̃x,
(88)

We see that the hypothesis of locality leads to the 2D semi-Riemannian space, V
(0)
2 , with the incomplete

metric g̃ (% = 0):

g̃ =
[
(1 + q̃ 1ϕ̃0)2 − (q̃ 1ϕ̃1)2

]
dq̃ 0 ⊗ dq̃ 0 − 2 (q̃ 1ϕ̃1) dq̃ 1 ⊗ dq̃ 0 − dq̃ 1 ⊗ dq̃ 1, (89)

provided,

q̃ 1ϕ̃0 = x̃ i Φ0
i , q̃ 1ϕ̃1 = x̃ i Φj

i ẽ
−1
j . (90)
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Therefore, our strategy now is to deform the metric (89) by carrying out an additional deformation of semi-

Riemannian 4D background space V
(0)

4 −→ M̃4 ≡ V
(%)

4 , in order it becomes on the same footing with the

complete metric g̃ (% 6= 0) (75) of the distorted space M̃ 2 ≡ V
(%)
2 . Let the Latin letters r̂, ŝ, ... = 0, 1 be

the anholonomic indices referred to the anholonomic frame er̂ = es̃ r̂ ∂s̃, defined on the V
(%)
2 , with ∂s̃ = ∂/∂ q̃s̃

as the vectors tangent to the coordinate lines. So, a smooth differential 2D-manifold V
(%)
2 has at each point

q̃s a tangent space T̃q̃V
(%)
2 , spanned by the frame, {er̂}, and the coframe members ϑr̂ = e r̂

s dq̃s̃, which

constitute a basis of the covector space T̃ ?q̃V
(%)
2 . All this nomenclature can be given for V

(0)
2 too. Then, we

may compute corresponding vierbein fields ẽ ŝ
r and e ŝ

r from the equations

gr̃s̃ = ẽ r̂′
r̃ ẽ ŝ′

s̃ or̂′ŝ′ , gr̃s̃(%) = e r̂′
r̃ (%) e ŝ′

s̃ (%) or̂′ŝ′ , (91)

with g̃rs (89) and gr̃s̃(%) (76). Hence

ẽ 0̂
0̃

= 1 + ~a · ~̃x, ẽ 1̂
0̃

= ~ω ∧ ~̃x, ẽ 0̂
1̃

= 0, ẽ 1̂
1̃

= 1,

e 0̂
0̃

(%) = 1 +
%vq√

2
, e 1̂

0̃
(%) = %√

2
, e 0̂

1̃
(%) = − %√

2
, e 1̂

1̃
(%) = 1− %vq√

2
.

(92)

A deformation V
(0)

4 −→ V
(%)

4 is equivalent to a straightforward generalization of (87) as

xµ −→ xµ(%) = zµ(%)(s) + x̃ i eµ
î
(s), (93)

provided, as before, x̃µ denotes the coordinates relative to the accelerated observer in 4D background space

V
(%)

4 . A displacement vector from the origin is then dzµ% (s) = eµ
0̂
(%) dx̃0, Inverting e ŝ

r (%) (92), we obtain

eµâ(%) = π b̂
â (%) eµ

b̂
, where

π0̂
0̂
(%) ≡ (1 + %2

2γ2q
)−1(1− %vq√

2
) (1 + ~a · ~̃x), πî

0̂
(%) ≡ −(1 + %2

2γ2q
)−1 %√

2
ẽi (1 + ~a · ~̃x),

π0̂
î
(%) ≡ (1 + %2

2γ2q
)−1

[
(~ω ∧ ~̃x)(1− %vq√

2
)− %√

2

]
ẽ−1
i , πĵ

î
(%) = δji π(%),

π(%) ≡ (1 + %2

2γ2q
)−1

[
(~ω ∧ ~̃x) %√

2
+ 1 +

%vq√
2

]
.

(94)

Thus,

dxµ% = dzµ% (s) + dx̃ i eµ
î
+ x̃ i deµ

î
(s) = (τ b̂ dx̃0 + πb̂

î
dx̃ i) eµ

b̂
, (95)

where

τ b̂ ≡ πb̂
0̂

+ x̃ i
(
πâ
î
Φb
a +

dπb̂
î

ds

)
. (96)

Hence, in general, the metric in noninertial frame of arbitrary accelerating and rotating observer in Minkowski
space-time is

g̃(%) = ηµν dx
µ
% ⊗ dxν% = Wµν(%) dx̃µ ⊗ dx̃ν , (97)

which can be conveniently decomposed according to

W00(%) = π2
[
(1 + ~a · ~̃x)2 + (~ω · ~̃x)2 − (~ω · ~ω)(~̃x · ~̃x)

