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Quantum interference of a de Broglie wave of a Dirac
particle beyond the "hypothesis of locality °.
Part I1II: Geometry
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Abstract

This is the last of three articles that explore the quantum mechanical inertial properties of the Dirac
particle beyond the "hypothesis of locality ". This is done within the framework of the Master Space-
Teleparallel Supergravity (M.S,-TSG) (Ter-Kazarian, 2025a) theory, which we recently proposed to ac-
count for inertial effects (Ter-Kazarian, 2026). In present article, we review the technical details of
geometry beyond the " hypothesis of locality *, referred to the 4D background Minkowski space in noniner-
tial frame of arbitrary accelerating and rotating observer (Ter-Kazarian, 2025b). Given the anholonomic
frame and coframe members, the object of anholonomicity and connection (Ter-Kazarian, 2025b), we
compute the connection 1-forms, the curvature 2-form and write it in terms of Riemann curvature tensor.
Then we derive the Riemann tensor in an anholonomic frame and compute the Riemann tensor, Ricci
tensor, Ricci scalar, Kretschmann scalar.
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1. Introduction

The experiments of quantum interference of De Broglie matter waves of Dirac particle are reviewed
by (Abele & Leeb, 2012, Atwood & et al., 1984, Bonse & Wroblewski, 1983, Colella et al., 1975, Hasegawa &
Rauch, 2011, Kajari et al., 2010, Michelson et al., 1925, Page, 1975, Rauch & Werner, 2000, Staudenmann
et al., 1980). In the meantime, the theoretical studies of the relativistic quantum theory in a curved spacetime
have predicted a number of interesting manifestations of the spin-gravity coupling for a Dirac particle, see
e.g. (Audretsch & Schafer, 1978, Cai & Papini, 1991, 1992, Fischbach et al., 1981, Hehl & Ni, 1990, Obukhov,
2001, 2002, Ryder, 1998, Singh & Papini, 2000, Varju & Ryder, 1998, 2000, de Oliveira & Tiomno, 1962).
For a performing the laboratory measurements, it is necessary to give a theoretical description of the
measurements of accelerated observers. This is, usually, done via the “hypothesis of locality”, used to
extend Lorentz invariance to accelerated observers within the framework of Special Relativity, see e.g. (Hehl
& Ni, 1990, Hehl et al., 1991, Maluf & Faria, 2008, Maluf et al., 2007, Marzlin, 1996, Mashhoon, 2002, 2011,
Misner et al., 1973, Synge, 1960) and references therein. However, many scientists found its basic conceptual
framework unsatisfactory. In general case, the hypothesis of locality will have to be extended to describe
physics for arbitrarily accelerated observers.

In Ter-Kazarian (2025b) (first article of three), we computed the object of anholonomicity and the
connection defined with respect to the anholonomic frame, beyond the “hypothesis of locality . Then we
derived the explicit final form of the Dirac equation for an observer in a reference frame that is accelerated
with a three-acceleration @ and rotating with angular frequency . However, the purely imaginary poten-
tial term from the Dirac Hamiltonian is associated with non-Hermitian contributions due to coordinate
transformations in accelerated frames. Residual imaginary terms are artifacts.

To eliminate to all orders these terms, in Ter-Kazarian (2025c) (second article of three), we apply the
standard techniques used in relativistic quantum mechanics and quantum field theory, where non-Hermitian
terms can be removed via suitable similarity transformations. This standard method allows us to choose
a physically more suitable reference frame. The expectation values of physical observables remain real.
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No imaginary contamination remains in physical quantities. Thus the energy, momentum, probability, etc.
remain real and consistent. Next we investigated the low-energy properties, avoiding solutions with negative
energy. In the method employed for reducing the Dirac Hamiltonian to non-relativistic two-component form,
in order to decouple the positive and the negative energy states, we use an approximate scheme of the Foldy-
Wouthuysen canonical transformation of the Dirac Hamiltonian for a free particle. This is performed by an
infinite sequence of FW-transformations leading to a deformed Hamiltonian, which is an infinite series in
powers of (1/m). Evaluating the operator products to the desired order of accuracy, we find the deformed,
non-relativistic Hamiltonian. We then found the inertial effects for a massive Dirac fermion in non-relativistic
approximation, which are displayed beyond the "hypothesis of locality ~ as extended (deformed) versions of
the standard effects. The latter are well-known important inertial effects such as the redshift effect (Colella-
Overhauser-Werner experiment), the Sagnac-type effect, the spin rotation effect (Mashhoon), the kinetic
energy redshift effect, the new inertial spin-orbit coupling. Expanding further the deformation coefficients,
several new effects will rather appeared involving spin, angular momentum, proper linear 3-acceleration @
and proper 3-angular velocity & in various mixed combinations.

To complete this stage of investigation of quantum interference of a de Broglie wave of a Dirac particle
beyond the "“hypothesis of locality *, in present article, we review and clarify the technical details of geometry
beyond the "“hypothesis of locality *, referred to the 4D background Minkowski space in noninertial frame
of arbitrary accelerating and rotating observer. Given the anholonomic frame and coframe members, the
object of anholonomicity and connection (Ter-Kazarian, 2025b), we compute the connection 1-forms, the
curvature 2-forms and write it in terms of Riemann curvature tensor. Then we derive the Riemann tensor
in an anholonomic frame and compute the Riemann tensor, Ricci tensor, Ricci scalar, Kretschmann scalar.

We proceed according to the following structure. To start with, in section 2 we briefly review the
orthonormal frame, the object of anholonomicity and the connections, beyond the "hypothesis of locality .
In section 3 we compute the connection 1-forms w(ﬂ)(,;), with verification of the connection 1-forms (subsect.

) and Cartan’s first structure equation (subsect. ). On these premises, in section 1 we compute the
curvature 2-forms Q(ﬂ)(ﬁ)7 and again from scratch (subsect. ). Derivation of the Riemann tensor in an
anholonomic frame is presented in section 5. In section 6 we compute the Riemann tensor. In section 7 we
compute the Ricci tensor (subsect. 7.1), Ricci scalar (subsect. 7.2), Kretschmann scalar (subsect. 7.3). As
concluding remarks, in section 8 , we review the key points of this report. It is worthwhile to recall some
technical details collected in Appendix. Unless indicated otherwise, the natural units, h = ¢ = 1 are used
throughout.

2. The orthonormal frame, the object of anholonomicity and the connec-
tions

To make this article understandable, the interested reader is referred to the original papers (Ter-Kazarian,
2024a, 2025a,b, 2026) (see also (Ter-Kazarian, 2024b,c,d)). In this section, we briefly recall some preliminary
geometrical structures used in (Ter-Kazarian, 2025b).

