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Quantum interference of a de Broglie wave of a Dirac

particle beyond the `hypothesis of locality´.

Part I: Dirac equation

G.Ter-Kazarian∗

Byurakan Astrophysical Observatory, Byurakan, Aragatsotn Province, Armenia

Abstract

This is the first of three articles that explore the possibility of quantum mechanical inertial prop-
erties of the Dirac particle beyond the `hypothesis of locality´. This is done within the framework of
the Master Space-Teleparallel Supergravity (M̃Sp-TSG) (Ter-Kazarian, 2025) theory, which we recently
proposed to account for inertial effects (Ter-Kazarian, 2026). The `hypothesis of locality´ used for ex-
tension of the Lorentz invariance to accelerated observers within the Special Relativity. This hypothesis
in effect bypasses acceleration and replaces the accelerated observer by a continuous infinity of hypo-
thetical momentarily comoving inertial observers along its wordline. Despite the successes for the tiny
accelerations we usually experience, when the curvature of the wordline could be ignored and that the
differences between observations by accelerated and comoving inertial observers will also be very small,
however, the basic conceptual framework of this assumption has been considered by many scientists to be
unsatisfactory. In general case, this is actually untenable and represents strict restrictions, and that the
hypothesis of locality will have to be extended to describe physics for arbitrarily accelerated observers.
This immediately leads to the disturbing fact within the M̃Sp-TSG theory that the metric of a two-
dimensional semi-Riemannian space, calculated in the non-inertial frame of reference of an accelerating
and rotating observer, becomes incomplete. To recover the complete metric, therefore, our strategy in the
latest paper (Ter-Kazarian, 2026) was to go beyond this hypothesis by invoking a general deformation

of the flat master space, MSp → M̃Sp. Continuing along this line, in present article, we compute the
object of anholonomicity and connection defined with respect to the anholonomic frame. Based on these
premises, we derive the explicit form of the Dirac equation for an observer in a reference frame that is
accelerated and rotating.
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1. Introduction

The theoretical studies of the relativistic quantum theory in a curved spacetime have predicted a number
of interesting manifestations of the spin-gravity coupling for a Dirac particle, see e.g. (Audretsch & Schafer,
1978, Cai & Papini, 1991, 1992, Fischbach et al., 1981, Hehl & Ni, 1990, Obukhov, 2001, 2002, Ryder,
1998, Singh & Papini, 2000, Varjú & Ryder, 1998, 2000, de Oliveira & Tiomno, 1962). In most cases, the
various approximate schemes were used for the case of the weak gravitational field. The exact results for an
arbitrary static spacetime geometry are reported by (Obukhov, 2002). Inertial effects are expected to have
a significant influence on a determinations of spatial distances and temporal durations that are associated
with the effective establishment of a sufficiently local frame of reference. Such a local coordinate system is
what one actually uses in laboratory. For a performing the laboratory measurements, it is necessary to give
a theoretical description of the measurements of accelerated observers. This is done via the hypothesis of
locality. It is a long-established practice to use in the framework of Special Relativity (SR) the `hypothesis
of locality´ for extension of the Lorentz invariance to accelerated observers, see e.g. (Hehl & Ni, 1990, Hehl
et al., 1991, Maluf & Faria, 2008, Maluf et al., 2007, Marzlin, 1996, Mashhoon, 2002, 2011, Misner et al.,
1973, Synge, 1960) and references therein. This in effect bypasses acceleration and replaces the accelerated
observer by a continuous infinity of hypothetical momentarily comoving inertial observers along its wordline.
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In other words, the influence of inertial effects can be neglected on the length and time scales characteristic
of elementary local observations. An accelerated observer measures the same physical results as a standard
inertial observer that has the same position and velocity at the time of measurement. The curved path of the
observer is substituted by the straight line tangential to the curve at the time of measurement (Mashhoon,
2002). The accelerated observer carries an orthonormal frame along its trajectory such that at each instant
of its proper time τ , the local tetrad frame is common to both the accelerated observer and the momentarily
comoving inertial observer (up to a spatial rotation). These observers refer their respective measurements
to the local frame. The results of measurements performed by accelerated observers can then be related
to those of inertial observers via the hypothesis of locality. At a certain distance from the accelerated
worldline, successive spacelike hyperplanes orthogonal to the worldline, which are Euclidean spaces, instead
of advancing with increasing time τ , will be retrogressing (Misner et al., 1973). If we go beyond the
time τ1, for example, coordinate assignments would start to overlap for the time τ2. Therewith the principle
construction (78), which introduces problems with the coordinate extension of the lab frame, is only possible
in a Minkowski spacetime. The acceleration can indeed be accurately described within Minkowski spacetime
using Fermi-Walker transport. The problem is different - in constructing laboratory coordinates. That is,
by the framed construction (78), one expressed the Cartesian coordinates of an event in terms of the
lab coordinates. This is done for two different times at the worldline C. In a Riemannian spacetime
one has to take the spacelike geodesics emanating perpendicularly from P̃ for the construction of the lab
coordinates thereby finding an expression which, for P sufficiently near to P̃, contains additionally higher
order deviations caused by the curvature of spacetime. At this distance, and at greater distances, the concept
of ”coordinates relative to the accelerated observer” becomes ambiguous and has to be abandoned. Since
this cannot be accepted, the ”local coordinates” approximate a Lorentz coordinate system in the immediate
neighborhood of the observer. Therefore, in general, the Fermi-Walker transport cannot be extended to the
whole spacetime manifold due to limitations imposed by spacetime curvature. The hypothesis of locality
requires that the intrinsic length and time scales of the phenomena under observation be negligibly small
relative to the corresponding acceleration scales associated with the observer. The charts for introduced
coordinates cannot be global for accelerated observers. In fact, such geodesic coordinates are admissible as
long as the condition (81) is valid. However, a classical measuring device must have spatial and temporal
extension far exceeding the intrinsic length and time scales, respectively. The above considerations imply an
upper limit on the magnitude of merely translational acceleration of a standard classical device. A similar
limitation applies to the rotational frequency as well. This problem is inherent to any accelerated observer,
and it can only be remedied by making the laboratory sufficiently small. The lab coordinate system is
only useful in the immediate vicinity of the laboratory observer (Hehl et al., 1991). The hypothesis of
locality requires that the proper length and time scales of the observed phenomena be negligible compared
to the corresponding acceleration scales associated with the observer. The basic distinction between an
accelerated observer in Minkowski spacetime and a momentarily comoving inertial observer is the existence
of acceleration scales associated with the noninertial observer. These scales are intrinsic measures of the
rate of variation of the local reference frame of the observer along the accelerated path.

That is, the hypothesis of locality, as well as its restricted version, so-called, clock hypothesis, which is a
hypothesis of locality only concerned about the measurement of time, are permissible if condition λ≪ L is
valid, where λ is the intrinsic length scale of the phenomenon under observation, L is the acceleration length.
Here λ could be the wavelength of electromagnetic radiation or the Compton wavelength of a particle, and
L is the natural length that can be formed from the acceleration and the speed of light in vacuum; thus,
L = c2/g for translational acceleration g, while L = c/ω for rotation of frequency ω. As long as λ ≪ L
for the tiny accelerations we usually experience, the curvature of the wordline could be ignored and that
the differences between observations by accelerated and comoving inertial observers will also be very small.
Thus, a consistency can be achieved only in a rather limited neighborhood around the observer with linear
dimensions that are negligibly small compared to the characteristic acceleration length of the observer. In
this case, noninertial reference frames in Minkowski spacetime that undergo Fermi-Walker transport are
useful in the analysis, for example, of inertia-induced quantum interference of a de Broglie wave of a Dirac
particle (Hehl & Ni, 1990). The authors have put the special-relativistic Dirac equation into a noninertial
reference frame by standard methods, confining ourselves strictly to flat Minkowski spacetime. Despite
these successes, however, the basic conceptual framework of the `hypothesis of locality´ for extension of
the Lorentz invariance to accelerated observers within the framework of SR, has been considered by many
scientists to be unsatisfactory, see e.g. (Hehl et al., 1991, Mashhoon, 2002). In general case, this is actually
untenable and represents strict restrictions, and that the hypothesis of locality will have to be extended
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to describe physics for arbitrarily accelerated observers. This can only be done with the help of a deep
knowledge of the most striking phenomenon of inertia.

