

Optical Variability of Blazars

V.Kh.Mkrtyan*, A.M.Mickaelian† and H.V.Abrahamyan‡

NAS RA V. Ambartsumian Byurakan Astrophysical Observatory (BAO), Byurakan, Armenia

Abstract

In this work, we compiled and cross-identified optical variability data for Roma-BZCAT blazars using nine major photometric surveys. Despite the inhomogeneous nature of these datasets, their integration provides a unique opportunity to statistically characterize blazar variability and identify extreme cases for detailed study.

Cross-identifications were performed between BZCAT and these nine catalogs, and variability parameters such as amplitude, periodicity, and light-curve morphology were analyzed across different blazar subtypes (BZB, BZG, BZQ, and BZU). Several objects exhibiting extreme variability were identified as candidates for detailed follow-up studies.

Keywords: blazar, active galactic nuclei, variability, photometry, optical monitoring

1. Introduction

Blazars represent a remarkable subclass of active galactic nuclei (AGN) whose relativistic jets are oriented close to our line of sight. This geometric alignment causes their radiation to be strongly Doppler-boosted, making them among the most luminous persistent sources in the Universe. The jets, powered by accretion onto supermassive black holes, emit across the entire electromagnetic spectrum – from radio to gamma rays – providing a unique laboratory for studying relativistic plasma physics, jet dynamics, and high-energy particle acceleration.

2. Data Sources and Catalog Descriptions

In this work, we utilized nine major time-domain and variability catalogs to compile optical light curves and variability metrics for blazars listed in the Roma-BZCAT catalog (Massaro et al. (2015)). Below we summarize the essential characteristics of each survey.

2.1. GCVS (General Catalogue of Variable Stars)

The GCVS (Samus' et al. (2017)) is a long-established database of variable stars maintained by the Sternberg Astronomical Institute since 1946. Version 5.1 (2017) includes ~58,000 confirmed variables with data on brightness ranges, variability types, and epochs. Although primarily stellar, GCVS provides cross-references for extragalactic variables such as blazars, aiding optical variability classification.

2.2. NSVS (Northern Sky Variability Survey)

Conducted between 1999–2000, the NSVS (Woźniak et al. (2004)) provides time-series photometry for ~14 million objects (declination $> -38^{\circ}$) with magnitudes 8^m – 15.5^m . Each object typically has 100–400 unfiltered CCD measurements. The cadence and sky coverage make NSVS valuable for studying short-term optical variability of bright blazars.

*varduhi.mkrtyan.99@bk.ru

†aregmick@yahoo.com

‡abrahamyanhayk@gmail.com

2.3. Catalina (CRTS/CSS)

The Catalina Real-Time Transient Survey (CRTS) (Woźniak et al. (2004)), based on data from the Catalina Sky Survey (CSS), covers $\sim 33,000$ deg 2 down to $V \approx 20\text{--}21$ mag with hundreds of epochs per source. It is optimized for detecting transient and long-term variable phenomena, making it particularly suitable for studying blazar flares and secular trends.

2.4. Pan-STARRS (Panoramic Survey Telescope and Rapid Response System)

Pan-STARRS (Magnier et al. (2020)) surveyed the northern sky ($\delta > -30^0$) in g, r, i, z, y filters from 2010–2014, reaching ~ 22 mag with multi-epoch, multi-color photometry. Its precision enables color–magnitude and spectral variability studies of blazars.

2.5. LINEAR (Lincoln Near-Earth Asteroid Research)

Initially an asteroid survey, LINEAR (Sesar et al. (2013)) obtained repeated observations of ~ 20 million objects from 1998–2013 using unfiltered CCD photometry. The high cadence and long baseline are advantageous for detecting rapid or recurrent blazar outbursts.

2.6. ASAS (All-Sky Automated Survey)

ASAS-3 monitored ~ 50 million stars brighter than $V \approx 14$ mag between 2002–2009 (Jayasinghe et al. (2018)), providing long-term V-band light curves over the southern sky ($\delta < +28^0$). For bright blazars, ASAS light curves allow identification of multi-year periodic or quasi-periodic variability patterns.