We consider only mass points, then the non-inertial frame of reference in the Minkowski space of SR
is represented by a curvilinear coordinate system, since it is conventionally accepted to use the names
*curvilinear coordinate system ” and “non-inertial system ” interchangeably. Consider the accelerated motion
of a relativistic test particle in Minkowski 4D background flat space, My, under the unbalanced net force
other than gravitational. The hypothesis of locality assumes the equivalence of an accelerated observer and
an instantaneously moving inertial observer, i.e. it links the measurements of the accelerated observer with
the measurements of the inertial observer (see Appendix/(1)-(3)). This immediately leads to the startling

view within the framework of the mp—TSG theory, of replacing the non-inertial reference frame S((g)) , which

is held stationary in the deformed master space Z;Q) (0 # 0), with a continuous infinity set of the inertial

frames {S((g)), Sé())), Sé()o), ...} given in Kgg) (0 =0). In other words, the hypothesis of locality leads to the 2D

semi-Riemannian space, VQ(O)(Q = 0), with the incomplete metric of g (see (69)). Here o(z) is the local rate
of instantaneously change of a constant velocity (both magnitude and direction) of a massive particle in 4D

Minkowski space under the unbalanced net force. Namely, this assumption replaces the space mp = Kgg)

with the Kgo). Therefore, our further strategy is to consider the two-steps deformation

Qo) : My — VP, (1)
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which is composed of the two deformations as follows:

O: M, >V Q) VY - v, (2)

where the world-deformation tensors Qo) and Q(p) are functions of o(z). It follows that the components of

)

metric tensor in Kgg read

|

o ov
2

vl 5
g0 =0+~ %, gn=-(1-25)7"+%, (3)

916 = g1 = — V20
Using the following embedding relations as a converting guide (see App./(2),(3)):

960 (1X*)* = go(dX°)°, gy3(dXH)?
= g;i(dX - dX), gjgd Xt = g;d XY, (4)
9io = 96i = Mi%61 = Nigio, b2 = naba,
by means of (70), (71), we obtain the generalized frame and coframe members referred to the 4D background
space as follows:

e(o):bgl{(1+6-X)eo+(%+(@’xf)i)e%}, 5

ew =br &
and A 0
79(?) - 1+ba*0;)_(’ 9, Lo (6)
9O = b9 — L [bs + b (@ x X)7] P,
provided,

_ 1951
bi(o) = (—gi)'%, bale) = 5750
bo(0) = (g5 + b2(0)2)Y2,  0(3) = V2 [y |a N+ & x i]d§'.

Whereas the orthonormal frame e;, can be written with respect to curvilinear or Cartesian coordinates (51).

(7)

The coframe members 9° are the objects of dual counterpart: e; | Wb = 52. The components of the field of

the orthonormal frame and the components of the field of the dual coreframe are respectively given by (59)
a

an accelerated observer, can be rewritten with respect to curvilinear coordinates:

and (60). Similarly, by means of (5) and (6), the orthonormal frame € )(g) and coframe 9¥®)(p), carried by

e (@) = el (@ e 9P (0) = e, (o) 0"

Then :

6(0) == bal(eo + %ei), 6(2) = balef[, (8)
and N ~ . bi

9O = p0, 9O = p, (191 - ﬁﬁo)), 9)
with the components of the orthonormal frame field and their reciprocals

G(O)O(g) = bala 6(6;(9) = (bobl)ilbga
e(f)o(tg) = Oa 6(’2)](@) = bl_l(g) 557

7

(10)

and X X
o0 =t Tile) =0 (1)
"o(0) = —bai, €(i)j(9) =016,
respectively. The complete metric in noninertial frame of arbitrary accelerating and rotating observer in
Minkowski spacetime reads

d52(0) = g (0)dXHdX" = 90 @ 9O — i) g Y@
= (dX0)2 [bg - 21 X2 — (20, + Db - (& X’)} ~p2dX - dX (12)

—dXOdX . |:b1(2b1 + 1)(@5 X X) +52} .
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Thus, we are given the anholonomic frame and coframe members with respect to curvilinear coordinates,
beyond the “hypothesis of locality *, referred to the 4D background Minkowski space in noninertial frame of
arbitrary accelerating and rotating observer (Ter-Kazarian, 2025b):

6(0) = bal (60 — ﬁkek) = bal (80 — T)kak) , 6(2) = bflei = b;lai’ (13)

and ) )
90 = hog0, 9@ = p, (9 + byvo®)), (14)
b(o) _

where we denote blo) =

(o)vi, vi = (& x X).
The components of anholonomlcity (the structure-constants) read

5 v G A
Oy = € ey Oue ™ — Do), (15)

To lower the upper index by a metric 253y using an orthogonal basis o = (diag+1,—1,—1,—1), the

structure-constants become Cpy(p)(p) = 0(;3)(5\)0()\2;1)(&)‘ Hence, by virtue of (13) and (11), we have to
calculate all non vanishing components C(ﬂ) ) of the anholonomicity (Ter-Kazarian, 2025b):

= —Ca s = L9 IR R /L) SR ST v/ Sul AV YO
Cooe = ~Como = 5r%mb Cong = ~Cahog =~ T (Vi) (16)

— e — (A 5. 1S, A — =
Comm = ~Coram = ~@br )k + 030 )0 Ciyiy0) = Cayney =0
Using (16), the connection components read (Ter-Kazarian, 2025b)
_ _ b
Loy = ‘F@)(ﬁ)l(f)) =510 lnlbo’ Loio = %(3”’1 — 9jvi) - b 005 + g3 [(Biba)v; — (9;ba)vil
r(:)( iy = ~(0iby )0 + (90 )0k, T 000~ Poom = 2 (9% +8ﬂ7i)
+0 - (Vb 1)dij = — g4 [(Biba)vj + (85ba)0)] + T (Vb1 )5, Tigy0y0) = Loy = 0
(17)

In next two sections, by means of (16) and (17), we have to calculate respectively the connection 1-forms
w(“)(,;) and the curvature 2-forms Q(“)(l;). We will use Cartan’s two structure equations.

3. The Connection 1-forms, w(ﬂ)(ﬁ)

Below we bring the explicit computation of the connection 1-forms w(® )( ») for the anholonomic tetrad
€(n) (13), using Cartan’s first structure equation:

9P +w® ) A0 =0, wiye) = ~wem,
and the relation between connection 1-forms and the Ricci rotation coefficients:
W) =L@ 07 (18)
The dual coframe 0(%) (11) reads
00 =bydX0, 00 = by (dXT + v dXO). (19)
Thus the connection 1-forms are obtained simply by inserting the corresponding coefficients. We now write
every nonvanishing w([‘)(ﬁ) explicitly.

90 41 6U).

. _r .
Wi = Loya o) ©)H3)

Insert coefficients. (a) Time-space components (17):
Coyme =01 0imbo, Ty e)0" = bobi (9:nbo) X"

(b) Mixed spatial pieces:
Lo - - -1
Loy = ~ g5 (00 + 000) + (- Vo )3,
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0 = [~ 05 4 0.5 + (- VB1)6 4+ 5 dxO
Toaed® = | s (047 + 0571) + (0 Vg )i | b1 (X7 + 07 dX°).
Final expression becomes
wO ) = boby (9 In bo) dX° + by [ — o (805 + 0;7;) + (T Vbl—l)éij} (dX7 + 59 dX0), (20)
and by antisymmetry w(%)(é) = —w® () The purely spatial components w(g)(j) are written
(I R I()) o p©
“Co =Toem ™ oo

Insert coefficients. (a) Spatial pieces:
Ty = — @b )05 + (0307 o, Ty 0" = [ = (01w + (9507 1)din | ba (dX* + 5*dX°).