In doing so, we proposed the theory of global master space (MSp) induced supersymmetry (MSp-
SUSY) (Ter-Kazarian, 2024a), which reveals the physical processes underlying the standard Lorenz code
of motion and its deformation tested in experiments for ultra-high energy cosmic ray and TeV-γ photons
observed. This theory, among other things, explores the first part of the phenomenon of inertia. This calls
for a complete reconsideration of our standard ideas of Lorentz motion code, to be now referred to as the
individual code of a particle, defined as its intrinsic property. The nature of the origin of physical space-time
of SR is revealed, which turns out to be a direct consequence of motion. Namely, we have derived the rela-
tive temporal and spatial coordinates of physical space-time of SR as a function of parameters of underlying
physical reality. This is a valuable hint for proposing the theory of M̃Sp-TSG (Ter-Kazarian, 2025) (see

also (Ter-Kazarian, 2024b,c,d)), as a local extension of the global theory of MSp-SUSY. The M̃Sp-TSG
reviews the acceleration and inertial effects. The present article splits naturally into three parts. In the
first, a local MSp-SUSY is conceived as a theory of M̃Sp-SG. The action of simple M̃Sp-SG includes the
Hilbert term for a fictitious graviton coexisting with a fictitious fermionic field of gravitino described by the
Rarita-Scwinger kinetic term. Whereas a coupling of supergravity with matter superfields no longer holds.
In the second, using Palatini’s formalism generalized for the M̃Sp-SG, we reinterpret a flat M̃Sp-SG theory

with Weitzenböck torsion as a theory of M̃Sp-TSG having the gauge translation group in tangent bundle.
Its spin connection is related only to the inertial properties of the frame, not to gravitation. Whereas the
Hilbert action vanishes and the gravitino action loses its spin connections, so we find that the accelerated
reference frame has Weitzenböck torsion induced by gravitinos. In the third, our idea is that the univer-
sality of gravitation and inertia attribute to the single mechanism of origin from geometry but having a
different nature. We have ascribed, therefore, the inertia effects to the geometry itself but as having a
nature other than 4D Riemannian space. We briefly discuss a general deformation of the flat master space
(MSp → M̃Sp), in order to show that the source of graviton and gravitino is certainly this. We supplement

the M̃Sp-TSG theory by considering the consequences for the Newtonian limit, the uniform acceleration field
and the relativistic inertial force in Minkowski and semi-Riemannian spaces. The relativistic Weak Principle
of Equivalence is a consequence of the theory, at which inertial effects gradually decrease at large Lorentz
factors and vanished in the photon limit. Thus, the MSp-SUSY and M̃Sp-TSG provide valuable theoretical
clue for a complete revision of our ideas about the Lorentz code of motion, as well as the acceleration and
inertia effects, to be now referred to as the intrinsic property of a particle of interest devoid of any matter
influence. This is a result of the first importance for a really comprehensive entire theory of inertia. In the
subsequent paper (Ter-Kazarian, 2026) our main interest still is to complement the theory of M̃Sp-TSG with

two more consequences. First, within the framework of M̃Sp-TSG, the locality hypothesis introduces strict

restrictions, replacing the curved M̃Sp with the flat MSp. Our strategy, therefore, go beyond the hypothesis

of locality to recover M̃Sp by invoking a general deformation MSp → M̃Sp. This significantly improves
the standard metric and other relevant geometrical structures referred to a noninertial frame in Minkowski
spacetime for relativistic velocities and an arbitrary characteristic acceleration lengths. Second, we derive
the relativistic inertial force in semi-Riemannian space, and the inertial force acting on an extended rotating
body moving in Riemann-Cartan space.

This article is the first of three papers that explore the quantum mechanical inertial properties of the
Dirac particle beyond the `hypothesis of locality´. This is done within the framework of the Master Space-
Teleparallel Supergravity (M̃Sp-TSG) (Ter-Kazarian, 2025) theory, which we recently proposed to account
for inertial effects (Ter-Kazarian, 2026). Here we compute the object of anholonomicity and the connection
defined with respect to the anholonomic frame, and based on this, we derive the Dirac equation in an
accelerated and rotating frame of reference beyond the `hypothesis of locality´.

We proceed according to the following structure. To start with, in section 2 we briefly revisit the main
points of going beyond the `hypothesis of locality´. In section 3 we compute the object of anholonomicity
(subsect. 3.2) and the connection (subsect. 3.2) defined with respect to the anholonomic frame. On these
premises, in section 4 we derive the Dirac equation in an accelerated and rotating frame of reference beyond
the `hypothesis of locality´. As the concluding remarks, in section 5 , we review the key points of this
report. It is worthwhile to clarify some technical details collected in Appendix. Unless indicated otherwise,
the natural units, h = c = 1 are used throughout.
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2. Beyond the hypothesis of locality

We consider only mass points, then the non-inertial frame of reference in the Minkowski space of SR is
represented by a curvilinear coordinate system, since it is conventionally accepted to use the names `curvi-
linear coordinate system´ and `non-inertial system´ interchangeably. To make this article understandable,
the interested reader is referred to the original papers (Ter-Kazarian, 2024a, 2025, 2026) (see also (Ter-
Kazarian, 2024b,c,d)). In addition, in this section we will briefly review the main points of the procedures
of going beyond the hypothesis of locality. A notable conceptual element is the concept of 2D master space,
MSp(≡ M 2), which is a 2D Minkowski space endowed with a physical structure with its own internal ge-
ometric properties (see App.A/(1)). The MSp embedded in background 4D Minkowski space, M4, is the
unmanifested, irreplaceable, individual companion of the particle of interest. All quantities related to the
master space (flat or curved) will be underlined.

In the framework of M̃Sp-TSG theory (Ter-Kazarian, 2025), the master space M̃Sp ≡ V
(ϱ)
2 is the 2D semi

- Riemannian space, arisen from an instantaneous change in the velocity (v(±)) of a massive test particle (at
local rate ϱ(x) ̸= 0) under the unbalanced external net force in non-inertial frame of reference in Minkowski
space.

Consider the accelerated motion of a relativistic test particle in Minkowski 4D background flat space,
M4, under the unbalanced net force other than gravitational. As mentioned above, the hypothesis of locality
assumes the equivalence of an accelerated observer and an instantaneously moving inertial observer, i.e. it
links the measurements of the accelerated observer with the measurements of the inertial observer. This
immediately leads to a disturbing fact within the M̃Sp-TSG theory that the non-inertial reference frame

S
(ϱ)
(2) , which is held stationary in the deformed master space V

(ϱ)
2 (ϱ ̸= 0), is replaced with a continuous

infinity set of the inertial frames {S(0)
(2) , S

′(0)
(2) , S

′′(0)
(2) , ...} given in V

(ϱ)
2 (ϱ = 0). In other words, the hypothesis

of locality leads to the 2D semi-Riemannian space, V
(0)
2 (ϱ = 0), with the incomplete metric of g̃ (see (92)).

Namely, it replaces the space M̃Sp ≡ V
(ϱ)
2 with the V

(0)
2 . Therefore, our further strategy is to consider the

two-steps deformation with V 2 ≡ V
(0)
2 and M2 ≡ V

(ϱ)
2 ,

Ω(ϱ) :M2 → V
(ϱ)
2 , (1)

which is composed of the two deformations as follows:

Ω :M2 → V
(0)
2 ,

Ω̃(ϱ) : V
(0)
2 → V

(ϱ)
2 ,

(2)

where the world-deformation tensors Ω(ϱ) and Ω̃(ϱ) are the functions of local rate, ϱ(x) of instantaneously
change of a constant velocity (both magnitude and direction) of a massive particle in 4D Minkowski space
under the unbalanced net force. Keeping in mind above said, it is worth going beyond the hypothesis of
locality with special emphasis on the specific deformations (1), (2), which we might expect will essentially
improve the standard results. Constructing Cartesian coordinates based on accelerated and rotating labo-
ratory, let S(P) be the spacelike hyperplane associated to each event (point) P on the timelike world line at
xµ of the accelerated observer, orthogonal to it. The accelerated observer carries the orthonormal frame eâ.
Defining x0 = ct = s and x1, x2, x3 as Cartesian coordinates using the triad eî(s) with the observer at the
origin: xµ = (x0, x1, x2, x3) are the local coordinates relative to the accelerated observer. The tetrad eµ̂(s)
can be parallel transported from P to all neighboring points on S(P), which defines the orthonormal tetrad
field eµ̂(x

ν). This local coordinate system is used in the laboratory, while the world line is the line of the
reference clock. The tetrad field eµ̂(x

ν) is anholonomic. Define the coordinate tetrad eµ = ∂µ = ∂/∂xµ. The
orthonormal frame eâ, carried by an accelerated observer, now can be written with respect to curvilinear or
Cartesian coordinates, respectively:

eâ = λ µ
(a) eµ = λ

µ
(a) eµ,

ϑb̂ = λ
(b)

ν ϑν = λ
(b)

ν ϑν ,
(3)

with ϑµ = dxµ, ϑ
µ
= dxµ. The coframe members {ϑ b̂} are the objects of dual counterpart: eâ ⌋ϑb̂ = δb̂â.

Following (Hehl et al., 1991, Mashhoon, 2002, Misner et al., 1973), let us introduce a geodesic coordinate
system Xµ(s), which is in general valid in a sufficiently narrow worldtube along the timelike world line of
the observer. Suppose the displacement vector xµ(s) represents the position of the accelerated observer.
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According to the hypothesis of locality, at any time (s) along the accelerated world line the spacelike S(P)
hyperplane orthogonal to the world line is Euclidean space and we usually describe some event on this
hyperplane at xµ to be at Xµ, where xµ and Xµ are connected via X0 = s and

xµ = xµ(s) +X k λ µ
(k) (s). (4)

This gives
dxµ = dxµ(s) + dX i λ µ

(i) (s) +X i dλ µ
(i) (s), (5)

where the displacement vector from the origin reads dxµ = λ µ
(0) (s) dX

0. Consequently, (79) yields the

standard metric of semi-Riemannian 4D background space V
(0)
4 , in noninertial system of the accelerating

and rotating observer, computed on the basis of hypothesis of locality (Hehl & Ni, 1990, Hehl et al., 1991)
(see also (Mashhoon, 2002, 2011)):

ds2 = gµνdx
µdxν = (dX0)2

[
(1 + a⃗ · X⃗)2

−(ω⃗ × X⃗)2
]
− 2dX0 dX⃗ · (ω⃗ × X⃗)− dX⃗ · dX⃗.