2.7. TESS (Transiting Exoplanet Survey Satellite)

Although primarily designed for exoplanet detection, TESS (Paegert et al. (2021)) delivers high-precision (2–30 min cadence) light curves for millions of objects up to magnitude 16. Its continuous monitoring is ideal for studying intra-day blazar variability and microflares.

2.8. ZTF (Zwicky Transient Facility)

Operating since 2018 at Palomar Observatory, ZTF scans (Fremling et al. (2020)) the northern sky every 2–3 days in g, r, i bands down to ~ 20.5 mag, offering excellent temporal resolution for flare detection and statistical variability studies of large blazar samples.

2.9. Gaia (Global Astrometric Interferometer for Astrophysics)

The Space Gaia (Gaia Collaboration et al. (2023)) mission provides all-sky, multi-epoch photometry (G, BP, RP bands) and precise astrometry for ~ 1.8 billion sources down to $G \approx 21$ mag. Gaia variability classifications and high photometric accuracy make it a powerful resource for analyzing long-term blazar variability and proper motion verification.

3. Cross-identification with BZCAT

A systematic cross-match was performed between the Roma-BZCAT blazar catalog and each of the nine variability databases. The number of matched objects obtained from each catalog is summarized in Table 1.

The largest number of cross-matches was obtained with TESS, Pan-STARRS, and Gaia, reflecting their extensive sky coverage and depth. These datasets provide complementary temporal baselines, from short-term variability (TESS, ZTF) to long-term optical monitoring (Pan-STARRS, Gaia).

4. Variability Analysis

As an example, light curves were extracted primarily from the ASAS catalog for blazars exhibiting magnitude changes greater than 1 mag. For these objects, we analyzed the dependence of stellar magnitude on

Catalog	Matches
GCVS	7
NSVS	126
LINEAR	5
PanSTARRS	3049
Catalina	3
Gaia	3046
TESS	3352
ZTF	72
ASAS	74

Table 1. Cross-identification results for BZCAT blazars and nine variability catalogs.

time to identify patterns such as flaring events, quasi-periodic oscillations, and long-term trends. Preliminary results indicate that BL Lac objects tend to exhibit larger amplitude variations compared to FSRQs, consistent with their synchrotron-dominated spectra.