(b) Rotational (vorticity) terms:
1

= (8T — 07 00— (9.5 — 0.5 0
Final expression reads
w@(i) = [ — (8,1)1_1)5]]4 + (6jbf1)5zk] by (ka + T)kdXO) + %(ﬁiﬁj — 8j17i) dx?o (21)

Hence, the complete Cartan connection 1-forms for the given anholonomic frame are as follows:

w(ﬁ)@ = bob1(0; Inbg) dX° + by [ — 515 (8i0j + 9;0;) + (0 - Vb;l)dij} (dX7 + v7dX0),

(i) . — _,0)
o) T wl (i)’ (22)
w(z)(j) = [ — <8Zb1_1)5jk + (8351_1)51k] bl(ka + @kdXO) + %(&T)j — 6j17i) dXO,
w® . =0, w®. =0
(0) ) (4)

3.1. Verification of the connection 1-forms

Instead of re-deriving everything from scratch, now we directly check whether the 1-forms satisfy (18), (19)
and the given list of Ricci rotation coefficients. That is, check each 1-form against its coefficients w(ﬂ)(,;) =
F(ﬂ)(,;)(ﬁ) 9P = Ly (p) 0(?). Tnsert explicit Is (17). Therefore,

- o A o
W 0) = Ly 0)0) 00dX” + Ty 5)5) b1 (@ X7 + 77 dXT).

Now recompute each 1-form.

). _1r . . _p@O () — ) 0
WO =T 0" + T ?” = bbi(@inb) dX (23)
+ [ — ﬁ(aﬂ_)j =+ 8]»17,-) —+ (1_] . Vbl_l)dw} by (dX] + @JdX()).
0 ..
(B) w6+ A A A
1) . —T . . . po Y- 10 B W~ W ~ 0
w6 =Ta 600" + Togwn?™ = 200 — 0;1,)dX (24)

+[ - (&bl_l)@k + (8]b1_1)5lk] bl(ka + ’l_)kdXO).

Use antisymmetry check w;y) = —w(z)(p)- Since all coefficients satisfy I'uy0)5) = —T0)(2)(5)»
1-forms automatically satisfy antisymmetry. Thus, final double-checked answer (confirmed).

the resulting

3.2. Verification of Cartan’s first structure equation

We will check the result (22) by computing df'™ and verifying Cartan’s first structure equation explicitly,
using (13), (16) and (17). This will definitively confirm that computed w(ﬂ)(;,) are correct. We will compute

do©® and dﬁ(z), then check that they equal —w([‘)(ﬁ) A 6®) . Compute do).

d9© = dby A dX° = (9;bp dX7) A dXO.
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Rewrite dX* in terms of §®): dX* = b7 — 5°dX°. Hence

90 = 9;b, (b1_19(%) — 0'dX°) A dX° = b7 (0ibo) 0@ A dXO (second term vanishes)

g ) 25
= b7 (Dibo) 6 A 10O, (25)

Therefore, final form becomes
1

_ Loy 9 A g®
g (@00) 09 100,

60
Compute oW A
d0%) = dby A (dXP + 5°dXO) + by (do” A dXO).
(A) First term dby A (dX* + 0'dX") :
dby = 9;by X7 = 9;by (b7 109 — 51 dX0).
SO . “ . “ <
dby A dX* = 8;by b7 10U A dXT = 901 572600 A OO,

and ‘ . ' A
dby AT X = 9;by by 10V A by L),

(B) Second term: by (dv* A dX©) :

dv' = 0,0 dX7 = 0;0° (b7 109 — p1dX0),
thus, A A

by (dv' A dX0) = (8;5%) 09 A (bg1oO).
Combine all pieces

a0 = (9;b;1)09) A 0D + (9;0) biby 09 A 6©)

26
+(terms symmetric in 4, j that drop out after antisymmetrization). (26)

After simplification we obtain
4 o ~ 1 ) N ~
A6 = —(9;671)0W A W) 4 (050 00 A 6O,
0

This is the expected structure-constant form. Compute the RHS of Cartan’s equation:
—w([‘)(,;) N 128
We plug in the connection 1-forms obtained earlier. A. Check for ji = 0. We need

_,0) (1)
w (i)/\H .

Using the verified expression

w® ) = boby (9 In bo)dX° + by Ayj (dX7 + 07dX"),

where
Ajj = —i(amj + 0j0;) +V - Vb 5y
2bg
Wedge with
00 = by (dX" + o'dX").
Performing the wedge (only antisymmetric parts survive) gives

@ aph - L

. @) A 9O
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This matches the previously computed

Thus, A A
d® +w® ;) AP =0 Verified.

B. Now check for fi =i. We need ) ) ) )
_w(i)(()) AOO) w(i)(j) N1

Insert .
0.

W@ =T,

) T
Hom? T

© =~ 0)(7)(0)

Compute the wedge products: Terms containing F(g) 0 (];)0(];) A§U) produce

—(0;571)09D A 09,

Terms containing F(g)(j)(ﬁ)ﬁ(ﬁ) N1 produce %(@T)i) 90) A (0, Summing
—w® 5y A 0P = —(9;671)0D A 00 + bi(aj@i)eﬁ') A,
0

which matches exactly the o computed earlier. Hence
ao® + w(g)(l;) AOP) =0 Verified.

Thus all Cartan structure equations are satisfied for every i, using the connection 1-forms previously derived.

4. The curvature 2-forms, Q(m@)
We will now compute the curvature 2-forms:
Q(M)(l}) — dw(“)(ﬁ) + w(“)(ﬁ) A w(”)(ﬁ),

using the connection 1-forms already verified in previous section. Because the frame is diagonal (except for

the shift %), the connection has a simple structure, and the curvature splits neatly into: spatial components
Q(i)(j.), mixed components Q(O)(%), time-time component Q(©)
class explicitly, keeping all terms.

Curvature 2-form Q(g)(j.) (spatial):

©) = 0, automatically. We will compute each

B @D B @) 0)
W) = dw ) + W ) AW Gy + w5 Aw ).
Plug in A

L

G) — (8jbf1) 9@ - (@'bfl) 0(3)-

@ . .
Compute dw G

dw® - = 9,(9;b71) 0% A 0O — 9(8:b7 1) 6F) A 9U) 1 (9;671) dOD — (b Yy dOW.