(6)

From (80) it is seen that such geodesic coordinates are admissible as long as

(1 + a⃗ · X⃗)2 > (ω̄ × X⃗)2. (7)

Thus in the discussion of the admissibility of the geodesic coordinates, two independent acceleration lengths
must be considered: the translational acceleration length c2/a and the rotational acceleration length c/ω
that appear in equation (81). While the components of the orthonormal frame field read

λ 0
(0) = 1

1+a⃗·X⃗
, λ k

(0) = − [ω⃗×X⃗]k

1+a⃗·X⃗
,

λ j
(i) = δji , λ 0

(i) = 0,
(8)

and the components of the dual coframe field are

λ
(0)

0 = (1 + a⃗ · X⃗), λ
(0)

i = 0,

λ
(i)

0 = [ω⃗ × X⃗]i, λ
(i)

j = δij .
(9)

All the nomenclature given above and in the previous section can be extended in a plausible way to the
flat MSp. Define the orthonormal frame, e â (â = 0̂, 1̂), carried by an accelerated observer, who moves in a
non-inertial frame of reference. Arbitrary curvilinear coordinates of a non-inertial frame of reference in the
flat MSp will be denoted by xµ(s), s = s being the proper time. The components of the orthonormal frame

field are λ
µ

( a) := e
µ

â , where e â = e
µ

â eµ (eµ = ∂ µ = ∂/∂xµ). The spacetime indices µ, ν... and SO(1, 1)

indices a, b, ... run from 0 to 1. The time axis must be the time axis of a comoving inertial frame in which
the observer is momentarily at rest, i.e. the zeroth leg of the frame e 0̂ be 2-velocity uµ of the observer
that is tangent to the world line at a given point P. The spatial frame vector e 1̂, orthogonal to e 0̂, is also
parameterized by (s). Constructing Cartesian coordinates based on laboratory, let S(P) be the spacelike
hyperplane associated to each event (point) P on the timelike world line at xµ of the accelerated observer,
orthogonal to it. Defining x0 = ct = s and x1 as Cartesian coordinates using the e 1̂(s) with the observer

at the origin: xµ = (x0, x1) are the local coordinates relative to the accelerated observer. The tetrad e µ̂(s)

can be parallel transported from P to all neighboring points on S(P), which defines the orthonormal tetrad
field e µ̂(x

ν). The tetrad field e µ̂(x
ν) is anholonomic. Define the coordinate tetrad eµ = ∂ µ = ∂/∂xµ. The

orthonormal frame, e â, can be written with respect to curvilinear or Cartesian coordinates, respectively:

e â = λ
µ

(a) eµ = λ
µ

(a) eµ,

ϑb̂ = λ
(b)

ν ϑ
ν = λ

(b)
ν ϑν ,

(10)

with ϑµ = dxµ, ϑ
µ
= dxµ. The coframe members {ϑb̂} are the objects of dual counterpart: e â ⌋ϑb̂ = δba.

Let (X µ(X 0, X 1) be geodesic local coordinates relative to the accelerated observer in the neighborhood
of the accelerated path in MSp, with spacetime components satisfying the embedding map

dX 0 = dX 0, dX 1 = |dX⃗|,
n⃗ = dX⃗

dX 1 = dX⃗
|dX⃗|

, n⃗ · n⃗ = 1.
(11)
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Then, in view of (82) and (83), the components of the orthonormal frame field, λ
µ

( a) , read

λ
0

( 0) = 1
1+(a⃗·X⃗)1

, λ
1

( 0) = − [ω⃗×X⃗]1

1+(a⃗·X⃗)1
,

λ
1

( 1) = 1, λ
0

( 1) = 0.
(12)

while the components of the dual coframe field, λ
( a)

µ, become

λ
(0)

0 = (1 + (⃗a · X⃗)1), λ
(0)

1 = 0,

λ
(1)

0 = [ω⃗ × X⃗]1, λ
(1)

1 = 1.
(13)

The acceleration of the observer along the accelerated path, who carries an orthonormal tetrad frame
e â = (e 0̂, e 1̂), therefore, can be expressed in the frame basis:

dλ
µ

(a)
(s)

ds = Φ
(b)

(a) (s)λ
µ

(b) (s),
(14)

where the inertial accelerations are represented by a second rank antisymmetric tensor Φ
(b)

(a) (s) under global

SO(1, 1) transformations. The Φ(a)(b) can be interpreted as the inertial accelerations of the frame along the
timelike curve C (the translational acceleration and the frequency of rotation of the frame):

Φ
(0)

(1) X1 = (⃗a · X⃗)1 = |⃗a · X⃗|,
Φ

(1)
(1) X1 = [ω⃗ × X⃗]1 = |ω⃗ × X⃗|.

(15)

According to the hypothesis of locality, at any time (s) along the accelerated world line the spacelike S(P)
hyperplane orthogonal to the world line is Euclidean space and we usually describe some event on this
hyperplane at xµ to be at Xµ, where xµ and Xµ are connected via X0 = s and

xµ = xµ(s) +X 1 λ µ
(1) (s). (16)

This gives
dxµ = dxµ(s) + dX 1 λ

µ

(1) (s) +X 1 dλ
µ

(1) (s), (17)

where the displacement vector from the origin reads dxµ(s) = λ µ
(0) (s) dX

0. The (91) yields the metric

ds2 = gµν dx
µdxν = ϑ0 ⊗ ϑ0 − ϑ1 ⊗ ϑ1. (18)

In doing so, we calculated the orthonormal frame, e â, and corresponding coframe, ϑb̂ members, carried by
an accelerated observer, which by virtue of (86) and (87) are equal to

e0̂ =
1

1+(a⃗·X⃗)1
{e 0 − [ω⃗ × X⃗]1 e 1},

e1̂ = e 1,
(19)

and
ϑ0̂ = (1 + (⃗a · X⃗)1) dX0,

ϑ1̂ = dX1 + [ω⃗ × X⃗]1 dX0,
(20)

respectively. Hence the metric (92) of 2D semi-Riemannian space,V
(0)
2 , in noninertial system of the acceler-

ating and rotating observer, computed on the basis of hypothesis of locality reads

ds2 = (dX0)2[(1 + (⃗a · X⃗)1)2 + (ω⃗ × X⃗)1(1−
(ω⃗ × X⃗)1)]− (dX1)2 − 2dX0dX1[(ω⃗ × X⃗)1(1−
(ω⃗ × X⃗)1)]1/2.

(21)

Thus we see that the hypothesis of locality leads to the 2D semi-Riemannian space,V
(0)
2 with the incomplete

metric (92). To recover the complete metric of V
(ϱ)
2 , therefore, our further strategy is to consider the

deformation (2). The deformation tensor Ω̃
ν

µ (ϱ) = π
λ

µ (ϱ)π
ν

λ (ϱ), yields the deformations of linear holonomic
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basis. Accordingly, we must find the first deformation matrices, π(ϱ) : = (π b̂
(â) )(ϱ), which yield the local

tetrad deformations
e(ĉ) = π â

(ĉ) eâ, ϑ(ĉ) = π
(ĉ)

b̂
ϑb̂,

e ϑ = e(â) ⊗ ϑ(â) = Ωâ
b̂
eâ ⊗ ϑb̂,

(22)

where Ωâ
b̂
(ϱ) = π â

(ĉ) (ϱ)π
(ĉ)

b̂
(ϱ) is referred to as the anholonomic deformation tensor. The resulting deformed

metric of the space V
(ϱ)
2 can be split as

gµ̃ν̃(ϱ) = Υ2(ϱ) gµν + γ
µ̃ν̃
(ϱ), (23)

provided

γ
µ̃ν̃

= [γ
(â)(b̂)

−Υ2(ϱ) oab] e
(â)

µ̃ e
(b̂)

ν̃ ,

γ
(ĉ)(d̂)

= oab π
â

(ĉ) π
b̂

(d̂)
,

(24)

where Υ(ϱ) = π â
(â) (ϱ) and γ

(â)(b̂)
(X) are the second deformation matrices. The complete metric in V

(ϱ)
2 ,

reads
ds̃2 = gµ̃ν̃dX

µ̃dX ν̃ = ϑ(0̂)(ϱ)⊗ ϑ(0̂)(ϱ)

−ϑ(1̂)(ϱ)⊗ ϑ(1̂)(ϱ),
(25)

with the components of metric tensor gµ̃ν̃(ϱ). This equation gives the coframe members

ϑ(0̂)(ϱ) = b0(ϱ)

(1+a⃗·X⃗)
ϑ0̂,

ϑ(1̂)(ϱ) = 1
(1+a⃗·X⃗)

[b1(ϱ)ϑ
1̂

−
(
b2(ϱ) + b1(ϱ) (ω⃗ × X⃗)1

)
ϑ0̂],

(26)

with the following notation used:

b1(ϱ) ≡ (−g1̃1̃)1/2, b2(ϱ) =
g1̃0̃+g0̃1̃

2(−g1̃1̃)
1/2(ϱ)

,

b0(ϱ) = (g0̃0̃ + b2(ϱ)
2)1/2,

ϱ(s̃) =
√
2
∫ s̃
0 |⃗a ∧ u⃗+ ω⃗ × u⃗|ds̃′.

(27)

The relations e (â) ⌋ϑ
(b̂) = δba, give the frame members

e(0̂)(ϱ) = b−1
0 (ϱ)

[
(1 + a⃗ · X⃗) e0̂

+
(
b2(ϱ)
b1(ϱ)

+ (ω⃗ × X⃗)1
)
e1̂

]
,

e(1̂)(ϱ) =
1

b1(ϱ)
e1̂.

