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Observational evidence of instability phenomena related to
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Abstract

The vast amount of high-quality astrometric and photometric data from Gaia space mission opened
new prospects in the investigation of the population of galactic star clusters. In particular, a number
of observational evidence have emerged in relation to the phenomena of instability that previously were
mainly predicted by dynamical simulations. These are signs of former violent relaxation, ongoing tidal
disruption, interaction between the clusters and results of disruption of the clusters. We discuss methods
of discovery of such evidence along with some interesting examples.
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1. Introduction

The importance of process of disruption of stellar systems in the evolution of Galaxy was stressed by
V. A. Ambartsumyan in his pioneering analytical works on dynamical evolution of stellar systems / statistical
mechanics (Ambartsumian, 1955, 1985). In these papers, starting from at least 1938, he suggested reliable
estimates for the lifetime of open star clusters and a description of the process of their disruption.

Afterwards, especially with raise of N-body modelling, different aspects of dynamical evolution of open
star clusters have been explored since 1970s (e.g., Aarseth et al., 1974, Tutukov, 1978). Let us provide a
few examples to illustrate the problems explored. In the paper by Moyano Loyola & Hurley (2013) authors
quantitatively analyze the mechanisms that produced the cluster escapers, such as evaporation through
weak two-body encounters, energetic close encounters, or stellar evolution events. Chumak & Rastorguev
(2006) have numerically simulated the formation, structure, and dynamical evolution of the population of
stars that escaped from open clusters via tidal tails. Shukirgaliyev et al. (2017, 2019) explored the open
cluster survivability after instantaneous gas expulsion, in the process of violent relaxation.

However, though basically the scheme of “Birth, Evolution and Death” (Kroupa, 2001) of star clusters
seemed to be understood by the beginning of this century, lack of observational information prevented
numerous models to lean on well defined boundary conditions. Only the approach based on broad statistics
could provide some very general quantitative clues for the evolution of open clusters (Just et al., 2023,
Piskunov et al., 2018). As for the fine details, in the era before Gaia the situation was as follows. Although
models predicted open clusters to have extended low surface density features like tidal tails (Chumak et al.,
2010, Ernst et al., 2011, Küpper et al., 2010), or halo (Danilov et al., 2014) which may serve as evidence of
cluster dynamical evolution, observational signs were very modest (Röser et al., 2011) or nonexistent. The
true extent and scale of these features could have not been assessed. The known massive stellar streams
were mainly products of evolution of globular clusters (see, e.g., Koposov et al., 2010).

After the start of the Gaia space mission Gaia Collaboration et al. (2016), its data releases, especially
DR2 (Gaia Collaboration et al., 2018) and EDR3 (Gaia Collaboration et al., 2021) became table-turners
in many aspects of star cluster investigation. This involved drastic improvement in the selection of cluster
membership, as well as development of methods involving the use of clustering algorithms to search for new
clusters and related aggregates (see a review in Hunt & Reffert, 2021). These data also provided numerous
chances to obtain and interpret signatures of processes of instability during the cluster evolution. For them,
however, the methods of search and discovery should be specifically adjusted.
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In this paper, we provide a review of the methods and some results (including ours) of search and
discovery of low-surface-density extended stellar groups signifying evidence of processes of instability. We
follow the natural course of events. Section 2 is dedicated to the remnants of the star formation process.
Section 3 deals with search of the expended features in the vicinity of known clusters. Section 4 describes
the approach of automatic blind search in the multiparameter space for the search of moving groups and
low-mass stellar streams originating from disrupted open clusters. Section 5 summarizes the main ideas of
this review.

Figure 1. The location of the probable members of Group V in heliocentric carthesian galactic coordinates:
present day – filled circles, 16 Myr backwards – empty circles. Thin grey lines connect positions of the same
stars.
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Figure 2. Probable members of [BBJ2018] 6 over parallax vs Gaia G magnitude (left panel) and in the
color-magnitude diagram. Rose dots – background stars, green dots — probable stars of spatial vicinity
of the group, open red circles – probable members of the stream. On the right panel, blue isochrone from
Padova webserver CMD3.3 http://stev.oapd.inaf.it/cmd is for age of 50 Myr, similarly to age defined
for Cr 135 and UBC 7 (Kovaleva et al., 2020).

2. Star formation remnants

A consensus converges to star formation taking place within molecular clouds containing embedded star
clusters, filaments, fibers (e.g. André, 2017, André et al., 2010, Lada & Lada, 2003, Portegies Zwart et al.,
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2010). On the way from protocluster to open cluster, it should survive the violent relaxation (dynamical
response to the expulsion of the residual star-forming gas). It is known that young star clusters tend to form
groups, especially in the regions where star formation is going on (Casado, 2022, Conrad et al., 2017, Vaher
et al., 2023). However, it was a newly discovered fact that one may detect a groupings of stars of extent up
to hundreds of parsec, following past complex gaseous filamentary structures between the protoclusters and
remaining after the gas expulsion from the region. The imprints of such structures have been discovered
in star forming regions in Vela (Beccari et al., 2020) and in Orion (Jerabkova et al., 2019). We have
independently identified similar group named Group V of extent of 60 to 70 pc hosting 150 to 300 members
in Orion A (Vereshchagin et al., 2023) which most probably refers to the structure previously investigated
by Jerabkova et al. (2019) and by Getman et al. (2019). In all described cases, the relict structures were
noticed in the course of investigation kinematical and spatial structure of stellar population of a certain
region, and probable members of these structures selected using statistical methods. The procedures used
by Vereshchagin et al. (2023) involve a combination of approaches using suggestions on distribution of spatial
velocities of probable members and a clustering algorithm DBSCAN applied to specially prepared dataset
of probable pairs (for further details, see Sapozhnikov & Kovaleva, 2021). The backward integration of the
orbits of the elements of the group in the gravitational potential of the Galaxy with galpy (Bovy, 2015)
demonstrates its slow spread in the course of past 16 to 17 Myr which is the approximate age of the group
(see Fig. 1). The calculation demonstrated at the figure lays on the dispersion of tangential velocities and
neglects dispersion of radial velocities. The calculation for the groupings of members based on their mean
3D spacial velocities and their dispersion indicates that its extension approximately doubled during past
16 Myr.