]
+ γ00(%),

W0i(%) = −π2 (~ω ∧ ~̃x)i + γ0i(%), Wij(%) = −π2 δij + γij(%),
(98)

and that

γ00(%) = π
[
(1 + ~a · ~̃x)ζ0 − (~ω ∧ ~̃x) · ~ζ

]
+ (ζ0)2 − (~ζ)2, γ0i(%) = −π ζi + τ 0̂ π0̂

î
,

γij(%) = π0̂
î
π0̂
ĵ
, ζ0 = π

(
τ 0̂ − 1− ~a · ~̃x

)
, ~ζ = π

(
~τ − ~ω ∧ ~̃x

)
.

(99)

As we expected, according to (97)- (99), the matric g̃(%) is decomposed in the following form:

g(%) = π2(%) g̃ + γ(%), (100)

where γ(%) = γµν(%) dx̃µ⊗dx̃ν and Υ(%) = πââ(%) = π(%). In general, the geodesic coordinates are admissible
as long as (

1 + ~a · ~̃x+ ζ0

π

)2
>
(
~ω ∧ ~̃x+

~ζ
π

)2
. (101)
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The equations (88) and (97) say that the vierbein fields, with entries ηµν e
µ
â e

ν
b̂

= oâb̂ and ηµν e
µ
â e

ν
b̂

= γâb̂
lead to the relations

g̃ = oâb̂ ϑ̃
â ⊗ ϑ̃b̂, g = oâb̂ ϑ

â ⊗ ϑb̂ = γâb̂ ϑ̃
â ⊗ ϑ̃b̂, (102)

which readily leads to the coframe fields:

ϑ̃b̂ = e b̂
µ dx

µ = ẽb̂µ dx̃
µ, ẽb̂0 = N b

0 , ẽb̂ i = N b
i ,

ϑb̂ = e b̂
µ dx

µ
% = eb̂µ dx̃

µ = πb̂â ϑ̃
â, eb̂0 = τ b̂, eb̂ i = πb̂

î
.

(103)

Here N0
0 = N ≡

(
1 + ~a · ~̃x

)
, N0

i = 0, N i
0 = N i ≡

(
~ω · ~̃x

)i
, N j

i = δji . In the standard (3 + 1)-

decomposition of space-time, N and N i are known as lapse function and shift vector, respectively (Gronwald

& Hehl, 1996). Hence, we may easily recover the frame field eâ = eµâ ẽµ = π b̂
â ẽb̂ by inverting (103):

e0̂(%) = π(%)

π(%) τ 0̂(%)−π0̂
k̂
(%) τ k̂(%)

ẽ0 − τ î(%)

π(%) τ 0̂(%)−π0̂
k̂
(%) τ k̂(%)

ẽi,

eî(%) = −
π0̂
î
(%)

π(%) τ 0̂(%)−π0̂
k̂
(%) τ k̂(%)

ẽ0 + π−1(%)

[
δji +

τ j(%)π0̂
î
(%)

π(%) τ 0̂(%)−π0̂
k̂
(%) τ k̂(%)

]
ẽj .

(104)

A generalized transport for deformed frame eâ, which includes both the Fermi-Walker transport and distortion
of M 2, can be written in the form

deµâ
ds = Φ̃ b

a eµ
b̂
, (105)

where a deformed acceleration tensor Φ̃ b
a concisely is given by

Φ̃ = d lnπ
ds + πΦπ−1. (106)

Thus, we derive the tetrad fields e ŝ
r (%) (92) and eµâ(%) (104) as a function of local rate % of instantaneously

change of a constant velocity (both magnitude and direction) of a massive particle in M4 under the unbal-
anced net force, describing corresponding fictitious graviton. Then, the fictitious gravitino, ψ α

m̂ (%), will be
arisen under infinitesimal transformations of local supersymmetry (64), provided by the local parameters
ζM (a) (45).

8. Involving the background semi-Riemann space V4; Justification for the
introduction of the WPE

We can always choose natural coordinates Xα(T,X, Y, Z) = (T, ~X) with respect to the axes of the local

free-fall coordinate frame S
(l)
4 in an immediate neighbourhood of any space-time point (x̃p) ∈ V4 in question

of the background semi- Riemann space, V4, over a differential region taken small enough so that we can
neglect the spatial and temporal variations of gravity for the range involved. The values of the metric tensor
g̃µν and the affine connection Γ̃λµν at the point (x̃p) are necessarily sufficient information for determination
of the natural coordinates Xα(x̃µ) in the small region of the neighbourhood of the selected point (Weinberg,
1972). Then the whole scheme outlined in the previous subsections (a) and (b) will be held in the frame