(28)

The elements of first deformation matrices

π ĉ
(â) = eâ ⌋ϑĉ, π

(b̂)
ĉ = ϑ(b̂) ⌋ eĉ (29)

are then written
π 0̂
(0̂)

(ϱ) = 1+a⃗·X⃗
b0

, π 0̂
(1̂)

(ϱ) = 0,

π 1̂
(1̂)

(ϱ) = 1
b1
, π 1̂

(0̂)
(ϱ) = b2+b1(ω⃗×X⃗)1

b0b1
,

(30)

and

π
(0̂)

0̂
(ϱ) = b0

1+a⃗·X⃗
, π

(0̂)

1̂
(ϱ) = 0,

π
(1̂)

0̂
(ϱ) = − b2+b1(ω⃗×X⃗)1

1+a⃗·X⃗
, π

(1̂)

1̂
(ϱ) = b1.

(31)

respectively. Using the following embedding relations as a converting guide:

g0̃0̃(dX
0)2 = g0̃0̃(dX

0)2, g1̃1̃(dX
1)2

= g1̃1̃(dX⃗ · dX⃗), g1̃0̃dX
1 = gĩ0̃dX

i,
gĩ0̃ = g0̃̃i = nig0̃1̃ = nig1̃0̃, b2i = nib2,

(32)
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from (30) and (31), we obtain

π 0̂
(0̂)

(ϱ) = 1+a⃗·X⃗
b0

, π 0̂
(̂i)

(ϱ) = 0,

π ĵ

(̂i)
(ϱ) = 1

b1
δji , π î

(0̂)
(ϱ) = b2i+b1(ω⃗×X⃗)i

b0b1
,

(33)

and

π
(0̂)

0̂
(ϱ) = b0

1+a⃗·X⃗
, π

(0̂)

î
(ϱ) = 0,

π
(̂i)

0̂
(ϱ) = − b2i+b1(ω⃗×X⃗)i

1+a⃗·X⃗
, π

(̂i)

ĵ
(ϱ) = b1 δ

i
j .

(34)

Then, by means of (26), (28), (93), (94), we obtain the generalized frame and coframe members referred to
the 4D background space as follows:

e(0̂) = b−1
0

{
(1 + a⃗ · X⃗) e0̂ +

[
b2i
b1

+ (ω⃗ × X⃗)i]
]
eî

}
,

e(̂i) = b−1
1 eî,

(35)

and
ϑ(0̂) = b0

1+a⃗·X⃗
ϑ0̂,

ϑ(̂i) = b1 ϑ
î − 1

1+a⃗·X⃗
[b2i + b1(ω⃗ × X⃗)i]ϑ0̂,

(36)

respectively. The orthonormal frame e ˆ(a)
(ϱ) and coframe ϑ(b̂)(ϱ), carried by an accelerated observer, can as

well be written with respect to curvilinear coordinates:

e ˆ(a)
(ϱ) = e µ

(a) (ϱ) eµ, ϑ(b̂)(ϱ) = e
(b)

ν(ϱ)ϑν , (37)

whereas

e µ
(a) (ϱ) = π ĉ

(â) (ϱ)λ
µ

(c) , e
(b)

ν(ϱ) = π
(b̂)

ĉ(ϱ)λ
(c)

ν . (38)

The (37) and (38) give

e(0̂) = b−1
0 (e0 +

bi2
b1
ei), e(̂i) = b−1

0 ei, (39)

and
ϑ(0̂) = b0ϑ

0, ϑ(̂i) = b1

(
ϑi − bi2

b1
ϑ0

)
), (40)

respectively, with the components of the orthonormal frame field and their reciprocals

e 0
(0̂)

(ϱ) = b−1
0 , e i

(0̂)
(ϱ) = (b0b1)

−1bi2,

e 0
(̂i)

(ϱ) = 0, e j

(̂i)
(ϱ) = b−1

1 (ϱ) δji ,
(41)

and

e
(0̂)

0(ϱ) = b0, e
(0̂)

i(ϱ) = 0,

e
(̂i)

0(ϱ) = −b2i, e
(̂i)

j(ϱ) = b1 δ
i
j .

(42)

The equations (39) and (40) may be written in a more convenient way if we introduce new deformation
coefficients b3 and b4 as follows:

b3 ≡ b0
(1+a⃗·X⃗)

,
bj2
b1

≡ −b4vj , (43)

provided, vj = (ω⃗ × X⃗)j . The (39) and (40) then become

e(0̂) =
1

b3(1+a⃗·X⃗)

(
e0 − b4v

iei
)
, e(̂i) = b−1

0 ei, (44)

and
ϑ(0̂) = b3(1 + a⃗ · X⃗)ϑ0,

ϑ(̂i) = b1
(
ϑi + b4v

iϑ0
)
).

(45)

In the limit, (π) → 1, of the hypothesis of locality ((82), (83)), the deformation coefficients b1, b3, b4 tend
to 1, and hence the (44) and (45) restore the established essential contributions by (Hehl & Ni, 1990,
Hehl et al., 1991, Maluf & Faria, 2008, Maluf et al., 2007, Mashhoon, 2002, 2011). Thus, we derived the
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tetrad fields e µ
(â)(ϱ) (41) and e

(b̂)
ν (ϱ) (42) as a function of local rate (ϱ) of instantaneously change of a

constant velocity (both magnitude and direction) of a massive particle in M4 under the unbalanced net

force, describing corresponding fictitious graviton in the M̃Sp-TSG theory. Whereas the fictitious gravitino
described by the Rarita-Scwinger kinetic term, ψ α

µ (X), will be arisen under infinitesimal transformations
of local supersymmetry (Ter-Kazarian, 2025).

Accordingly, the complete metric in noninertial frame of arbitrary accelerating and rotating observer in
Minkowski spacetime reads

ds̃2(ϱ) = gµν(ϱ)dX
µdXν = ϑ(0̂) ⊗ ϑ(0̂)−

ϑ(̂i) ⊗ ϑ(̂i) = [(π
(0̂)

0̂
)2 − (π

(̂i)

0̂
)2]ϑ0̂ ⊗ ϑ0̂

−π(̂i)
ĵ
π
(̂i)

k̂
ϑĵ ⊗ ϑk̂ − 2π

(̂i)

0̂
π
(̂i)

ĵ
ϑ0̂ ⊗ ϑĵ

= (b20 − b22)ϑ
0 ⊗ ϑ0 + 2b1b

i
2 ϑ

0 ⊗ ϑi − b21 ϑ
i ⊗ ϑi

= [b23(1 + a⃗ · X⃗)2 − (b1b4)
2(ω⃗ × X⃗)2] (dX0)2

−2b1b4 (ω⃗ × X⃗)i dX0dXi − b21 dX
idXi.

(46)

This gives a generalization of the condition (81) of admissibility of geodesic coordinates:

b23(1 + a⃗ · X⃗)2 > (b1b4)
2(ω⃗ × X⃗)2. (47)

In the limit of the hypothesis of locality, the (101) and (47) are reduced to the corresponding results of (Hehl
& Ni, 1990, Hehl et al., 1991, Maluf & Faria, 2008, Maluf et al., 2007, Mashhoon, 2002, 2011).

The metric (101) can be conveniently decomposed

gµν(ϱ) = Υ2(ϱ) gµν + γµν(ϱ), (48)

provided,

γµν(ϱ) = [γ(â)(b̂) −Υ2(ϱ) o((a)(b))] e
(â)

µ e
(b̂)

ν ,

γ(ĉ)(d̂) = o(a)(b) π
â

(ĉ) π
b̂

(d̂)
,

(49)

where Υ(ϱ) = π â
(â) (ϱ), and γ(ĉ)(d̂) are the second deformation matrices, with the elements

Υ(ϱ) = b−1
3 + b−1

1 ,

γ(0̂)(0̂) = b−2
3

[
1− (1+b1b4)2

(1+a⃗·X⃗)2
v⃗2
]
,

γ(0̂)(̂i) = γ(̂i)(0̂) =
b4

b3(1+a⃗·X⃗)
vi,

γ(̂i)(ĵ) = −b−2
1 δij .

(50)

3. The object of anholonomicity and the connection

3.1. The computation of all commutators in standard case

In standard case, we are given the anholonomic frame e(µ̂), (µ̂ = 0̂, 1̂, 2̂, 3̂)

e(0̂) =
1

1+a⃗·X⃗
(e0 − [ω⃗ × X⃗]k)ei), e(̂i) = ei,

where e0 = ∂/∂X0 and ei = ∂/∂Xi (i = 1, 2, 3), and commutator

[e(0̂), e(̂i)] = C
(λ̂)

(0̂)(̂i)
e(λ̂),

with the object of anholonomicity, C
(λ̂)

(µ̂)(ν̂), of the commutation table. Denote γ ≡ 1
1+a⃗·X⃗

. Write explicitly

e(0̂) = γ
(
∂0 − (ω⃗ × X⃗)k∂k

)
= γ∂0 − γ(ω⃗ × X⃗)k∂k.

Then
[e(0̂), e(̂i)] = [γ∂0 − γ(ω⃗ × X⃗)k∂k, ∂i].
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We use the identity
[∂µ, ∂ν ] = −(∂νf(x))∂µ.

The proof is as follows: denote V = f∂µ, W = ∂ν , and consider their commutator acting on a scalar
function g

[V,W ](g) = V (W (g))−W (V (g)).