()

Insert the previously computed
4 A A 1 . . A A
doW = —(9Rb7H) 6% A 9O 1 (00" + 0 by 8% A 90,
0

Then collect wedge components.
Spatial-spatial part:
(@ ) spatia = [0r0587" = (@07 )(@ubr )]0 00

— [0k0ibr " — (9:b7 ) (Db H)]0P) A 0.
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Define
ij = 8k8jb1_1 — (6jb1_1)<8kbl_1)
Then

(dw(g) )spatial = ij 9(’%) A\ 9(5) — Dy, 9(]%) A\ (9(5)

()
Mixed spatial-time part becomes

byt

(dw(g)(j))mixed = bl (0" + ' By O™ A 0O
0
O o o+ o p-yg® A g
— —— (00’ + 07 Oby )0V N O,
0
Add w(i)(o) A w(o)(j). Recall o 1
@ — %050 . (5.5 — 0up) 0F
w™ 6y 50519 —}—Qbo(@vk Ok ) O\,

5 dibo @ 1 .
(O LW ) B YR AR )
0= bgby | 2 \Pm — Om¥g) O

We find that only cross terms contribute

; 5 1. . 95b0 ik 5
w! )(()) A w(o)(j) = —Q—bg(@'vk - 31&)1')271«9( N
1 (00 — OmT5) (5 .
=L o) im = Om) @) 5 i),

Antisymmetrize wedges to write as 0 A 90, Final form for the spatial curvature is

0@ 5 = Dy 0 A 9® — D, g A 9U)

(

+ bl [ajbl—l(akﬁi 43 by — Bk (O + o akbl—l)} ") A 9©
0
1

_ Fbl [(aﬂ_}k - 8k17i)8jb0 — (aj@k _ akﬁj)aibo] (9(]}) A 0(())‘
0

This is the full non-simplified, exact spatial curvature.
To calculate mixed-curvature Q) @)

© @ 0 ().
Q) = dw™ )+ G AW ),

we insert

5 9ibo (6 1 3
0 . — Z090) _ = (5.5 — 0.5;) O
w™ ) boby 6 o (0505 — 0;0;) Y.

This is a long but straightforward computation similar to the previous. The result organizes into

Q(ﬁ)(i) = A p(k) A 9©) 4 Bijk 0@ A (9(’5)7

where time-space (extrinsic curvature-like) part is written

Ao 1 o
Ay =0 855 — 0;7;) Db L,
’“ k<b0b1>+2bob1( 0 = 030i) by

and spatial-spatial part is

1
Bijk = —— 8k(aﬂ7j — ajﬁi) +

1 = — m
2b0 7(82117” — 8mvz) r jk-

2bg
Here, as before, the I'" . is the purely spatial connection built from bl_l.
Curvature Q(O)(()) is
0) . _ 0 0 b
0O )(0) — duw’ )(()) + ol )(ﬁ) /\W(p)(())‘
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But torsion-free metric connection always satisfies, Wy o) = 0, so
0  _

Final complete set can be recast into the form
QO ) = Dy; 60 79O — Dy 0(’%{/\ 09 + L[9;b7 (9" + 0" Okby ) -
— ;b7 (k07 + D10k )]0 A 9O — 2b§b1 (0505 — Ok;)0;b0 — (050 — OkD;)0;bo] 6P A 6O
Q((:))(i) — Ay, 0 A 90) ¢ Bijk 0 A gk

0) . _
0O 5 =0

(27)

4.1. Computation of the curvature 2-forms, Q(ﬂ)(,;), from scratch
Let us rigorously verify the curvature 2-forms (27) to ensure correctness. We aim to compute
Q(M)(ﬁ) — dw(“)(,;) + @ ) N w(p)(f/)’

from scratch, ensuring no terms are missed. We will use the complete Cartan connection 1-forms (22) from
our previous derivation, which is metric compatible and satisfy w(z)») = —w(p)(a), and the differentials

)
40 = dby A (dXO - mx’“) — b dy, A dXF = dInby A 0D — by dig A dXF,
d0® = dby A dX* = dlnby A 6D,

These match the standard anholonomic differentials. We proceed component by component.
(a) Purely temporal component:

© _
0 = 0% =do+0=0,

&

P
—
>
2
Il

is correct. A
(b) Time-space component Q(O)(g) :

Compute dw(© ()’ where

A ) . 1 N
w(o) N = %9(0) — *bal(ai@j — @@-)9(]).

@ by 2
Then the differential is
q O;b q 0;b q 1 5 1 5
0 . — <70 0) 4 990 10(0) _ Za7p=1(9.5. — 9.5, @) _ =195 _ 9.5)300)
dw 0 d <bob1> USRS bob do 2d [bo (0505 831)2)] AO 2b0 (0305 — 0;0;)dO").

All terms are accounted for. Adding also

3 5 diby oy 1,_ _ (D (] Cn(;
WG nwe =3 [bf)bl@(‘” — 5t (@50 akme(k)] A (@169 — (@50,1)69)]
J
this gives exactly the mixed curvature terms 00 A 9@ and 00) A (k).
Purely spatial component, Q(i)(ﬁ) is
@ . — do® . (i) . (k) . () . 0) .
V) = Wy T g NGy F o) AT G-
where the dw® 3 produces the spatial derivatives of bfl, the w A w terms produce quadratic terms in &bfl
and linear terms in .
Let us write the curvature 2-forms explicitly in terms of the tetrad 1-forms #(*) only, using anholo-
nomic frame (11) with functions by(X), b1(X) and the shift vector ©°(X). Define define antisymmetric and
symmetric derivatives of the shift vector

Vi) = 0505 — 0;0i, V(i ) = 0iU; + 0;0;.
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Time—-time curvature is Q(O)(O) = 0. Time-space curvature Q(O)(g) reads

Q® . =% [(aiaj In by — (95 In.bo) (9; In by ) — (85 Inbo) (3, In by )) 0@ A e@}

J

7time-time” part

1 _ _ 1 _ 5 A
+ Z [5(@'@[“{] — 8].61)[1-4}) + 5(81 In bl)v[j,k}] 9\) A ok

Jj<k

~~

”space-space mixed” part

Fully expressed in %) only. Purely spatial curvature Q(E)G) is

Q0 ) = Sy [ (@0 nb1)oj — (D0 I by)di — (9,010 b1)d55 + (9,01 by )
+(81 ln bl)(ak ln bl)éj — (8] ln bl)(ak ln bl)éil — ((’)Z hl bl)(al 111 bl)éj (28)
+(9;1nby)(9; In bl)csik} 0K A OO + 15 0ps.k O, OF) A OO,

where the first part comes from the conformal factor bIQ of the spatial metric, and the second part accounts
for shift vector contributions via vj; j.
Summary:

Q) © =0,
Q(O)(;) — time-time terms in 0@ A 90) 1 mixed space-space terms in 00) A 9(’%), (29)
Q(%)G) = purely spatial terms built from 9;Inb; and vj; ;).

Each Q(ﬂ)(f,) is a 2-form and can be expanded in the coframe basis. Hence, the curvature 2-form Q(ﬂ)(ﬁ) is
related to the Riemann tensor R(ﬁ)(l))(ﬁ)(é—) by

QD = LR 5y 5 0) A ), (30)

