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Abstract

Very Long Baseline Array (VLBA) observations allow us to investigate the fine structure and dynamics
of the inner part of the BL Lacertae jet. Long-term VLBA monitoring at 15 GHz has revealed the existence
of a quasi-stationary component (QSC) in the jet interior, located about 0.26 mas from the radio core,
followed by superluminal moving radio components. The study of the QSC motion is important in order
to shed light on the dynamics of the inner part of the relativistic jet on spatial scales of milliparsecs. The
latter is problematic due to measurement errors on such scales. In addition, the apparent QSC motion
is a combination of the intrinsic motion of the QSC and the radio core, which predominantly occurs in
the direction of the jet axis. Careful error analyses and apparent trajectory smoothing techniques are
important to reveal the QSC intrinsic motion. We use 164 epochs of VLBA monitoring of the jet in BL
Lacertae, available as part of the MOJAVE program, to study the QSC motion. We apply a moving
average method to filter out the core contribution, which allows the detection of QSC intrinsic motion
and develop an algorithm to clean up the smoothed trajectory using QSC positioning errors. We find
that the QSC intrinsic trajectory is a combination of irregular reversals occurring on scales from about
0.15 yr to 0.5 yr. An analysis of the estimates of the reversal characteristics is presented for smoothed
and cleaned trajectories.

Keywords: BL Lacertae objects: individual: BL Lacertae, galaxies: active, radio continuum: galaxies,
galaxies: jets.

1. Introduction

Blazars belonging to the class of radio-loud active galactic nuclei (AGN) are characterised by the presence
of relativistic jets oriented at small angles with respect to the observer’s line of sight. We focus on the study
of the interior of the jet of the BL Lacertae object on sub-parsec scale using the Very Long Baseline
Array (VLBA) observations. The observations on interferometric radio telescopes allow us to investigate
the structure and dynamics of the jet on scales of milliarcseconds. Monitoring of BL Lacertae with the
VLBA at 15 GHz has revealed a jet structure consisting of a bright radio core (apparent origin of the
jet at which the optical depth of synchrotron radiation τν ≈ 1) and a quasi-stationary component (QSC)
located at 0.26 mas and referred to as C7 and that moving superluminal components appear downstream
the C7 component (Arshakian et al., 2020, Cohen et al., 2014, 2015). According to Cohen et al. (2015),
the dynamics of the quasi-stationary C7 component has the potential to influence the outer jet behaviour,
extending over distances of several hundred parsecs.

Using VLBA data of 116 observational epochs (1999–2016) available from the MOJAVE (Monitoring
Of Jets in Active galactic nuclei with VLBA Experiments) program (Lister et al., 2018), Arshakian et al.
(2020) showed that C7 exhibits predominantly superluminal velocities (∼ 2c) with an asymmetric brightness
distribution on the sky both along and across the jet axis. They confirmed the connection between large C7
amplitudes of displacement vectors and the excitation of relativistic transverse waves during the active and
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stable phases of the jet. They found that the observed (apparent) C7 motion is a combination of the C7
proper motion and the core displacement, which typically occurs in the direction of the jet axis and due to
resolution-dependent core bias and/or changes in particle density or magnetic field amplitude, and developed
a method to estimate the statistical characteristics of the C7 intrinsic motion and the radio core motion.
They showed that the contribution of both motions to the apparent motion of C7 is comparable. In order to
perform a comprehensive analysis of the intrinsic trajectory of C7, we need to minimise the effect of the core
displacement and treat carefully the C7 positioning errors. Here, we use data from 164 VLBA observations
at 15 GHz within a period of 1999–2020 and apply a moving average filter to the apparent C7 trajectory
to smooth out the core displacement effect and analyse the positional errors using a cleaning algorithm.
The advantages and disadvantages of smoothing and cleaning the C7 trajectory and characteristics of C7
reversal motion are discussed.

BL Lacertae has a redshift z = 0.0686 (Vermeulen et al., 1995), which corresponds to a scale factor of
1.3 pc mas−1, assuming H0 = 71 km s−1 Mpc−1 , Ωλ = 0.73 and Ωm = 0.27 (Komatsu et al., 2009).