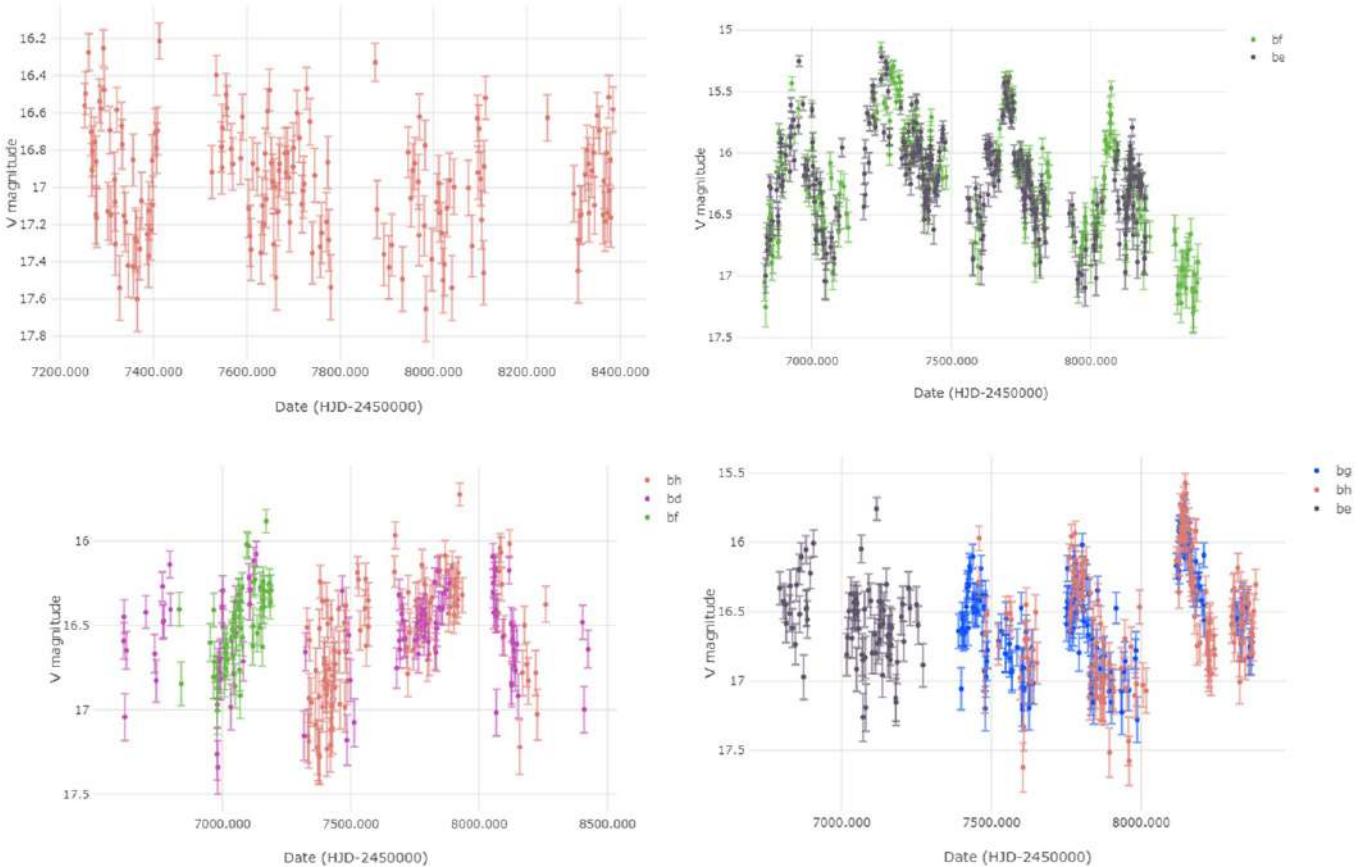


Figure 1. Variability information from ASAS

Future work will extend this analysis to include multi-survey time-series fitting and cross-band correlation analysis to better characterize variability timescales and emission mechanisms.

5. Summary and Future Work

In this study, we compiled and cross-identified optical variability data for Roma-BZCAT blazars using nine major photometric surveys. Despite the inhomogeneous nature of these datasets, their integration provides a unique opportunity to characterize blazar variability statistically and identify extreme cases for detailed study.

Our next goal is to develop a comprehensive, unified database of blazar optical variability, combining multi-epoch photometry from ground-based and space-based surveys. Such a database would fill a current

gap in time-domain astrophysics and serve as a valuable resource for studying jet physics, emission processes, and long-term variability patterns of AGN.

Acknowledgements

The work was partially supported by the Republic of Armenia Science Committee in the frames of the Advanced Research Project No. 21AG-1C053 “Revelation of the early stages of galaxy evolution by means of multiwavelength study of active galaxies” (2021-2026) and ANSEF grant PS-astroex-3280 “Search and Studies of X-ray AGN and Galaxies” (2025-2026).

References

Drake A. J., et al., 2009, *Astrophys. J.*, 696, 870

Fremling C., et al., 2020, *Astrophys. J.*, 895, 32

Gaia Collaboration et al., 2023, *Astron. Astrophys.*, 674, A1

Jayasinghe T., et al., 2018, *Mon. Not. R. Astron. Soc.*, 477, 3145

Magnier E. A., et al., 2020, *Astrophys. J. Suppl. Ser.*, 251, 6

Massaro E., Maselli A., Leto C., Marchegiani P., Perri M., Giommi P., Piranomonte S., 2015, *Astrophys. Space. Sci.*, 357, 75

Paegert M., Stassun K. G., Collins K. A., Pepper J., Torres G., Jenkins J., Twicken J. D., Latham D. W., 2021, *arXiv e-prints*, p. arXiv:2108.04778

Samus' N. N., Kazarovets E. V., Durlevich O. V., Kireeva N. N., Pastukhova E. N., 2017, *Astronomy Reports*, 61, 80

Sesar B., et al., 2013, *Astron. J.*, 146, 21

Woźniak P. R., et al., 2004, *Astron. J.*, 127, 2436