5. Derivation of the Riemann tensor in an anholonomic frame

For an anholonomic frame, in a non-coordinate basis {e(;)}, the basis vectors do not commute. Instead

of 0,0, f = 0,0,.f, we have [e(y), )] = C((:)) €0 This means that when computing second derivatives in
the expression for the Riemann tensor, we have to subtract off the contribution from the commutator of the
basis vectors. That is, when we would normally compute something like

e (Cipye@) — ew) Cepnerm) -

we have to account for [e.(ﬂ.), e(,;)] . F(p)(&.)(j\)' This correction appears as _P.(p)(&)(j\) C(?B‘).(f’)' This :1s purely
due to the non-commutativity of the basis vectors. It’s a geometrical correction term. This term arises from
the difference in the ordering of derivatives, not from transport of vectors. That is, the terms involving I'T’
come from parallel transport, i.e., how connection coefficients interact as observer move a vector around.
The CCC-term comes from the fact that the basis vectors themselves aren’t commuting, and we have to
correct for that. It’s analogous to the Lie bracket showing up when computing second derivatives in a curved
manifold with a non-coordinate basis. So this last term is not a derivative of I', and not a product of two
[’s — it’s the effect of the frame itself being non-coordinate. For more detailed explanation see below.
Consider a smooth manifold M equipped with a metric-compatible, torsion-free connection V. Instead
of using coordinate basis vectors d,, we choose a non-coordinate (anholonomic) basis {e(;)}. The basis
vectors satisfy the commutation relation [e(ﬂ),e(ﬁ)] = C(/(\g)(p)e(ﬁ)’ where C(?g)(ﬁ) are called the structure
coefficients or anholonomy coefficients. The covariant derivative of the basis vectors is defined by

ROV
Ve e = Uameoy

where the connection coefficients satisfy
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The Riemann curvature operator acting on a vector Z is given by
R(X,Y)Z =VxVyZ -VyVxZ -V xy|Z
Choosing X =e(;), Y = €(;), and Z = e(5), we have
Re(n), €0))e6) = Ve Ve €6) = Ve Ve €6) = Vieg o) €6)-

Using the connection coefficients, write

_ 1
Ve e =T /E&)(a)e(ﬁ)'
Thus,
_ (0) _ ® ()

Ve Vew €6) = Ve, (F (&)(a)egﬁ)) = €p) [ (a)(u)] ep) T Gy 5) Vew €0

e o

R [F (&)(9)} o @ ol G
Similarly,

_ ) () (N
Vew Ve o) = &) [P (;,)(,;)} o e oo

For the last term,

—cW

— A o™ () R
= Voo “@) = @& (@)D

\V/ Ve (31)
[ D ey (1)(?)

e(py-e)]€(6) V)

Substituting these back into the definition of the Riemann operator,

Rleqp), e))es) = (e T %0y = crT %) €0
+ (F(?t)%)w)ﬂ?x)(m - F((c)f)(u)r(?),\)(a)) ep) — C (d)(u)F“Zé)(;)e(m
Thus,
R(@a(mw) = €(i) [ (<)>( )] °() {F(@a@]
o Gy~ T W %6~ C ot iy
Using the metric 75)(z) (e.g., Minkowski metric in an orthonormal frame), lower the first index: R(;)s)(2)(0) =

I‘()‘) This gives the familiar (Frankel, 1997, Misner

. \) L. R
T )y and similarly, Lipyeya) = 155001 6

et al., 1973, Nakahara, 2003, Wald, 1984) form
Ripya) i) = @ L@ @] — e Lo m)

(32)
OIS

)
Cla o)

Whereas, the e [F(p)(o)(y)] is just the directional derivative of the function I'(5)(5)(») along the vector field
e(p)- In curvature calculations, this term is essential because curvature involves comparing how vectors
change along different directions — hence the need for derivatives of I'. Mathematically:

e (L)) = el 9 [Lp)e)0)] -
Thus,
s A
e Loig) = ™ (30—” ) Loy
If F(O)(%)(“) is time-independent, then o [ ] v akr OGG) So,

1 1,
¢ Toew] = 5 (30 —v 3k> Fa@e) = =37l e@e)-

Similarly, for spatial components ) [F(ﬁ)([})(ﬁ)] = i@if( 5)(6)(7)- In general,

9
@ Loo@] = <G 5xal e

This is what it means to take a derivative of I' along the non-coordinate frame direction e).
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6. The Riemann tensor

We compute the Riemann tensor, Rz s)(a)(p), for all distinct index combinations. We start from the
general formula for the Riemann tensor in an anholonomic frame (32) and use the connection coefficients
F(,})(a)(}) from (17) and structure constants Clay@) () from (16). We'll label components as usual: (0) =
time, (2) = 1,2, 3 space.

(a) R(())(i)(f))(j) — time—time:

Boamoe = collons ~ 6l one) : (33)
TanoT™ o6 ~Tone™™ oo ~ ToowC o6

We compute in four steps.

Step 11 ¢ (o) [T 5)a5)) = b0 (90 = 70 [T g7

Step 2: e [T o)y 0)) = 01 %L om0

Step 3: I'T" terms = sum over A= 0,1,2,3,

Step 4: Last anholonomy term = —F( 0)()(A )C()‘)( 0)(5)-
Hence we obtain

,\,_\
\_/\_/

Ry iyoyy = b1 1 950i by — by (95 1nbo) (95 In'by) + shift terms from ",

This includes all contributions from I'T" and C terms.
(b) R )0y — space-time mixed:
Eomom = coloonm! —emTone! +TT-IT-TC.
All terms can be expressed in terms of d;bg, 9;b1 and 0;v;. These produce antisymmetric derivatives of the
shift vector plus derivatives of b;.
(c) Ry Gy — Purely spatial:

R +IT-IT-TC.

Oomo = b ooel ~ oo
This includes derivatives of by and quadratic (9;b;1)(9;b; ") terms. Includes also anholonomy contribution
from C(%) 3’ this is essential and produces extra terms like (&-bl_l)éjk minus permutations.

(d) All other components: R NG only nonzero if shift vector 7% # 0, comes from antisymmetric
derivatives of v; and the I'C term. All components with repeated 0 indices or combinations are either zero
or related by antisymmetry:

Rp)o)m@) = ~Re) @)@ = )o@
Thus the exact algorithm to compute Riemann components is as follows: take the connection coefficients

Lo (equation (17)), take the structure constants C’(;\)(ﬂ)(,;) (equation (16)), compute each Riemann
component using

5 5 5
Reaw@ = e T o@ @) — @ Ta@@! + TommI @@ — Tooet Ve = LuenC o @me:

This formula gives all 20 independent components in terms of by, by, %" and their derivatives. So, for 4D

spacetime in an orthonormal (tetrad) basis, there are at most 20 independent components. But instead of

listing all 20 immediately, we’ll compute one component explicitly, and then follow similar logic for others.

Now we can write all independent components explicitly in terms of by, by, 7* and their derivatives.
Time-time components R, 07 -

Re5 = eg|Taiz | — & [Tois) + Toso T — Toss T — Toas Cg;
= b0_1<80 — @kak) [—%bgl(ai@j + 8]'?72') (7) Vbl )(5@] ) (34)
—bl_laj [iﬁi In bo} + “quadratic terms in 0;bg, 0;b1, 0;0;" — Fﬁg;\C’)‘O]A

Explicitly, the main contributions are

Riz; = —by 1950, b + by (89 1nbo) (95 Inbr) + 5 (9o — 0%0,) (9,05 + 9;i) + - -- (35)
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includes additional mixed shift and quadratic terms.
Space—time components R%j’()l% :

where “...”