2. Observed trajectory of quasi-stationary component

Analysis of radio maps of VLBA observations over a 20-year period (1999–2020) revealed a radio core,
a quasi-stationary component, and moving radio components (Lister et al., 2021). Figure 1 illustrates the
separation of the radio components from the radio core with epoch. It is noticeable that the C7 component
(marked in yellow) is 0.26 mas away from the radio core, and 37 components appear to emerge from C7.
The slope of a linear fit of the moving components determines the apparent radial velocity. The components
have a wide range of apparent speeds distributed between 3c and 10c expressed in units of the speed of
light. Cohen et al. (2014) reported the highest apparent speed of 9.2c for moving features from 1996 to
2013. Similar maximum apparent speed (10 ± 1)c is estimated for the component number C52 (ejected in
2013.4) during the time period between 2013 and 2020.

Methods for data reduction, model construction and error estimation are given in Lister et al. (2009),
Cohen et al. (2014, 2015) and Arshakian et al. (2020). To analyse the motion of C7, we use the displacement

Figure 1: Separation of the components from the radio core1. Quasi-stationary C7 component (yellow
triangles) is located at 0.26 mas from the core, moving components have superluminal speeds between
≈ (3− 10)c (colored symbols).

1The plot is sourced from the MOJAVE web page.
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Figure 2: Observed trajectory of C7 in the RA–Dec plane. The central axis of the jet (red dashed line)
connects the median position of C7 (red plus sign) and the radio core located at (0,0).

vector, which delineates the trajectory of C7 between two consecutive epochs of observations and indicates
the direction of motion. The time intervals ∆t between observations varied from a few days to several
months with a median value of ≈ 30 days. The average C7 position uncertainties along and across the jet
were estimated by Arshakian et al. (2020) to be 5 µas and 2 µas, respectively. They considered these values
as lower limits, while real errors can exceed these estimates by a factor of 1.5–2.

Figure 2 shows the observed trajectory of C7 for a time period 1999.37–2019.97. The median center is
at position RAmed = −0.051 mas and Decmed = −0.255 mas. The dashed line connecting the radio core and
the median center of C7 is the central axis of the jet, at the positional angle PA = −169◦. The observed
trajectory of C7 appears complex and zigzagging mainly due to significant displacements of the radio core
along the jet axis.

3. Smoothing and cleaning the trajectory of C7

As we discussed above, to recover the C7 intrinsic motion it is essential to smooth out the wobbling of
the core which happens primarily along the jet direction. For this we apply the moving average filter with a
sliding window of four positions to smooth the observed trajectory on scales of ∼ 0.05 mas. The size of the
sliding window seems to be optimal for preserving the C7 intrinsic trajectory (Hambardzumyan et al., 2023),
which is shown in Figure 3. Certain structural patterns such as oscillatory and reverse motions on various
spatial scales are visible. Visual inspection of the smoothed trajectory is described in Hambardzumyan et al.
(2023).

In addition to the core displacements, the observed C7 trajectory is affected by large positional uncer-
tainties. Asymmetric 1σ positional errors of the C7 location overlap when the displacement is relatively
small (Figure 4, left panel). This can lead to unreliable measurements of displacement vectors. To eliminate
such non-robust displacements we propose a trajectory refinement algorithm. The algorithm works as fol-
lows: the length of the displacement vector (r) between two consecutive positions, and the positioning errors
along the displacement vector (σ1 and σ2) are calculated. If r is greater than or equal to σ1+σ2 (the ellipses
do not intersect), the two positions are considered distinct; if r is less than σ1 + σ2 (the ellipses intersect),
the algorithm discards the position with the larger error. This iterative process is applied to each pair of
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positions. The resulting refined trajectory is shown in Figure 4 (right panel) for the time period between
1999 and 2005. A detailed look at Figure 4 shows that some trajectory patterns have undergone changes af-
ter the refinement of the smoothed trajectory. In the left panel of Figure 4, the loop-like pattern positioned
at about (−0.07,−0.24) and having the counterclockwise motion turned into a clockwise sharp reversal
(right panel). Transformation occurs also for the loop-like motions located at around (−0.058,−0.277) and
(−0.047,−0.24) (see Figure 4, left panel). A total of five loop-like structures and seven reversed trajectories
with a spatial scale of less than 0.01 mas (corresponding to a time scale of about 0.45 yr) transformed or
flattened during the 20-year time period after the refinement procedure. Three of these trajectories changed
their direction from anti-clockwise to clockwise. The full refined C7 trajectory for the time period from 1999
to 2020 is shown in Figure 5.