Compute
V (W (g)) = (f∂µ)(∂νg) = f∂µ∂νg,

W (V (g)) = ∂ν(f∂µg) = (∂νf)∂µg + f∂ν∂µg,

and subtract to find the commutator

[V,W ](g) = f∂µ∂νg − ((∂νf)∂µg + f∂ν∂µg) [V,W ].

Note that the second-order derivatives cancel

[V,W ](g) = −(∂νf)∂µg,

and the commutator as a differential operator is

[V,W ] = −(∂νf)∂µ.

So we obtain
[γ∂0, ∂i] = −(−γ2ai)∂0 = γ2ai∂0.

Denote
fk := γ(ω⃗ × X⃗)k = γϵkmnω

mXn.

Then
[γ(ω⃗ × X⃗)k∂k, ∂i] = [fk∂k, ∂i] = −(∂if

k)∂k = (∂iγ)(ω⃗ × X⃗)k + γ∂i(ω⃗ × X⃗)k.

We already have ∂iγ = −γ2ai, and (ω⃗ × X⃗)k = ϵkmnω
mXn ⇒ ∂i(ω⃗ × X⃗)k = ϵkmiω

m. So

∂if
k = −γ2aiϵkmnω

mXn + γϵkmiω
m.

Then the commutator is

−[γ(ω⃗ × X⃗)k∂k, ∂i] = (∂if
k)∂k =

(
−γ2aiϵkmnω

mXn + γϵkmiω
m
)
∂k.

Combining both terms, we obtain

[e(0̂), e(̂i)] = γ2ai∂0 − γ2ai(ω⃗ × X⃗)k∂k + γϵkmiω
m∂k.

Rewrite the commutator in the e(µ̂) basis. Now substitute

∂0 = γ−1e(0̂) + (ω⃗ × X⃗)je(ĵ), ∂k = e(k̂).

Compute each term
Term 1:

γ2ai∂0 = γ2ai

(
γ−1e(0̂) + (ω⃗ × X⃗)je(ĵ)

)
= γaie(0̂) + γ2ai(ω⃗ × X⃗)je(ĵ).

Term 2:
−γ2ai(ω⃗ × X⃗)k∂k = −γ2ai(ω⃗ × X⃗)ke(k̂).

Term 3:
γϵkmiω

m∂k = γϵkmiω
me(k̂).

Now combine all
[e(0̂), e(̂i)] = γaie(0̂) + γ2ai(ω⃗ × X⃗)je(ĵ)
−γ2ai(ω⃗ × X⃗)ke(k̂) + γϵkmiω

me(k̂).
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Note that the second and third terms cancel each other, as they are equal and opposite. So we’re left with

e(0̂), e(̂i)] = γaie(0̂) + γϵkmiω
me(k̂).

Reading off the structure coefficients, compare

[e(0̂), e(̂i)] = C
(λ̂)

(0̂)(̂i)
e(λ̂),

which gives the non-zero components of the object of anholonomicity

C
(0̂)

(0̂)(̂i)
= γai =

ai
1+a⃗·X⃗

,

C
(k̂)

(0̂)(̂i)
= γϵkmiω

m = ϵkmiω
m

1+a⃗·X⃗
.

By antisymmetry of the Lie bracket, we also have C
(λ̂)

(̂i)(0̂)
= −C (λ̂)

(0̂)(̂i)
. All other components vanish. Since

ai = gija
j = −δijaj = −ai,

then

C
(0̂)

(0̂)(̂i)
= − ai

1 + a⃗ · X⃗
= −C (0̂)

(̂i)(0̂)
,

and

C
(k̂)

(0̂)(̂i)
= gkl

ϵlmiω
m

1+a⃗·X⃗
= − ϵkmiω

m

1+a⃗·X⃗
= − ϵikmωm

1+a⃗·X⃗
= ϵkimωm

1+a⃗·X⃗
.

3.2. The general derivation of the coefficients C λ
(µ̂)(ν̂)

Rewrite frame vectors in terms of coordinate basis

e(0̂) = b−1
0

(
e0 − v̄kek

)
= b−1

0

(
∂0 − v̄k∂k

)
,

e(̂i) = b−1
1 ei = b−1

1 ∂i.

Compute commutators [e(µ̂), e(ν̂)].
Since the coordinate basis vectors ∂µ commute [∂µ, ∂ν ] = 0. We will use the identity

[f(x)A,B] = f [A,B] + (Af)B − (Bf)A.

We compute

[e(0̂), e(̂i)] =
[

1
b0
(∂0 − v̄k∂k),

1
b1
∂i

]
= − 1

b0b1
(∂iv̄

k)∂k − 1
b0

(
v̄k∂k

(
1
b1

))
∂i −

(
∂i

(
1
b0

))
1
b1
(∂0 − v̄k∂k).

Now write this in terms of frame vectors e(µ̂). Term-by-term conversion is
First term-

− 1

b0b1
(∂iv̄

k)∂k = − 1

b0b1
(∂iv̄

k)b1e(k̂) = − 1

b0
(∂iv̄

k)e(k̂).

Second term-

− 1

b0

(
v̄k∂k

(
1

b1

))
∂i = − 1

b0

(
v̄k∂k

(
1

b1

))
b1e(̂i).

Note

∂k

(
1

b1

)
= v̄k

(
− 1

b21
∂kb1

)
= − 1

b21
v̄k∂k.

So the coefficient becomes (
− 1

b21
v̄k∂kb1

)
b1 =

1

b0b1
v̄k∂kb1,

and the second term is written
v̄k∂kb1 · e(̂i).

Third term-

−
(
∂i

(
1

b0

))
1

b1
(∂0 − v̄k∂k) = −

(
∂i

(
1

b0

))
1

b1
b0e(0̂).
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Now (
1

b0

)
= − 1

b20
∂ib0.

So

−
(
− 1

b20
∂ib0

)
1

b1
b0 =

1

b0b1
∂ib0,

and third term is
1

b0b1
∂ib0 · e(0̂).

Hence

[e(0̂), e(̂i)] =
1

b0b1
∂ib0 · e(0̂) +

1

b0b1
v̄k∂kb1 · e(̂i) −

1

b0
(∂iv̄

k)e(k̂).

Summary of non-zero anholonomicity coefficients is

C
(0̂)

(0̂)(̂i)
= 1

b0b1
∂ib0 C

(̂i)

(0̂)(̂i)
= 1

b0b1
v̄k∂kb1

C
(k̂)

(0̂)(̂i)
= − 1

b0
∂iv̄

k,

with antisymmetry: C
(λ̂)

(̂i)(0̂)
= −C (λ̂)

(0̂)(̂i)
.

Now compute

[e(̂i), e(ĵ)] =

[
1

b1
∂i,

1

b1
∂j

]
.

Let f = 1
b1
, so

e(ĵ)] = [f∂i, f∂j ].

Use the identity
[fA, fB] = f2[A,B] + f(Af)B − f(Bf)A.

Apply it
[f∂i, f∂j ] = f2[∂i, ∂j ] + f(∂if)∂j − f(∂jf)∂i.

Since [∂i, ∂j ] = 0, we get
[e(̂i), e(ĵ)] = f(∂if)∂j − f(∂jf)∂i.

We now summarize all non-zero components C
(λ̂)

(µ̂)(ν̂) of the anholonomicity object.
From the commutators

[e(0̂), e(̂i)] = +
1

b1
∂i ln b0 · e(0̂) −

(
v̄k∂kb

−1
1

)
e(̂i) +

1

b0
∂iv̄

k · e(k̂).

and
[e(̂i), e(ĵ)] = (∂j ln b1) e(̂i) − (∂i ln b1) e(ĵ),

we obtain

C
(0̂)

(0̂)(̂i)
= + 1

b1
∂i ln b0

C
(̂i)

(0̂)(̂i)
= −v̄k∂kb−1

1

C
(k̂)

(0̂)(̂i)
= + 1

b0
∂iv̄

k

C
(̂i)

(̂i)(ĵ)
= ∂j ln b1, C

(ĵ)

(̂i)(ĵ)
= −∂i ln b1.

Lowering the upper index by a metric o(ρ̂)(λ̂), by using an orthogonal basis o = (diag+1,−1,−1,−1), we
summarize all non vanishing components C(µ̂)(ν̂)(λ̂) of the anholonomicity as follows:

C(0̂)(̂i)(0̂) = −C(̂i)(0̂)(0̂) =
1

b−1
1

∂i ln b0,

C(0̂)(̂i)(ĵ) = −C(̂i)(0̂)(ĵ) = −∂ivj
b0

+ ⃗̄v · (∇b−1
1 )δij ,

C(̂i)(ĵ)(k̂) = −C(ĵ)(̂i)(k̂) = −(∂ib
−1
1 )δjk

+(∂jb
−1
1 )δik, C(̂i)(ĵ)(0̂) = C(µ̂)(ν̂)(λ̂) = 0.

(51)
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3.3. The connection components Γ(λ̂)(ν̂)(µ̂)

We compute the connection components, Γ(λ̂)(ν̂)(µ̂), defined with respect to the anholonomic frame (??),

from the given structure coefficients (51) and the formula

Γ(λ̂)(ν̂)(µ̂) =
1

2

(
C(λ̂)(ν̂)(µ̂) + C((λ̂)(µ̂))(ν̂) − C(ν̂)(µ̂)(λ̂)

)
.