_ A A A
Rsor = € [Fm} — € F%}O} T 50 150 = Tase T — U5 C%i (36)
= by (90 — 0'0y) [~ (9:by sk + (9;071)dik] — 0+ “terms from IT — T'C™.
This produces antisymmetric derivatives of the shift vector 9;v; — 9;v; plus derivatives of b;:
R;Jﬁﬁ’; = ﬁ(ao - ﬁlal)(aﬂ)k — ajf}k) + (&bfl 8]- Inby — @-bfl 0; In bo) 5(k7) + - (37)

where the exact d(;7) contraction depends on the I'T" terms— these can be fully expanded if needed.
Purely spatial components Rijic[ :

R%jfcf = 6]; [Fg;[} — 6[ [Fg;k} + I'T-IT-IC
= bflak [—(aibfl)éﬂ + (@-bfl)dﬂ] — bflﬁl [—(6ibf1)5jk + (@bfl)éik] (38)
+“quadratic terms (9b; ')?”.
So, fully explicit form is
Rij'l%f = _5jl 8ka¢bf1 + 0i amjbfl + 5jk; 8l@ibj1 + Oik alajbfl + “quadratic (8bf1)2” (39)

This matches the contribution from the anholonomy term ng.fg.
Components with one time index Rﬁij‘fc :

Raisi = [Tl — e [F@gﬂ +IT —TC.
Simplifies mainly to shift vector derivatives

1

ik = ~ gy (0500 = 0kDiDy) + -

All other components are related by:
Rpopw = —Roppr = —Rpoop

This automatically gives the 20 independent components in 4D.
Summary table of explicit Riemann components reads

Components Leading Expression
Roio; —by 19,0 nbo + by *(9; 0 bo) (95 Inby) + (80 — 0¥8,) (9505 + 00) + - --
R%j’ﬁfc ﬁ(ao — 17[85)(8i17k — 8ﬂ7k) + (&'bflaj Inby — 8jbf18i In bo)5(k7) + -
Ri}'l%f — ﬂé)k(‘)ibl‘l + 6i18k8jbl‘1 + 5jk818,~b1‘1 — 6ik818jb1‘1 + (8()1_1)2
Rﬁij]} —ﬁ(ajaﬂ_)k - 8k8z"l_)j) + -

Let’s continue and write all independent Riemann components explicitly in terms of by, by, o* and their

derivatives, including all quadratic terms and shift contributions. I'll keep the tetrad indices (0) for time

~

and (1) for space.

R(O)(E)(())(j) = bl_lajai In bo — b1_2(8z In bo)(aj In bl) + ﬁ(ao — @kak)<8i17j + 8]‘17,')
—ﬁ(@mk + Ok:) (950k + Ok;) + o (0 + Ok:) (0507 Opre) + by (83 In'bo ) (9 Inby).

(40)

This includes second derivatives of by, quadratic (91lnbg)?, shift derivative contributions 0;v;, and mixed
terms with 0;b;.
Space—time components R(g) GO )

Ry G)0)) = 35 (90 = 010 (9 = Oj08) + 332 (0i01 — 01i) (9501 + 015) + sy [(Ditoe — 0;0x) (O1b7 )b
+b1_2(8i In bo ijl_l - 8]‘ In b() 8zb1_1)5kk
(41)
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This includes antisymmetric derivatives of shift, quadratic shift terms, and cross terms with by and by
derivatives.
Purely spatial components R(%)(j)(l%)(i) :
Ry = —0itOk0iby + 0udikdby " + 6;100,7 ' — 6105071 + (9iby ! 9by ) (S — i)

42
—(0:b7 1 Oy M)k + (9507 ObT )Gk — (Db 91bT)dis + (91by Bkby t)dij (42)

This includes all quadratic terms (9b;)? and derivatives of b;.
Mixed time—space—space components R(()) OO :
Rg)yGy(y = — 3t (050ik — Ok0i05) + 33 (9:01) (9501 — Okr) + sy (0:00) (951 'O — Dby 015)- (43)
This includes second derivatives of shift, quadratic shift terms, and mixed terms with b;.
Taking into account the symmetries,
Rpyo)m@) = ~Repme) = —Repyeem

, only 20 independent components remain; all others can be obtained by antisymmetry. So final checked,
ready-to-use computational expressions are reduced to

R(())(i)(@)(ﬁ') = —51_28iajb() + b1‘3(8ib0)(8jb1) + ﬁ(ao — @kak)(amj + 6j17i) + bl_Z(aibo)(ajbo) + - (44)

Ry = b (90 — 1015tk — D50x) + 017 [(Gibo) (95b7) — (95b0) (9iby )] + 732 (957 — 0;00) (Okn)
(45)

HOHED = 810,001 " + 60ROt + 6,1.0,0:b7 — 6,1,.0,0;07 + (9b11)? terms from I'T and C (46)

R )66y = — b (050:0k — Ok0i07) + 33 (0i101) (9500 — Ok1) + g (0500 (951 'O — Dby 015) - (47)

This together with symmetries reproduce all 20 independent components. We adopt the “mostly minus”
convention,

Ny = diag(l, —1,-1,-1),

which changes the signs in all contractions accordingly.

7. The Ricci tensor, Ricci scalar, Kretschmann scalar

7.1. The Ricci tensor

The Ricci tensor reads ) o
Ry = R @y = 1P R
with n(?(®) = diag(1, -1, -1, —1).
Time-time component (00):

) (2)(6) (D)

3
@R OO OO p. .
Eoyo) =17 Ripo@0) =1 __ oo o + X;L,R(ixoxi)(m
+1 =
Since R4 6)0)0) = O .
Ry = — 2 Ry 0)()(0)
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Space-space components (i}):

3
)@ _ ©0)0) A (k) k)
Eoyg =17 Rpanen = 1__Roomoo + ;ﬂ_v_,R(km)(k)w
+1 = —1

Time-space components (07):

3
D) _ OO CICT T
Boyiy =" Booen = 1_Foo oo + kZL,_,Rw)(oxk)(i)v
+1 =1
3
Ry =~ kZ R i @) () 3)
=1
7.2. Ricci scalar
3
R =" Ry = 1 Riaye) + 1% Ry
+1 =l
Substitute the Ricci tensor components
3
R =R ) —; 06 = [ ZR< z)(O)} Z [R((J)(%)(ﬁ)(%) _;R@)@)(MGJ-

Using antisymmetry R(%)(O)(%)(()) = R(())(%)(())(%):

= —2ZR<0>< ol Z Ry

i,k=1

This is the mostly-minus convention formula for the Ricci scalar. Inserting the corresponding pieces, we
obtain

2
R = 2b;2al2b0 — 2bf3b07ib17i — 2bf2bgﬂ — beo(alf)Z) + 283[);1 + 9(6bf1)2 +
0

We now rewrite this in fluid-dynamical language. For this we define the usual fluid-kinematic decomposition.
Divergence (expansion):
0 = 0,;7v;.
Shear tensor:
oij = %((%T)j + 8]»17,-) — %9 (51]
Vorticity tensor:

wij = %(8 — 0;0;).

Gradient magnitudes:
|Vbo|? = bo,iboi, Vo2 = BiB;.