S
(l)
4 . The general inertial force computed by Ter-Kazarian (2012) reads

~̃f (in) = − m~aabs
Ω2(%) γq

= − ~ef
Ω2(%) γq

|fα(l) −m
∂Xα

∂x̃σ Γσµν
dx̃µ

dS
dx̃ν

dS |. (107)

Whereas, as before, the two systems S2 and S
(l)
4 can be chosen in such a way as the axis ~eq of S(2) lies

(~eq = ~ef ) along the acting net force ~f = ~f(l) + ~fg(l), while the time coordinates in the two systems are

taken the same, q0 = t = X0 = T. Here ~f(l) is the SR value of the unbalanced relativistic force other

than gravitational and ~fg(l) is the gravitational force given in the frame S
(l)
4 . Despite of totally different

and independent sources of gravitation and inertia, at fα(l) = 0, the (107) establishes the independence of

free-fall (vq = 0) trajectories of the mass, internal composition and structure of bodies. This furnishes a
justification for the introduction of the WPE. A remarkable feature is that, although the inertial force has
a nature different than the gravitational force, nevertheless both are due to a distortion of the local inertial
properties of, respectively, 2D M 2 and 4D-background space.
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9. The inertial effects in the background post Riemannian geometry

If the nonmetricity tensor Nλµν = −Dλ gµν ≡ −gµν ;λ does not vanish, the general formula for the affine
connection written in the space-time components is (Poplawski, 2009)

Γρµ ν =
◦
Γ
ρ
µ ν +Kρ

µν −N
ρ
µν + 1

2N
ρ

(µ ν), (108)

where the metric alone determines the torsion-free Levi-Civita connection
◦
Γ
ρ
µν , Kρ

µν : = 2Q
ρ

(µν) +Qρµν
is the non-Riemann part - the affine contortion tensor. The torsion, Qρµν = 1

2 T
ρ
µν = Γρ[µ ν] given with

respect to a holonomic frame, d ϑρ = 0, is a third-rank tensor, antisymmetric in the first two indices, with 24
independent components. We now compute the relativistic inertial force for the motion of the matter, which
is distributed over a small region in the U4 space and consists of points with the coordinates xµ, forming an
extended body whose motion in the space, U4, is represented by a world tube in space-time. Suppose the
motion of the body as a whole is represented by an arbitrary timelike world line γ inside the world tube,
which consists of points with the coordinates X̃µ(τ), where τ is the proper time on γ. Define

δxµ = xµ − X̃µ, δx0 = 0, uµ = d X̃µ

d s . (109)

The Papapetrou equation of motion for the modified momentum (Bergmann & Thompson, 1953, Møller,
1958, Papapetrou, 1974, Poplawski, 2009) is

◦
DΘν

D s = −1
2

◦
R ν

µσρ u
µ Jσρ − 1

2 NµρλK
µρλ: ν , (110)

where Kµ
νλ is the contortion tensor,

Θν = P ν + 1
u0

◦
Γ ν
µ ρ (uµ Jρ0 +N0µρ)− 1

2u0
K ν
µρ N

µρ0 (111)

is referred to as the modified 4-momentum, P λ =
∫
τλ0 dΩ is the ordinary 4-momentum, dΩ := d x4, and

the following integrals are defined:

Mµρ = u0
∫
τµρ dΩ, Mµνρ = −u0

∫
δxµ τνρ dΩ, Nµνρ = u0

∫
sµνρ dΩ,

Jµρ =
∫

(δxµ τρ0 − δxρ τµ0 + sµρ0) dΩ = 1
u0

(−Mµρ0 +Mρµ0 +Nµρ0),
(112)

where τµρ is the energy-momentum tensor for particles, sµνρ is the spin density. The quantity Jµρ is equal
to
∫

(δxµ τkl − δxρ τµλ + sµρλ) dSλ taken for the volume hypersurface, so it is a tensor, which is called the
total spin tensor. The quantity Nµνρ is also a tensor. The relation δx0 = 0 gives M0νρ = 0. It was assumed
that the dimensions of the body are small, so integrals with two or more factors δxµ multiplying τνρ and
integrals with one or more factors δxµ multiplying sνρλ can be neglected. The Papapetrou equations of
motion for the spin (Bergmann & Thompson, 1953, Møller, 1958, Papapetrou, 1974, Poplawski, 2009) is

◦
D
Ds J

λν = uν Θλ − uλ Θν +Kλ
µρN

νµρ + 1
2 K

λ
µρ Nµνρ −Kν

µρN
λµρ − 1

2 K
ν

µρ N
µρλ. (113)