It is straightforward to calculate the connection coefficients

Γ(0̂)(̂i)(0̂) = −Γ(̂i)(0̂)(0̂) =
1

b−1
1

∂i ln b0,

Γ(̂i)(ĵ)(0̂) =
1
2b0

(∂iv̄j − ∂j v̄i)

= b4
b0
∂ivj +

1
2b0

[(∂ib4)vj − (∂jb4)vi] ,

Γ(̂i)(ĵ)(k̂) = −(∂ib
−1
1 )δjk + (∂jb

−1
1 )δik,

Γ(0̂)(̂i)(ĵ) = −Γ(̂i)(0̂)(ĵ) = − 1
2b0

(∂iv̄j + ∂j v̄i)

+⃗̄v · (∇b−1
1 )δij = − 1

2b0
[(∂ib4)vj + (∂jb4)vi)]

+⃗̄v · (∇b−1
1 )δij , Γ(0̂)(0̂)(0̂) = Γ(µ̂)(ν̂)(̂i) = 0.

(52)

In the limit of the hypothesis of locality: (π) → 1, the deformation coefficients b1, b3 ≡ b0/(1 + a⃗ · X⃗), b4
tend to 1, and hence the (51) and (52) restore the standard contributions by Hehl et al. (1991). Actually,

Γ(0̂)(̂i)(0̂) = C(0̂)(̂i)(0̂)

→ Γ0̂ î 0̂ = C0̂ î 0̂ =
ai

(1+a⃗·X⃗)
.

(53)

Since [ai = gija
j = −δijaj = −ai, then

Γ0̂ î 0̂ = −Γî 0̂ 0̂ = − ai

(1+a⃗·X⃗)
. (54)

Next,

Γ(0̂)(̂i)(ĵ) → Γ0̂ î ĵ =
∂ivj

(1+a⃗·X⃗)
= ojk

∂iv
k

(1+a⃗·X⃗)

= ojk
εkmiω

m

(1+a⃗·X⃗)
= − εmijω

m

(1+a⃗·X⃗)
= − εijmωm

(1+a⃗·X⃗)
.

(55)

All other components vanish
Γµ̂ ν̂ î = Γ0̂ 0̂ 0̂ = 0.

4. Dirac equation in an accelerated and rotating frame beyond the hy-
pothesis of locality

In the Minkowski spacetime of SR in Cartesian coordinates xµ
′
= (x0, x1, x2, x3), the Dirac equation for

a massive fermion reads

iγµ
′
∂µ′Ψ′ = mΨ′, (56)

with the Dirac matrices γµ
′
. From now on we will essentially follow Bjorken-Drell (Bjorken & Drell, 1964),

in particular we use its conventions for the Dirac matrices: γ0 = β and γi = βαi. In its most fundamental
form, the Dirac equation in a locally accelerated and rotating frame of reference of the observer, obtained
from first principles, is a generalization of the equation (56):

iγµ̂D(µ̂)Ψ = mΨ, (57)

where the anholonomic Dirac matrices are defined by γµ̂ := eµ̂νγν , and γµ̂γν̂ + γν̂γµ̂ = 2oµ̂ν̂ . The partial
derivative in the Dirac equation is simply replaced by the covariant derivative

D(µ̂) := ∂(µ̂) + Γ(µ̂), (58)

where the quantities Γ(µ̂) are related to the connection coefficients

Γ(µ̂) := − i
4σ

λ̂ν̂Γ(λ̂)(ν̂)(µ̂), (59)
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with the six matrices σλ̂ν̂ of the infinitesimal generators of the Lorentz group

σλ̂ν̂ := i
2 [γ

λ̂, γν̂ ]. (60)

After calculation, by virtue of (52), and simplification of (59), we find

Γ(0̂) = −1
2 a⃗1 · α− i

2 ω⃗1 · σ⃗,
Γ(k̂) = a⃗k · α⃗+ i ω⃗k · σ⃗,

(61)

provided,
a⃗1 ≡ 1

b1
(∇ ln b0),

ω⃗1 ≡ 1
b0

[
b4ω⃗ − 1

2(∇ ln b4)× v⃗
]
,

aik = aki ≡ 1
4b0

[(∂ib4)vk + (∂kb4)vi]

−1
2(⃗̄v · ∇b

−1
1 )δik,

ωik = −ωki ≡ 1
2εkli(∂ib

−1
1 )),

(62)

where εijk is the three-dimensiona1 Levi-Civita symbol with ε123 = 1. Collecting (58) and (61) together, we
find for the deformed spinor covariant derivatives

D(0̂) =
1
b0

{
∂

∂X0 − 1
2b1

∇b0 · α⃗− i ω⃗ · L⃗

−i ω⃗S · S⃗
}
, ωS ≡ b4ω⃗ − 1

2∇(b4)× v⃗,

D(̂i) = b−1
1

∂
∂Xi + a⃗i · α⃗+ i ω⃗i · σ⃗,

(63)

where the orbital (L⃗) and spin (S⃗) operators respectively have the form

L⃗ ≡ (X⃗ × ∂
i∂X⃗

) = (X⃗ × p⃗), S⃗ ≡ 1
2 σ⃗. (64)

In the standard limit, (π) → 1, of the hypothesis of locality, the deformation coefficients b1, b3, b4, tend to
1, so that the (63) and (64) restore the results of (Hehl & Ni, 1990):

J⃗ → J⃗ = L⃗+ S⃗ ≡ (X⃗ × ∂
i∂X⃗

) + 1
2 σ⃗,

D(0̂) → D0̂ =
1

(1+a⃗·X⃗)

(
∂

∂X0 − v⃗ · ∂
∂X⃗

+ 1
2 a⃗ · α⃗

−i ω⃗ · J⃗
)
, D(̂i) → Dî =

∂
∂Xi .

(65)

Substituting (63) into (57) and multiplying it by γ0βb0, we obtain the explicit form of the Dirac equation
beyond the hypothesis of locality for an observer in a reference frame that is accelerated with a proper linear
3-acceleration a⃗ and rotating with proper 3-angular velocity ω⃗:{

i∂0 − i 1
2b1

(∇b0 · α⃗) + ω⃗ · L⃗+ ω⃗S · S⃗
−b0b−1

1 (α⃗ · p⃗) + i
2(∇b4 − 3b4b0∇b−1

1 ) · v⃗
−ib0(α⃗ · ∇b−1

1 )
}
Ψ = b0βmΨ.

(66)

Here we employed the following intermediate calculations. Using the Clifford algebra of Dirac matrices
{αj , αk} = 2δjkI, we obtain

αia⃗i · α⃗ = aii = ( 1
2b0

∇b4 − 3
2b4∇b

−1
1 ) · v⃗,

T̂ ≡ i ω⃗k · σ⃗ = 1
2

(
0 T
T 0

)
,

T = εjli(δijI + iεijkσk)∂lb
−1
1

= iεjliεijkσk∂lb
−1
1 .

(67)

The identity
εjliεijk = δliδik − δlkδii, (68)

gives εjliεijk = δlk − 3δlk = −2δlk, such that

T = −2iδlkσk∂lb
−1
1 = −2iσl∂lb

−1
1 , (69)
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and

T̂ = −α⃗ · ∇b−1
1 . (70)

Hence, the Dirac equation (66) can be recast into the form

i∂0Ψ = HΨ, (71)

with the deformed Dirac Hamiltonian

H = b3βm(1 + a⃗ · X⃗) + b3
b1
α⃗ · p⃗− ω⃗ · L⃗

−ω⃗S · S⃗ + i
2 (⃗a2 · α⃗+ a3) +

b3
2b1

[
(⃗a · X⃗)(p⃗ · α⃗)

+(p⃗ · α⃗)(⃗a · X⃗)
]
.

(72)

where a⃗2 ≡ ( 1
b1
∇b0 + 2b0∇b−1

1 ), and a3 ≡ [3b4b0∇b−1
1 −∇b4] · v⃗. The Dirac Hamiltonian (72) can be

conveniently rewritten

H = w1βm(1 + a⃗ · X⃗) + w3 α⃗ · p⃗− ω⃗ · L⃗
−w2 ω⃗ · S⃗ + i

2(w4a⃗ · α⃗+ w5) +
w3
2

[
(⃗a · X⃗)(p⃗ · α⃗)

+(p⃗ · α⃗)(⃗a · X⃗)
]
,

(73)

provided, w1 ≡ b3, w2 ω⃗ ≡ ω⃗S , w3 ≡ b3
b1
, w4a⃗ ≡ a⃗2, w5 ≡ a3. The coefficients wi(X)(i = 1, 2, 3, 4, 5) are

time-independent scalar functions of X, (wi(X) ∈ R3).
Let’s briefly interpret the physical meaning of each term before relating this to curved spacetime, see

e.g. (Brill & Wheeler, 1957, Hehl & Ni, 1990, Hehl et al., 1991, Maluf & Faria, 2008, Maluf et al., 2007,
Mashhoon, 2002, 2011, Parker & Toms, 2009). Mass term, w1βm(1 + a⃗ · X⃗), represents a gravitational
redshift of mass energy in a weak field. This matches the Tolman redshift.

Orbital term, ω⃗ ·(X⃗× p⃗), describes Coriolis force and orbital coupling in rotating frames. This is effective
term of energy shift due to rotation. In general relativity, this is the Lense–Thirring effect — frame dragging
by rotating mass.

Spin-Rotation Coupling: w2 ω⃗ ·σ⃗. This is the Mashhoon effect. This is spin experiences torque in rotating
frames, which is analogous to magnetic dipole in a magnetic field. Can be derived from the spin connection
ωab
µ in curved spacetime: spin term ∼ 1

4γ
aγbωabµ.