Laplacians:
V2by = 92by, Vit = oot

Useful identity:
aﬂ_)j =04 twi + %95”.
Then R can be rewritten in the final form

2
R = 2b72V2by — 2073(Vbg - Vby) — 2672V |? — = Dof) + 2Vt + 9|V +
0

Note that the Ricci scalar does not contain shear or vorticity explicitly.
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7.3. Kretschmann scalar

K = R5)6)(7)(#) R®(6)(@)(P) (48)
Use nW() = diag(1,—1,—1,—1) to raise indices. Sign factors: time index: + 1, space index: —
1, (sign)? = 1. Thus the Kretschmann scalar is written
2 2
K= 4ZR o) T8 By +ZR)M€
7]7 7]7 7

We substitute each Riemann component from (44)-(47). From (14):

1
Roio0i = —61_281'21)0 + bl_3b07ib17i + b1_2b(2),i + be()(&‘@) +
0
From (16):
Rpiki = —0:0k0;b7 " + 010 0iby t + 831, 0;0;b7 ' — 6:0;0kb7 + (9b1 )2

Now evaluate sum over k with i fixed. Correct computation: When k # ¢, only the final quadratic term
survives. When k = i, the coefficient becomes: —1+1+ 3 — 1 = +2. Thus

> Ryini = 20267 +9(9b )2,
k

Insert the known decompositions in Kretschmann scalar formula (48): Term Ro;o;Roi0; contains 0;0;bo,
(Vbo)?, Tij0ij, 6%. Term Ry Roijr contains wijw;j, 005, gradients of bl_l. Term R;jiR;jr contains
second derivatives of bfl, |be1|2. Thus, Kretschmann invariant (in terms of shear, vorticity, divergence,

gradients of by, by) reads (18) with decompositions in {6, 0;;, wi;, Vbo, Vbl_l}:

-2 -3 —2 1 1 S 2
K =43, | = br20:0ib0 + b7 %ot + 0 2bo,ibo + i Doloi; + 365i)|
2
8 ik [ — 5o Oiwjk — 500k + 4,,2 (0iv1) (o1 — ok + 2wji — 2wit) + gpepr (iv1) (B01k — 5k5zj)] (49)
2
T2 gk [ 3ju0k0ib7 ' + 504057 + 0 10iby " + (31){1)2] :

This is the cleanest possible decomposition without expanding all fourth-order terms.
Summary: Mostly-minus 7 = diag(1, —1, -1, —1):

Ricci tensor:

Ry = = 22 Biyoyiy o)

= Royiyo)i) — 2o By iy Gy
= =2k By oy

Ricci scalar:
R==2% Royiyorm T ik Biyo i

Kretschmann scalar:
_ 2 2
K =435 Rom06) T8 Ziis Bonam + 2kt Boam -

8. Concluding remarks

In this section we briefly reflect upon the main points of this report. This is the last of three articles that
explore the quantum mechanical inertial properties of the Dirac particle beyond the "hypothesis of locality ".
This is done within the framework of the Master Space-Teleparallel Supergravity (M .S,-TSG) (Ter-Kazarian,
2025a) theory, which we recently proposed to account for inertial effects (Ter-Kazarian, 2026). In present
article, we review the technical details of geometry beyond the "hypothesis of locality *, referred to the
4D background Minkowski space in noninertial frame of arbitrary accelerating and rotating observer (Ter-
Kazarian, 2025b). The standard *hypothesis of locality * for extension of the Lorentz invariance to acceler-
ated observers within the SR has been considered by many scientists to be unsatisfactory. The incomplete
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metric of 2D semi-Riemannian space,VQ(O) , in noninertial system of the accelerating and rotating observer,

computed on this basis reads (72). To recover the complete metric (3) of Kgg), therefore, our further strategy

is to consider a general deformation of the flat master space, MS, — MS, (2). The deformation tensor
yields the deformations of linear holonomic basis. Accordingly, we must find the first deformation matrices,
which yield the local tetrad deformations. This significantly improves the standard metric and other rele-
vant geometrical structures referred to a noninertial frame in Minkowski spacetime for relativistic velocities
and an arbitrary characteristic acceleration lengths. On these premises, given the anholonomic frame and
coframe members, the object of anholonomicity and connection, we compute the connection 1-forms, the
curvature 2-form and write it in terms of Riemann curvature tensor. Then we derive the general formula of
the Riemann tensor in an anholonomic frame, and then compute the Riemann tensor, the scalar curvature,
the Ricci tensor.
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Appendices

Appendix A Preliminaries

(1) The embedding. A smooth embedding map, generalized for curved spaces, becomes ]7: Vo, — V4
defined to be an immersion (the embedding which is a function that is a homeomorphism onto its image):

—

G =¢o, =3 ¢ =n ==, (51)

where €, (m = 0,1) is the basis at the point of interest in V,, I=ca = ﬁ|§\ (1 = 1,2,3) (the middle
letters of the Latin alphabet (i, j,...) will be reserved for space indices in V}). From embedding map (51),

- - e 7)) — de® 1 0 Sy SL_ dEs P _ | dz
we obtain the components of velocity of a particle v/ = ol —z(y +v7), v = &0 = [v] = |51, so
that

~ ~ ~m = =2 = - = -l 22 =
u = me— = (QQ’QL)’QQ = QOQ77QL = Elgf = ’)’L|U‘ =,

therefore, u = (ﬁo, ¥,) = @ = (&, ). Thence, the components of the acceleration vector satisfy the following
embedding relations a® = a°, a! = |@|. A comprehensive principle which underlies the global MS,-SUSY
theory hinges on the following: the particle perseveres in its permanent state of superoscillations between
the spaces My and M 5, unless acted upon by some external force, i.e. the particle undergoes the SUSY -
transformations at successive transitions from My to M 4 and back (My = M ,).

On the premises of (Ter-Kazarian, 2024a), we review the accelerated motion of a particle in terms of
local ]\Af/Sp—SUSY transformations. That is, a creation of a sparticle in V, means the transition of a particle
from initial state defined on Vj into intermediate sparticle state defined on V,, while an annihilation of a
sparticle in V4 means vice versa. The same interpretation holds for the creation and annihilation processes
of a particle in V4. The net result of each atomic double transition of a particle V4 = V5 to V, and back
is as if we had operated with a local space-time translation with acceleration, @, in the original space Vj.
Accordingly, the acceleration, @, occurs in V, for transition V4, = Vj. Thus, the accelerated motion of boson
A(T) in Vy is a chain of its successive transformations to the Weyl fermion x(z) defined on V', (accompanied

with the auxiliary fields F) and back,
— A@) = xPO (@) = A@) —» xBP (@) -, (52)

and the same interpretation holds for fermion x (7).
(2) The vielbein field in My. In the My, the vielbein field is orthonormal anywhere:

€a - €= Gy Ay’ = 0ab = diag(+ — ——). (53)

Arbitrary curvilinear coordinates of a non-inertial frame of reference in a flat Minkowski spacetime My
will be denoted by z*(s), with proper linear 3-acceleration d(s) and proper 3-rotation @(s), s being the
proper time. To describe the acceleration scales mathematically, the notion of a reference system has to be
generalized from curvilinear coordinate frame e, = 0, = 0/0z* to orthonormal frame e;. This tetrad can
be decomposed with respect to the tangent vectors e, along the curvilinear coordinates, the natural basis,
according to A {* := e;", where ez = ¢,/ e,. The spacetime indices y,v... and SO(3,1) indices a,b, ... run
from 0 to 3. The time axis must be the time axis of a comoving inertial frame in which the observer is
momentarily at rest, i.e. the zeroth leg of the frame e; be 4-velocity u* of the observer that is tangent to
the world line at a given point P. The remaining spatial triad frame vectors e;, orthogonal to ey, are also
parameterized by (s). The spatial triad e; rotates with proper 3-rotation ¢(s). The set of tetrad fields for
which M ) describes a congruence of timelike curves C is adapted to a class of observers characterized by

DA
the velocity field u* = X and by the acceleration a# = Duf — 0 = uavaA(O)“ , where the covariant

derivative is constructed out of the Christoffel symbols.