Figure 3: The apparent trajectory of C7 smoothed by moving average method with a sliding window of
length m = 4. The numbers along the smoothed trajectory are the observation epochs in years (yr). The
observed positions of C7 component are marked by dots. The radio core is at (0, 0) position, which is
connected with the median position of C7 (plus sign) by the jet central axis (dashed line). Thick and thin
colored lines represent the time intervals of 2.95 yr. Arrows indicate the direction of movement.
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Figure 4: The smoothed C7 trajectory (left panel) and its refined version (right panel) are shown for the
time interval 1999-2005. In the left panel, the asymmetric positioning errors are represented as ellipses
where large and small radii correspond to the positioning errors along and across the jet axis, respectively.
In the right panel, the turning points of the reversals are labelled by the epoch of observations.

Approximately 27% of positions are discarded by the cleaning algorithm, effectively eliminating tra-
jectories on spatial scales ≲ 0.01 mas (or 0.013 pc). The refined trajectory is further used for detailed
investigation and classification. Upon visual examination of the trajectory, we observe both quasi-regular
and irregular reverse motions. Reversible trajectories are either straight or curved and are accompanied by
the occurrence of arc-shaped, loop-shaped, and W-shaped configurations as a turning point, although the
latter are less common. The quasi-regular motion of C7 has a characteristic period of about 1.4 yr.

Figure 5: Refined trajectory of the smoothed C7 apparent trajectory. The radio core is at (0, 0) position,
which is connected with the median position of C7 (plus sign) by the jet central axis (dashed line). The
numbers along the trajectory are the epochs of observations in years from which the direction of motion can
be determined.
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4. Characteristics of reversals

The refinement procedure eliminates scales smaller than 0.01 mas and improves the reliability of dis-
placement vector measurements. The latter allows us to define a reversal as a trajectory in which two
consecutive displacement vectors have an angle less than 90◦ at the turning point. A total of 24 reversals
are identified, which are further classified as U-turns (angles < 45◦), V-turns (angles > 45◦ and < 90◦),
and loop-like reversals. The distribution of 22 distances between turning points of the reversals is shown in
the Figure 6 (the distance between 2004.8 and 2006.4 is excluded from the calculations because of the large
gap between observations). The distribution is not uniform, it appears to have two peaks at ∼ 0.05 mas
and ∼ 0.11 mas. The mean value of the distances between turning points is 0.062 mas, and the standard
deviation is 0.029 mas.

We now compare the reversal characteristics of the smoothed trajectory (Hambardzumyan et al., 2023)
and the refined trajectory. We measure these characteristics in the same way as described in Hambardzumyan
et al. (2023). After trajectory refinement, the time intervals between successive reversals typically range
from 0.1 yr to 1.4 yr, excluding the two outliers. The typical reversal period is about 0.65± 0.08 yr. Prior
to trajectory refinement, the median time interval is 0.50 ± 0.09 yr. The azimuthal angle, which is the
angle between the jet axis and the line connecting the median centre and the turning point, has a uniform
distribution for both smoothed and refined trajectory reversals. The distributions of radial distances from
the median centre of the scattered positions to the turning points of the reversals have clustering around
0.029± 0.003 mas and 0.032± 0.004 mas for the smoothed and refined trajectories, respectively. In general,
the estimates of the statistical characteristics of the reversals for these two trajectories coincide within the
errors.
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Figure 6: The distribution of distances between turning points of 22 reversals.
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