The symmetrized inertial boost term,
w3
2

[
(⃗a · X⃗)(p⃗ · α⃗) + (p⃗ · α⃗)(⃗a · X⃗)

]
, arises from a non-inertial, accelerated, frame and reflects: boosts in the

Dirac equation, and the non-trivial tetrad field structure. This term can be derived from the Fermi normal
coordinates for a uniformly accelerated observer.

Residual imaginary terms are artifacts that due to coordinate transformations in the non-inertial frames.
These are usually negligible under the assumption that b1, b3, b4 vary slowly with X⃗, so their gradients are
small, and these corrections are suppressed. Moreover, the standard method of similarity transformation
of the Hamiltonian allows one to choose a physically more suitable reference frame (see next sect.). The
expectation values of physical observables remain real. No imaginary contamination remains in physical
quantities. Thus the energy, momentum, probability, etc. remain real and consistent.

5. Concluding remarks

In this section we briefly reflect upon the main points of this report. This is the first of three pa-
pers that explore the possibility of quantum mechanical inertial properties of the Dirac particle beyond
the `hypothesis of locality´. This is done within the framework of the Master Space-Teleparallel Super-
gravity (M̃Sp-TSG) (Ter-Kazarian, 2025) theory, which we recently proposed taking into account inertial
effects (Ter-Kazarian, 2026). The `hypothesis of locality´ used for extension of the Lorentz invariance to
accelerated observers within the Special Relativity, in effect bypasses acceleration and replaces the accel-
erated observer by a continuous infinity of hypothetical momentarily comoving inertial observers along its
wordline. Despite the successes for the tiny accelerations we usually experience, when the curvature of
the wordline could be ignored and that the differences between observations by accelerated and comoving
inertial observers will also be very small, however, the basic conceptual framework of this assumption has
been considered by many scientists to be unsatisfactory. In general case, this is actually untenable and
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represents strict restrictions, and that the hypothesis of locality will have to be extended to describe physics
for arbitrarily accelerated observers. This immediately leads to the disturbing fact within the M̃Sp-TSG
theory that the metric of a two-dimensional semi-Riemannian space, calculated in the non-inertial frame
of reference of an accelerating and rotating observer, becomes incomplete. To recover the complete met-

ric of V
(ϱ)
2 , therefore, our further strategy is to consider a general deformation of the flat master space,

MSp → M̃Sp (2). The deformation tensor yields the deformations of linear holonomic basis. Accordingly,
we must find the first deformation matrices (29), (30), which yield the local tetrad deformations (22). This
significantly improves the standard metric and other relevant geometrical structures referred to a noninertial
frame in Minkowski spacetime for relativistic velocities and an arbitrary characteristic acceleration lengths.
We compute the object of anholonomicity (the structure-constants) (subsect. 3.2) and the connection (sub-
sect. 3.3) defined with respect to the anholonomic frame. On these premises, we finally obtain the explicit
form of the Dirac equation for an observer in a reference frame that is accelerated with a three-acceleration
a⃗ and rotating with angular frequency ω⃗ (66).
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Appendices

Appendix A Preliminaries

(1) The embedding. A smooth embedding map, generalized for curved spaces, becomes f̃ : V 2 −→ V4
defined to be an immersion (the embedding which is a function that is a homeomorphism onto its image):

ẽ0 = ẽ0, x̃0 = x̃0, ẽ1 =
⃗̃n, x̃1 = |⃗̃x|, (74)

where ẽm (m = 0, 1) is the basis at the point of interest in V 2,
⃗̃x = ẽix̃

i = ⃗̃n|⃗̃x| (i = 1, 2, 3) (the middle
letters of the Latin alphabet (i, j, ...) will be reserved for space indices in V4). From embedding map (74),

we obtain the components of velocity of a particle ṽ(±) = dx(±)

dx̃0 = 1√
2
(ṽ0 ± ṽ1), ṽ1 = dx̃1

dx̃0 = |⃗ṽ| = | d⃗̃x
dx̃0 |, so

that ũ = ẽmṽ
m = (⃗ṽ 0,

⃗̃v 1),
⃗̃v 0 = ẽ0ṽ

0, ⃗̃v 1 = ẽ1ṽ
1 = ⃗̃n|⃗ṽ| = ⃗̃v, therefore, ũ = (⃗ṽ 0,

⃗̃v 1) = ũ = (ẽ0, ⃗̃v). Thence,

the components of the acceleration vector satisfy the following embedding relations a0 = a0, a1 = |⃗a|. A
comprehensive principle which underlies the global MSp-SUSY theory hinges on the following: the particle
perseveres in its permanent state of superoscillations between the spaces M4 and M 2, unless acted upon by
some external force, i.e. the particle undergoes the SUSY - transformations at successive transitions from
M4 to M 2 and back (M4 ⇌M 2).

On the premises of (Ter-Kazarian, 2024a), we review the accelerated motion of a particle in terms of

local M̃Sp-SUSY transformations. That is, a creation of a sparticle in V 2 means the transition of a particle
from initial state defined on V4 into intermediate sparticle state defined on V 2, while an annihilation of a
sparticle in V 2 means vice versa. The same interpretation holds for the creation and annihilation processes
of a particle in V4. The net result of each atomic double transition of a particle V4 ⇌ V 2 to V 2 and back
is as if we had operated with a local space-time translation with acceleration, a⃗, in the original space V4.
Accordingly, the acceleration, a⃗, occurs in V 2 for transition V 2 ⇌ V4. Thus, the accelerated motion of boson
A(x̃) in V4 is a chain of its successive transformations to the Weyl fermion χ(x̃) defined on V 2 (accompanied

with the auxiliary fields F̃ ) and back,

→ A(x̃) → χ(F )(x̃) → A(x̃) → χ(F )(x̃) →, (75)

and the same interpretation holds for fermion χ(x̃).
(2) The vielbein field in M4. In the M4, the vielbein field is orthonormal anywhere:

eâ · eb̂ = gµνλ
µ

(a) λ
ν

(b) = oab = diag(+−−−). (76)

Arbitrary curvilinear coordinates of a non-inertial frame of reference in a flat Minkowski spacetime M4

will be denoted by xµ(s), with proper linear 3-acceleration a⃗(s) and proper 3-rotation ω⃗(s), s being the
proper time. To describe the acceleration scales mathematically, the notion of a reference system has to be
generalized from curvilinear coordinate frame eµ = ∂µ = ∂/∂xµ to orthonormal frame eâ. This tetrad can
be decomposed with respect to the tangent vectors eµ along the curvilinear coordinates, the natural basis,
according to λ µ

(a) := e µ
â , where eâ = e µ

â eµ. The spacetime indices µ, ν... and SO(3, 1) indices a, b, ... run
from 0 to 3. The time axis must be the time axis of a comoving inertial frame in which the observer is
momentarily at rest, i.e. the zeroth leg of the frame e0̂ be 4-velocity uµ of the observer that is tangent to
the world line at a given point P. The remaining spatial triad frame vectors eî, orthogonal to e0̂, are also
parameterized by (s). The spatial triad eî rotates with proper 3-rotation ω⃗(s). The set of tetrad fields for
which λµ(0) describes a congruence of timelike curves C is adapted to a class of observers characterized by

the velocity field uµ = λ µ
(0) and by the acceleration aµ = Duµ

ds =
Dλ µ

(0)

ds = ua▽aλ
µ

(0) , where the covariant
derivative is constructed out of the Christoffel symbols.

Constructing Cartesian coordinates based on accelerated and rotating laboratory, let S(P) be the space-
like hyperplane associated to each event (point) P on the timelike world line at xµ of the accelerated observer,
orthogonal to it. The accelerated observer carries the orthonormal frame eâ. Defining x0 = ct = s and
x1, x2, x3 as Cartesian coordinates using the triad eî(s) with the observer at the origin: xµ = (x0, x1, x2, x3)
are the local coordinates relative to the accelerated observer. The tetrad eµ̂(s) can be parallel transported
from P to all neighboring points on S(P), which defines the orthonormal tetrad field eµ̂(x

ν). This local
coordinate system is used in the laboratory, while the world line is the line of the reference clock. The tetrad
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field eµ̂(x
ν) is anholonomic. Define the coordinate tetrad eµ = ∂µ = ∂/∂xµ. The orthonormal frame eâ,

carried by an accelerated observer, now can be written with respect to curvilinear or Cartesian coordinates,
respectively:

eâ = λ µ
(a) eµ = λ

µ
(a) eµ,

ϑb̂ = λ
(b)

ν ϑν = λ
(b)

ν ϑν ,
(77)

with ϑµ = dxµ, ϑ
µ
= dxµ. The coframe members {ϑ b̂} are the objects of dual counterpart: eâ ⌋ϑb̂ = δb̂â.

