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Abstract

The Milky Way is a spiral galaxy comprising three main components: the Bulge, the Disk, and
the Halo. Of particular interest is the Galactic disk, which holds a significant portion of the baryonic
matter angular momentum and harbors at least two primary stellar populations: the thin and thick
disks. Understanding the formation and evolution of the Galactic disk is crucial for comprehending the
origins and development of our Galaxy. Stellar archaeology offers a means to probe the disk’s evolution
by listening to the cosmological narratives of its oldest and most pristine stars, specifically the metal-poor
stars. In this study, we employed accurate photometric metallicity estimates and Gaia Early Data Release
3 astrometry to curate a pure sample of the oldest Galactic stars. This proceeding presents a summary
of our primary findings.
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1. Introduction

The pioneering research carried out by Gilmore & Reid (1983) centered on investigating the stellar
populations present in our Milky Way galaxy. The study extensively examined the motion and distribution
of metals among stars, yielding valuable insights into the structure and evolution of our galaxy. An important
discovery stemming from this research was the identification of distinct stellar groups, categorized according
to their motion characteristics. These stars were divided into two main clusters: a thin disk population
characterized by low velocity dispersion, and a thick disk population exhibiting higher velocity dispersion.
This finding implies that diverse dynamic processes contributed to the formation and development of these
two components. Furthermore, as stated by Gilmore & Reid (1983), both the thin and thick disk populations
exhibited various metallicities; however, younger stars within the thin disk component generally displayed
a preference for higher metallicity levels. This supports theories that suggest star formation in the Milky
Way took place over a long period of time, and that subsequent generations of stars showed higher levels of
enrichment with heavy elements. We have collected the key characteristics of these two distinct populations,
as reported in literature and listed in Table 1.

More recently, Carollo et al. (2019) identified two distinct modes of the Galactic thick-disk: “in-situ”
and “ex-situ”. The in-situ population refers to the formation of stars within the Galactic disk, while the
ex-situ population involves stars that were formed elsewhere and later accreted onto the our Galaxy. This
component is referred to as the Metal-Weak Thick Disk. In this context, Mardini et al. (2022b) investigated
the nature of this component by employing accurate photometric metallicity estimates and Gaia Early
Data Release 3 astrometry (Gaia Collaboration et al., 2023). Furthermore, during the Gaia era, numerous
studies have utilized these astrometry to yield essential constraints regarding the formation and evolution of
our galaxy, the Milky Way (Abu-Dhaim et al., 2022, Chiti et al., 2021a,b, Hong et al., 2023, Mardini et al.,
2022a, 2023, Placco et al., 2023, Zepeda et al., 2023). In a nutshell, the study by Mardini et al. (2022a) offers
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Table 1. Orbital properties of the Galactic thin disk, thick disk, and inner halo

Parameter unit Thin disk Thick disk Inner halo Atari disk

hR (kpc) 2.6 - 3.00 2.0 - 3.0 ... 2.48 ± 0.05

hZ (kpc) 0.14 - 0.36 0.5 - 1.1 ... 1.68+0.19
−0.15

< Vϕ > (km s−1) 208 182 0 154 ± 1
Zmax (kpc) < 0.8 0.8 - 3.0 > 3.0 < 3.0
e .... < 0.14 0.3 - 0.5 > 0.7 0.30 - 0.7

See Mardini et al. (2022b); and references therein.

significant insights into the formation and evolution of our Galaxy by emphasizing the spatial, kinematic, and
chemical characteristics of this component, which suggest that multiple mechanisms contribute to Galactic
disk growth.

2. Method and Analysis

We have developed two separate techniques, namely velocity and action space analysis, to initially select
a pure sample of stars with [Fe/H] ≤ −0.8 form the APOGEE-2/SDSS-IV dataset (Blanton et al., 2017).
By displaying kinematics that are characteristic of the thick disk, our resulting sample consists of 90,000
stars with high-quality measurements of [Fe/H] and astrometry. We then calculated the positions of our
stars using the equations described in Equations 1. The velocity calculations were carried out according
to Equation 2. In order to categorize our sample into the main Galactic components (i.e., Halo, thin disk,
and thick disk), we defined velocity distributions as explained in Equation 3. The relative probabilities for
the ratios between thick-disk-to-thin-disk (TD/D) and thick-disk-to-halo (TD/H) were determined using
Equation 4. Each thick disk star was assigned with a membership probability of TD/D > 2.0, while stars
with TD/D < 0.5 were classified as thin disk stars. Moreover, we excluded stars with TD/H < 10.0 to
minimize potential contamination from the Galactic halo.

The above-mentioned method efficiently identifies stars exhibiting disk-like kinematics. Nonetheless, it
is crucial to acknowledge that this approach might erroneously categorize halo stars, which have nearly-
circular orbits and low orbital eccentricities, as disk-like stars (e.g., Brauer et al., 2022, Mardini et al.,
2019a,b, 2020, Placco et al., 2020). To minimize the risk of contamination from the Galactic Halo, we have
developed an alternative method that relies on stellar actions, as described by Equation 5. Furthermore, we
utilized a spherically symmetric ad hoc approximation to evaluate the three distribution functions (DFs)
individually, as outlined in Equation 6. The figure depicting the relative density distribution of each Galactic
component, along with the dark matter profile, can be found in Figure 1. It is worth mentioning that the
potential demonstrates a primarily isotropic characteristic (see Almusleh et al., 2021, Mardini et al., 2019c,
Taani et al., 2019a,b,c, 2020, 2022). This yielded a sample of my 87075 stars, which spans a wide metallicity
range.

3. Results and Conclusions

The average rotational velocity of our sample shows a 30 km s−1 lag compared to the well-known thick
disk. To understand the origins of our sample stars, we analyze derived gradients, the shape of the eccen-
tricity distribution, and theoretical scenarios for thick disk formation (Abdusalam et al., 2020, Al-Tawalbeh
et al., 2021, Al-Wardat et al., 2021, Masda et al., 2019). We also calculate the scale height and scale length
of our sample using Equations 7, 8, 9, and 10. In terms of size, our sample is similar to the Galactic thick
disk in the radial direction but has greater vertical extension. Furthermore, the distribution of orbital ec-
centricities in our sample bridges between those typically observed in the thick disk and halo populations.
Our investigation into orbital eccentricities also reveals a significant number of stars with high eccentricities.
These findings, combined with theoretical predictions, suggest that this population was introduced to our
Galaxy through an early merger event involving the proto-Milky Way.
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Figure 1. The relative density of each of the components.
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