3. Search in the vicinity of known clusters: tidal tails, halo

In the clusters that have survived violent relaxation, the period of two-body relaxation starts which
tends to form their structure consisting of approximately spherical core and outskirts. These outskirts are
primarily subjected to disintegration processes such as tidal disruption, disk crossing, differential rotation,
providing runaway population. It may form tidal tails and an extended halo (also known as a corona)
around the cluster. Such structures are sometimes discovered simply by selection of probable members of
a cluster and making an analysis of their spatial and kinematical distribution. However, to discover their
full extent, which, with Gaia data, happened to be much larger than we could expect, one may need to
use a dynamic model of a structure, as it was done by Jerabkova et al. (2021). In this work, the tidal
tails of Hyades were followed up to 800 pc, and their internal structural characteristics were revealed. Such
a detailed investigations promises new fundamental results concerning testing of the theory of gravitation
(Kroupa et al., 2022), dynamical evolution (Pflamm-Altenburg et al., 2023) and ages of clusters (Dinnbier
et al., 2022).

Methods of recovery of expected but missing structures intrinsically related to the known clusters may
use a search with clustering algorithms using known characteristics of the clusters. To discover the tidal
tails of Coma Ber, Tang et al. (2019) applied cuts in proper motion to decrease the number of sources, and
then used a method based on the self-organizing map to identify relevant structures. Using two methods,
Clusterix and UPMASK, Carrera et al. (2019) discover an extended halo of NGC 2628 which radius, 50 pc,
exceeds preliminary estimates more than twice. On the other hand, we discovered an extended halo of
the binary cluster Cr 135 and UBC 7 (Kovaleva et al., 2020) by selection of cluster’s members based on
kinematical and photometrical probabilities.

4. Stellar streams and moving groups. Methods of discovery

The dissolution of star clusters may occur at different stages of their evolution. As a result of gas
expulsion, the cluster may be destroyed and one or several moving groups may remain, in addition to
runaway stars. Otherwise, the open cluster may be destroyed by the Galaxy disk passage, encounters giant
molecular clouds, or just dissolved via the tidal tails to become a stellar stream (see, e.g., Tutukov et al.,
2020). Unlike star clusters, the detection and classification of extended groups and streams where stars are
not concentrated in space but just keep similar movement, in large surveys such as Gaia may be challenging.
Usually it is successful for the main streams (Alvey et al., 2023, Ibata et al., 2023), or in dedicated searches
in a limited multi-parameter region.
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So, a search in the Solar vicinity led to the discovery of a massive stellar stream originating, supposedly,
from the destruction of an open cluster very similar to Pleiades independently by the two groups of authors
(Ratzenböck et al., 2020, Röser & Schilbach, 2020). Fürnkranz et al. (2019) at first discovered overdensities
in velocity space with wavelet decomposition method, applied filters, and then used DBSCAN to a primary
selection of the data. They independently discovered the tidal tails of Coma Ber and a moving group,
previously unknown and unrelated to Coma Ber. We used a DBSCAN applied to the preliminarily prepared
catalog of stellar pairs to discover the full extent of these stellar structures (Sapozhnikov & Kovaleva, 2021).

Further analysis of the vicinity of a binary cluster Cr 135 and UBC 7 (Kovaleva et al., 2020) in Vela-
Puppis region led us to the discovery of a stellar stream with kinematical properties and age very similar to
those of Cr 135. This is why it reveals itself if one considers probabilities of membership to this cluster. This
stream may be be connected to this structure was previously described as loosely spread cluster [BBJ2018] 6
by Beccari et al. (2018), however, its full extent is a way larger than it has been supposed initially. At Fig. 1
the probable members of the stream are compared with the background and with the stars of spatial vicinity
in the Vela-Puppis region. One sees them clustering over parallax and along the same isochrone.

5. Conclusions

The results of Gaia mission have provided a valuable opportunity for researchers to discover and inves-
tigate observational evidence of processes of dynamical evolution of open clusters. These are remnants of
processes of formation of stars, remnants of processes of their quick and slow disruption in the course of
violent relaxation or two-body relaxation, encounters with the giant molecular clouds or passage through
the disk of Galaxy. These structures may be discovered in dedicated systematic searches or in connection
with the investigation of some clusters or other objects. Even solar vicinity revealed to be abundant with
unknown previously moving groups, clusters with tidal tails, stellar streams. Many known star clusters at
close investigation revealed their extended halos. The scale and extent of these stellar structures is usu-
ally much larger than was expected before. This provides us with the clues to fundamental problems of
dynamical history and evolution of our Galaxy.
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