Let us introduce a geodesic coordinate system Xµ(s), which is in general valid in a sufficiently narrow
worldtube along the timelike world line of the observer. Suppose the displacement vector xµ(s) represents
the position of the accelerated observer. According to the hypothesis of locality, at any time (s) along the
accelerated world line the spacelike S(P) hyperplane orthogonal to the world line is Euclidean space and
we usually describe some event on this hyperplane at xµ to be at Xµ, where xµ and Xµ are connected via
X0 = s and

xµ = xµ(s) +X k λ µ
(k) (s). (78)

This gives
dxµ = dxµ(s) + dX i λ µ

(i) (s) +X i dλ µ
(i) (s), (79)

where the displacement vector from the origin reads dxµ = λ µ
(0) (s) dX

0. Consequently, (79) yields the

standard metric of semi-Riemannian 4D background space V
(0)
4 , in noninertial system of the accelerating

and rotating observer, computed on the basis of hypothesis of locality (Hehl & Ni, 1990, Hehl et al., 1991)
(see also (Mashhoon, 2002, 2011)):

ds2 = gµνdx
µdxν = (dX0)2

[
(1 + a⃗ · X⃗)2

+(ω⃗ · X⃗)2 − (ω⃗ · ω⃗)(X⃗ · X⃗)
]

−2dX0 dX⃗ · (ω⃗ × X⃗)− dX⃗ · dX⃗.

(80)

From (80) it is seen that such geodesic coordinates are admissible as long as

(1 + a⃗ · X⃗)2 > (ω̄ × X⃗)2. (81)

Thus in the discussion of the admissibility of the geodesic coordinates, two independent acceleration lengths
must be considered: the translational acceleration length c2/a and the rotational acceleration length c/ω
that appear in equation (81). While the components of the orthonormal frame field read

λ 0
(0) = 1

1+a⃗·X⃗
, λ k

(0) = − [ω⃗×X⃗]k

1+a⃗·X⃗
,

λ j
(i) = δji , λ 0

(i) = 0,
(82)

and the components of the dual coframe field are

λ
(0)

0 = (1 + a⃗ · X⃗), λ
(0)

i = 0,

λ
(i)

0 = [ω⃗ × X⃗]i, λ
(i)

j = δij .
(83)

(3) The vielbein field in MSp. The components of the orthonormal frame field are λ
µ

( a) := e
µ

â , where

e â = e
µ

â eµ (eµ = ∂ µ = ∂/∂xµ). The time axis must be the time axis of a comoving inertial frame in which

the observer is momentarily at rest, i.e. the zeroth leg of the frame e 0̂ be 2-velocity uµ of the observer
that is tangent to the world line at a given point P. The spatial frame vector e 1̂, orthogonal to e 0̂, is also
parameterized by (s). Constructing Cartesian coordinates based on laboratory, let S(P) be the spacelike
hyperplane associated to each event (point) P on the timelike world line at xµ of the accelerated observer,
orthogonal to it. Defining x0 = ct = s and x1 as Cartesian coordinates using the e 1̂(s) with the observer

at the origin: xµ = (x0, x1) are the local coordinates relative to the accelerated observer. The tetrad e µ̂(s)

can be parallel transported from P to all neighboring points on S(P), which defines the orthonormal tetrad
field e µ̂(x

ν). The tetrad field e µ̂(x
ν) is anholonomic. Define the coordinate tetrad eµ = ∂ µ = ∂/∂xµ. The

orthonormal frame, e â, can be written with respect to curvilinear or Cartesian coordinates, respectively:

e â = λ
µ

(a) eµ = λ
µ

(a) eµ,

ϑb̂ = λ
(b)

ν ϑ
ν = λ

(b)
ν ϑν ,

(84)
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with ϑµ = dxµ, ϑ
µ
= dxµ. The coframe members {ϑb̂} are the objects of dual counterpart: e â ⌋ϑb̂ = δba.

Let (X µ(X 0, X 1) be geodesic local coordinates relative to the accelerated observer in the neighborhood
of the accelerated path in MSp, with spacetime components satisfying the embedding map

dX 0 = dX 0, dX 1 = |dX⃗|,
n⃗ = dX⃗

dX 1 = dX⃗
|dX⃗|

, n⃗ · n⃗ = 1.
(85)

Then, in view of (82) and (83), the components of the orthonormal frame field, λ
µ

( a) , read

λ
0

( 0) = 1
1+(a⃗·X⃗)1

, λ
1

( 0) = − [ω⃗×X⃗]1

1+(a⃗·X⃗)1
,

λ
1

( 1) = 1, λ
0

( 1) = 0.
(86)

while the components of the dual coframe field, λ
( a)

µ, become

λ
(0)

0 = (1 + (⃗a · X⃗)1), λ
(0)

1 = 0,

λ
(1)

0 = [ω⃗ × X⃗]1, λ
(1)

1 = 1.
(87)

The acceleration of the observer along the accelerated path, who carries an orthonormal tetrad frame
e â = (e 0̂, e 1̂), therefore, can be expressed in the frame basis:

dλ
µ

(a)
(s)

ds = Φ
(b)

(a) (s)λ
µ

(b) (s),
(88)

where the inertial accelerations are represented by a second rank antisymmetric tensor Φ
(b)

(a) (s) under global

SO(1, 1) transformations. The Φ(a)(b) can be interpreted as the inertial accelerations of the frame along the
timelike curve C (the translational acceleration and the frequency of rotation of the frame):

Φ
(0)

(1) X1 = (⃗a · X⃗)1 = |⃗a · X⃗|,
Φ

(1)
(1) X1 = [ω⃗ × X⃗]1 = |ω⃗ × X⃗|.

(89)

According to the hypothesis of locality, at any time (s) along the accelerated world line the spacelike S(P)
hyperplane orthogonal to the world line is Euclidean space and we usually describe some event on this
hyperplane at xµ to be at Xµ, where xµ and Xµ are connected via X0 = s and

xµ = xµ(s) +X 1 λ µ
(1) (s). (90)

This gives
dxµ = dxµ(s) + dX 1 λ

µ

(1) (s) +X 1 dλ
µ

(1) (s), (91)

where the displacement vector from the origin reads dxµ(s) = λ µ
(0) (s) dX

0. The (91) yields the metric

ds2 = gµν dx
µdxν = ϑ0 ⊗ ϑ0 − ϑ1 ⊗ ϑ1. (92)

In doing so, we calculated the orthonormal frame, e â, and corresponding coframe, ϑb̂ members, carried by
an accelerated observer, which by virtue of (86) and (87) are equal to

e0̂ =
1

1+(a⃗·X⃗)1
{e 0 − [ω⃗ × X⃗]1 e 1},

e1̂ = e 1,
(93)

and
ϑ0̂ = (1 + (⃗a · X⃗)1) dX0,

ϑ1̂ = dX1 + [ω⃗ × X⃗]1 dX0,
(94)

respectively. The metric (92) of 2D semi-Riemannian space,V
(0)
2 , in noninertial system of the accelerating

and rotating observer, computed on the basis of hypothesis of locality reads

ds2 = (dX0)2[(1 + (⃗a · X⃗)1)2 + (ω⃗ × X⃗)1(1−
(ω⃗ × X⃗)1)]− (dX1)2 − 2dX0dX1[(ω⃗ × X⃗)1(1−
(ω⃗ × X⃗)1)]1/2.

(95)
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Dirac equation

Using the following embedding relations as a converting guide:

g0̃0̃(dX
0)2 = g0̃0̃(dX

0)2, g1̃1̃(dX
1)2

= g1̃1̃(dX⃗ · dX⃗), g1̃0̃dX
1 = gĩ0̃dX

i,
gĩ0̃ = g0̃̃i = nig0̃1̃ = nig1̃0̃, b2i = nib2,

(96)

from (30) and (31), we obtain

π 0̂
(0̂)

(ϱ) = 1+a⃗·X⃗
b0

, π 0̂
(̂i)

(ϱ) = 0,

π ĵ

(̂i)
(ϱ) = 1

b1
δji , π î

(0̂)
(ϱ) = b2i+b1(ω⃗×X⃗)i

b0b1
,

(97)

and

π
(0̂)

0̂
(ϱ) = b0

1+a⃗·X⃗
, π

(0̂)

î
(ϱ) = 0,

π
(̂i)

0̂
(ϱ) = − b2i+b1(ω⃗×X⃗)i

1+a⃗·X⃗
, π

(̂i)

ĵ
(ϱ) = b1 δ

i
j .

(98)

By means of (93), (94), we obtain the generalized frame and coframe members referred to the 4D background
space as follows:

e(0̂) = b−1
0

{
(1 + a⃗ · X⃗) e0̂ + ( b2ib1

+ (ω⃗ × X⃗)i) eî

}
,

e(̂i) = b−1
1 eî,

(99)

and
ϑ(0̂) = b0

1+a⃗·X⃗
ϑ0̂,

ϑ(̂i) = b1 ϑ
î − 1

1+a⃗·X⃗
[b2i + b1(ω⃗ × X⃗)i]ϑ0̂,

(100)

respectively. Then the complete metric in noninertial frame of arbitrary accelerating and rotating observer
in Minkowski spacetime reads

ds̃2(ϱ) = gµν(ϱ)dX
µdXν = ϑ(0̂) ⊗ ϑ(0̂)−

ϑ(̂i) ⊗ ϑ(̂i) = [(π
(0̂)

0̂
)2 − (π

(̂i)

0̂
)2]ϑ0̂ ⊗ ϑ0̂

−(π
(̂i)

k̂
)2 ϑĵ ⊗ ϑĵ = −2π

(̂i)

0̂
π
(̂i)

ĵ
ϑ0̂ ⊗ ϑĵ

= (dX0)2
[
b20 − b22 − (2b21 + 1)(ω⃗ · X⃗)2

−(2b1 + 1)⃗b2 · (ω⃗ · X⃗)
]
− b21 dX⃗ · dX⃗

−dX0 dX⃗ ·
[
b1(2b1 + 1)(ω⃗ × X⃗) + b⃗2

]
.

(101)
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