Computing from (110), in general, the relativistic inertial force, exerted on the extended spinning body
moving in the RC space U4, can be found to be

~f(in)(x) = −m~aabs(x)
Ω2(%) γq

= −m ~ef
Ω2(%) γq

∣∣∣ 1
m fα(l) −

∂Xα

∂ xµ

[ ◦
Γ
µ
νλ u

ν uλ+

1
u0

◦
Γ

µ
ν ρ (uν Jρ0 +N0νρ)− 1

2u0
K µ
νρ Nνρ0 + 1

2

◦
R

µ
νσρ u

ν Jσρ + 1
2 NνρλK

νρλ:µ
]∣∣∣ . (114)

10. Concluding remarks

In the framework of local M̃Sp-SUSY, we address the inertial effects. The local M̃Sp-SUSY can only

be implemented if M̃ 2 and M̃4 are curved (deformed). Whereas the space M̃4, in order to become on the

same footing with the distorted space M̃ 2, refers to the accelerated reference frame of a particle, without
relation to other matter fields. Thus, unlike gravitation, a curvature of space-time arises entirely due to the
inertial properties of the Lorentz-rotated frame of interest, i.e. a fictitious gravitation which can be globally
removed by appropriate coordinate transformations. The superspace (zM , Θ, Θ̄) is a direct sum extension of
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background double spaces M̃4⊕ M̃ 2, with an inclusion of additional fermionic coordinates (Θ(θ, θ), Θ̄(θ̄, θ̄))

induced by the spinors (θ, θ̄), which refer to M̃ 2. Thereby thanks to the embedding M̃ 2 ↪→ M̃4, the

spinors (θ, θ̄), in turn, induce the spinors θ(θ, θ̄) and θ̄(θ, θ̄), as to M̃4. The M̃Sp-SUSY was conceived as
a quantum field theory whose action included the Einstein-Hilbert term, where the graviton coexists with
a fermionic field called gravitino, described by the Rarita-Scwinger kinetic term. The two fields differ in
their spin: 2 for the graviton, 3/2 for the gravitino. The spin 3/2 contact term in total Lagrangian arises
from equations of motion for the torsion tensor, and that the original Lagrangian itself takes the simpler
interpretation of a minimally coupled spin (2, 3/2) theory. The only source of graviton and gravitino is the

acceleration of a particle, because the M̃Sp-SUSY is so constructed as to make these two particles just as
being the two bosonic and fermionic states of a particle of interest in the background spaces M4 and M 2,
respectively, or vice versa. The different 4D N = 1 supergravity multiplets all contain the graviton and
the gravitino, but differ by their systems of auxiliary fields. In this framework supersymmetry and general
coordinate transformations are described in a unified way as certain diffeomorphisms. The dynamical
variables of superspace formulation are the frame field EA(z) and spin-connection Ω. The superspace
has at each point a tangent superspace spanned by the frame field EA(z) = dzME A

M (z), defined as a
1-form over superspace, with coefficient superfields, generalizing the usual frame, namely supervierbien
E A
M (z). Covariant derivatives with respect to local Lorentz transformations are constructed by means of

the spin connection, which is a 1-form in superspace as well. There is no general prescription for deducing
necessary covariant constraints which if imposed upon the superfields of super-vielbein and spin-connection
will eliminate the component fields. However, some usual constraints are found using tangent space and
supergeneral coordinate transformations of the torsion and curvature covariant tensors, given in appropriate
super-gauge. A coupling of supergravity with matter superfields evidently no longer holds in resulting
theory. Instead, we argue that a deformation/(distortion of local internal properties) of MSp is the origin

of inertia effects that can be observed by us. In going into practical details of the realistic local M̃Sp-SUSY
model, we briefly review of certain aspects of a general distortion of local internal properties of MSp and
derive the explicit form of the vierbien e

a
m̂ (%) ≡ (e a

m (%), e
a
m (%)), which describes fictitious graviton as a

function of local rate %(η,m, f) of instantaneously change of the velocity v(±) of massive (m) test particle
under the unbalanced net force (f). We discuss the inertia effects by going beyond the hypothesis of locality.
This allows to improve essentially the relevant geometrical structures referred to the noninertial frame in
Minkowski space-time for an arbitrary velocities and characteristic acceleration lengths. Despite the totally
different and independent physical sources of gravitation and inertia, this approach furnishes justification for
the introduction of the WPE. Consequently, we relate the inertia effects to the more general post-Riemannian
geometry. We derive a general expression of the relativistic inertial force exerted on the extended spinning
body moving in the Rieman-Cartan space.
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