Constructing Cartesian coordinates based on accelerated and rotating laboratory, let S(P) be the space-
like hyperplane associated to each event (point) P on the timelike world line at z# of the accelerated observer,
orthogonal to it. The accelerated observer carries the orthonormal frame e;. Defining 7 = ¢f = s and
1. 72,73 as Cartesian coordinates using the triad e;(s) with the observer at the origin: z# = (z°, 7!, 22, 33)
are the local coordinates relative to the accelerated observer. The tetrad e;(s) can be parallel transported
from P to all neighboring points on S(P), which defines the orthonormal tetrad field €;(z"). This local
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coordinate system is used in the laboratory, while the world line is the line of the reference clock. The tetrad
field €;(z") is anholonomic. Define the coordinate tetrad €, = 8, = 0/0z". The orthonormal frame e,
carried by an accelerated observer, now can be written with respect to curvilinear or Cartesian coordinates,
respectively:

a

b

ea=A_1"ey, :X(a)“éu,
19(3 — )\E 3’/ P = X(b),/ Ey

(54)

with 9# = dz#, 9" = dz". The coframe members {1} are the objects of dual counterpart: e, |9° = 82.
Let us introduce a geodesic coordinate system X*(s), which is in general valid in a sufficiently narrow
worldtube along the timelike world line of the observer. Suppose the displacement vector T#(s) represents
the position of the accelerated observer. According to the hypothesis of locality, at any time (s) along the
accelerated world line the spacelike S(P) hyperplane orthogonal to the world line is Euclidean space and
we usually describe some event on this hyperplane at z# to be at X*, where z# and X* are connected via
X% = s and
= T(s) + X F A (s). (55)
This gives
dot = dzt(s) +dX ! A (s) + X X, (s), (56)

where the displacement vector from the origin reads dz# = )\(0)“ (s)dX°. Consequently, (56) yields the

standard metric of semi-Riemannian 4D background space V4(0), in noninertial system of the accelerating

and rotating observer, computed on the basis of hypothesis of locality (Hehl & Ni, 1990, Hehl et al., 1991)
(see also (Mashhoon, 2002, 2011)):
ds® = g datdz” = (dX°)? [(1 +ad-X)2
+@-ny@awxi-iﬂ (57)
—2dX°dX - (@ x X) —dX - dX.
From (57) it is seen that such geodesic coordinates are admissible as long as
(14+ad-X)2> (0x X)2 (58)

Thus in the discussion of the admissibility of the geodesic coordinates, two independent acceleration lengths
must be considered: the translational acceleration length ¢?/a and the rotational acceleration length c/w
that appear in equation (58). While the components of the orthonormal frame field read

0 1 A —
). 1+a-x’ (0 1+a-X ’ (59)
J

and the components of the dual coframe field are

%%:ﬂ+%f%&@;&
A =@ x X, A, =l

L. B
" (a) "
€i =64 €, (e p=0,= 0/0zt). The time axis must be the time axis of a comoving inertial frame in which

(3) The vielbein field in MS,. The components of the orthonormal frame field are A

the observer is momentarily at rest, i.e. the zeroth leg of the frame e o be 2-velocity u” of the observer
that is tangent to the world line at a given point P. The spatial frame vector ej, orthogonal to ey, is also
parameterized by (s). Constructing Cartesian coordinates based on laboratory, let S(P) be the spacelike
hyperplane associated to each event (point) P on the timelike world line at z of the accelerated observer,
orthogonal to it. Defining 70 = ¢t = s and TL as Cartesian coordinates using the gi(g) with the observer
at the origin: & = (z°, ') are the local coordinates relative to the accelerated observer. The tetrad e ﬂ(§)
can be parallel transported from P to all neighboring points on S(P), which defines the orthonormal tetrad
field €, (z%). The tetrad field € ,(z%) is anholonomic. Define the coordinate tetrad €, = 9, = 9/0z". The
orthonormal frame, e, can be written with respect to curvilinear or Cartesian coordinates, respectively:

B 2a) TR (61)
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with 9% = dz#, 9" = dz*. The coframe members {Qg} are the objects of dual counterpart: e, | 98 = L.
Let (X#(X 2 X1 be geodesic local coordinates relative to the accelerated observer in the neighborhood
of the accelerated path in MS,,, with spacetime components satisfying the embedding map

dX0=dXx° dx!=dX|,
dX dX 7= 1 (62)

S

0_ 1 A 1_ [@x XL
2(0) T +@x)L S0 T 1+(@x)L (63)
A l:: 17 A, 9 ::0
(1) (1)
while the components of the dual coframe field, /\( ) , become

=

O =0+@ Xy, A% =o
1 —

= 64
W = wx Xt AWM =1. (64)

A
A

o™~

The acceleration of the observer along the accelerated path, who carries an orthonormal tetrad frame
e, = (e € ) therefore, can be expressed in the frame basis:

dx, E(s
20 @ _ g O 2, ), (65)

where the inertial accelerations are represented by a second rank antisymmetric tensor (agb) (s) under global

SO(1,1) transformations. The D 4)(») can be interpreted as the inertial accelerations of the frame along the
timelike curve C (the translational acceleration and the frequency of rotation of the frame):

0 - — - —
o, Vxt= (@ X)l=la X|, (66)
o Wxl—GxXt=|5xX|

According to the hypothesis of locality, at any time (s) along the accelerated world line the spacelike S(P)
hyperplane orthogonal to the world line is Euclidean space and we usually describe some event on this
hyperplane at 22 to be at X%, where z* and X* are connected via X% = s and

zh =7TH(s) + Xl&@)u(s)- (67)
This gives y
det = dzt(s) + dX 1 )\(1) (s) + X1 di(l)*(g), (68)
where the displacement vector from the origin reads dz#(s) = A(o)ﬂ (5)dX 2. The (68) yields the metric
ds? = gy dztda? = 9° ® 9° — 91 @ VL. (69)
In doing so, we calculated the orthonormal frame, e Q and corresponding coframe, b members, carried by
an accelerated observer, which by virtue of (63) and (61) are equal to
& = 1+(al.)?)i {eg — @ x Xtey}, (70)
Qi ::Ezla
and

90 = (1+ (@ X)L)dX?°,

. , 71
9t = dX1 4+ [3 x X]LdX©, .

respectively. The metric (69) of 2D semi-Riemannian space,VQ(O), in noninertial system of the accelerating
and rotating observer, computed on the basis of hypothesis of locality reads

ds = (dX°)[(1+ (@- X)1)? + (& x X)H(1-
(@ x X)H] — (dX1)? — 2d X% X (@ x X)L(1—- (72)
(@ x X)H1H2.
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